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Abstract 

Discrete-time communication networks are studied as due to digital trans-
missions. Simultaneous multiple transmission requests and completions as 
well as blocking are hereby involved. Scheduling times and packet lengths 
are allowed to have a general discrete distribution. 

A discrete-time product form result is obtained for the steady-state busy 
source distribution. Particularly, this form is shown to be insensitive, 
i.e. to depend only on means, in analogy with continuous-time results. The 
prooftechnique is of interest in itself as a multiple transition extension 
of continuous-time results. Typical applications include: 

. CSMA, BTMA and Rude-CSMA -protocols 

. Circuit switching structures 

. MAN-allocation schemes. 

Keywords Random access protocols * product form * insensitivity * Markov 
chain * CSMA/BTMA/MAN/Circuit switching. 
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1. Introduction 

Random access protocols for communication networks have been widely intro-
duced over the last decade for modeling purposes of actual communication 
protocols such as CSMA, BTMA or Rude-CSMA in interconnection networks, end-
to-end access rules in circuit switching, or circuit allocation in metropol-
itan area networks. Closed product form results have hereby been detected or 
derived for various protocol classes. 

In [7] Standard circuit switching with limited trunkgroups is shown to have 
a product form. Earlier papers as [12] and [14] are of a related nature. In 
[4], [5] and [6] an extensive study is performed to determine necessary and 
sufficiënt product form conditions for multihop packet radio networks with 
CSMA/BTMA-type protocols. Non-exponential transmissions are hereby allowed. 
Also for multihop radio networks, in [1.5] the Rude-CSMA protocol is intro-
duced with randomized blocking to take into account "hidden terminal ef-
fects" while in [2] and [9] link selective characteristics are allowed. 
These latter references provide a product form under exponentiality assump-
tions. In [18] a product form is reported for MAN which is also closely 
related to [12] and [14]. Recently, in [25] all the above results were uni-
fied and extended to a framework of interconnected sources with randomized 
blocking, delays and non exponential distributions. 

Without exception though, all these results heavily rely upon a continuous-
time modeling assumption. This enables one to use global or partial balance 
equations in which only one source can change its modus (idle in busy or 
vice versa) at a time. Present day communication, however, becomes more and 
more digitized. A discrete- rather than continuous-time modeling is thus 
required. This distinction will not generally be just a matter of some 
approximation order A, where A is the length of the time-slot, as a trans-
mission itself may be of that order, say requiring only one or a small 
number of time slots. 

This paper will provide a discrete-time closed product form expression in 
analogy with the above continuous-time results. This extension is non-
trivial as simultaneous transitions are now to be taken into account so that 
Standard partial balance principles do no longer apply. 

Various discrete-time analogs of Jackson's product form have been reported 
over the last coup Ie of years (cf. [1], [3], [8], [10], [16], [17], [20], 
[21], [26]). However, blocking or interference phenomena, which are crucial 
in random access protocols, are hereby excluded. Recently, in [3] the issue 
of batch movements in single-class queueing networks with blocking has been 
analyzed in an abstract continuous-time exponential framework. Product forms 
are hereby concluded provided the transition rates are of a special 
structure. Application of these results to random access schemes would at 
least require a multi-jobclass excension and discrete-time transformation, 
both of which are far from obvious. 

Most notably, however, discrete-time (or batch movement) insensitivity 
results seem to be restricted to [8] and [10]. In these papers a discrete-
time insensitive product form is reported for a Jackson network without 
blocking and a two station (central processor) model with a total capacity 
restriction. Further, the strong condition is thereby imposed that no more 
than one arrival or departure at a station can take place at the same time. 
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The present paper deals with source (job) interdependencies (blocking) and 
allows multiple transmission starts (arrivals) and completions (departures) 
at the same time. The proof in this paper therefore is of interest in itself 
but also for extension to more complex communication structures. 

A variety of random access scheme examples for which the product form result 
applies are already given in [25]. For the purpose of illustration, however, 
some basic selected examples are briefly reviewed or added involving: 

. CSMA, BTMA and Rude-CSMA protocols 

. Circuit switching networks, and 

. MAN-systerns. 

First in section 2 the model is described and the essential blocking condi-
tion is presented. The product form result is given in section 3, while the 
examples are given in section 4. 

2 Model and condition 

This section presents the model in a somewhat abstract or artificial formu-
lation so as to avoid technical issues as well as to allow different inter-
pretations at more technically detailed levels in a later stage as will be 
illustrated in section 4. 

State description Gonsider a set of N transmitters, such as satellites, 
terminals or in/output devices, which will be called sources hereafter. Each 
source is alternatively in an "idle" (non-transmitting/scheduling) and 
"busy" (transmitting) mode as according to the protocol described below. A 
state H-th^ , . . . .b^) represents that sources h x,... ^ are busy. Write H = 
{hjhgH}, H+h - H u {h}, H-h = H/{h}, H+G = H U G and H-G - H/G and denote 
by 0 the state in which none of the sources is busy. 

Idle-busy mechanism The time is slotted in fixed intervals of length A. 
Sources can change their status only at the end of a time slot as follows. 
When source h becomes busy it will require a "busy service" of k units with 
probability qh (k) , k>0. During one time slot it will actually have one of 
these units provided (or worked off) with a (success) probability uh . Simi-
larly, when source h becomes idle it will require an "idle service" of k 
units with probability ph(k), k>0. During one time slot it will actually 
have one of these units provided (or worked off) with (success) probability 

Th-

Note that the above description allows multiple sources to receive a unit 
service at the same time. Particularly, multiple sources may thus complete 
an "idle or busy service" at the same time and thus attempt to change their 
mode simultaneously. This, however, may give rise to blocking depending on 
the current state and source attempts as will be described in detail below. 
When blocking occurs all attempts are lost or equivalently all sources that 
complete an "idle service" will have to undergo or restart a totally new 
"idle service" and similarly for busy sources. 

Blocking mechanism Suppose that at the end of a time-slot the group of 
busy sources is H, that a subgroup GcH of these complete their "busy 
service" while a subgroup G'CH of idle sources complete their "idle 
service". Then with probability 
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A(G'|H-G) 

all of these attempts are successful, so that the busy source configuration 
changes in H-G+G', while with probability 

1 - A(G'|H-G) 

all of these attempts are blocked, so that the busy source configuration re-
mains unchanged, that is H. 

Blocking condition A condition upon the blocking function A(.|.) is re-
quired. As this condition will be used in a two-fold manner later on two 
versions will be given. These verslons can be shown to be equivalent simi-
larly to the equivalence of reversibility and the Kolmogorov criterion as in 
[13]. 

(i) For all H and G+h c H: 

(1) A(G+h|H) = A(GJH) A(h|G+H) 

(2) 

(ii) For any H and G - {hx,...,1^} c H: 

A(G|H) - ^0^1^+1^+11^+...+11^^) 

for all possible permutations (ix im) e (1,...,m). 

Remark 2.1 Relatedly to the equivalence of the Kolmogorov criterion and 
reversibility as in [13], in order to verify (1) or (2) it suffices to find 
a function P(.) such that for all H and H+h: 

(3) P(H+h) = P(H) A(h|H) 

Example (Coordinate Convex) A wide class of examples satisfying the block
ing condition is given by 

A(h+H) - l(H+h € C) 

where 1(A) is 1 if event A is satisfied and 0 otherwise and where C is a set 
of states such that 

(4) H e C => H-h G C (V h e H) . 

The set of admissible busy source configurations is hereby restricted to C. 
This type of blocking is known in the literature as "coordinate convex" (cf. 
[12], [14]). Sector 4 contains some concrete examples of this category. 
Particulary, note that in this case (3) is satisfied by: 

rl , H 
P(H) - A(H|0) - \ 

l0 , H 

1 , H e C, 

0 C. 
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Remark 2.2 (Possible extensions) In analogy with [22], also blocking pro-
babilities D(G|H) can be included which makes the "idle-busy" mechanism 
completely symmetrie. Particularly, features as priority messages or break
downs could hereby be modeled in certain situations. As another extension in 
analogy with [25], the idle and busy probabilities 7h and uh can be made 
state dependent provided a condition similar to (1) or (2) is included. The 
present mechanism is kept restricted so as to concentrate on merely the 
essential novel aspect of discrete-time analysis. 

Remark 2.3 (Total group retransmission) The protocol that upon blocking 
of any of the attempts, all attempts are blocked may naturally reflect for 
instance that only collisions but not the individual sources causing them 
can be detected by the system (e.g. as in slotted ALOHA or CSMA). 

3 Product form result 

Let 
[(Si.Ri), (S2,R2)] 

with 
(Si.Ri) - ((g1,s1),...,(&B,s01)) 

(S2,R2) - ((h1,t1)l...,(hn,tn)) 

be a generic notation for the state in which sources S1 = {gx g^} are 
currently idle with for source g± still s± units of idle service required up 
to completion of its current "idle service", i = l,...,m and in which 
sources S2 = {hx hj,} are currently busy with for source hj still tj 
units of "busy service" required up to completion, j = l,...,n. The state 
[S^S^ is the obvious notation for merely idle and busy source specifica
tion. Here one may note that S2 = H as per the notation of section 2. 
Further, we use the notation 

[(S1,R1);(S2,R2)] - [(ctx.R̂ .Caa.Rjj)] + [ (̂  ,R{) ; (/32 ,RJ ) ] 

to denote that subgroups (ax,R1)c(S1,R1) and (a2,R2)C(S2,R2) are replaced by 
new groups (Px ,R{) and (/32,R2) respectively. Particularly, we write Rj = 
1 if all components of Rj are equal to 1 and symbolize by Rj = Rj+1 that 
all components of Rj are increased by 1. Again, a notation [SX,S2] - [^ ,az] 
+ [̂ 1.̂ 2! is t^ie obvious restriction to merely source specification. (One 
may note here that in this case necessarily either: ^1 = a2 and /3Z — ô  , or: 
[Pi,fa] = [ai,«2])- Let 

rh(s) - 7b
1 SJ-. PhÜ) 

(5) 
vh(t) - ̂  SJ.t qh(j) 

and note by Standard calculus that 

°h - Th1 Ss s Ph(s) - 7b
1 2S rh(s) 

(6) 
*h " "h1 2t t Ph(t) - ̂  St rh(t) 
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We are now able to present the main result. To this end, first observe that 
the underlying probability structure implies that the process which keeps 
track of the number of residual "idle and busy service" requirements of all 
sources at time points 0,A,2A,... constitutes a discrete-time Markov chain. 
(In fact, one can also think of these residual numbers as numbers of resi
dual phases where each phase itse.lf has a geomeric distribution) . Without 
loss of generality, assume that this Markov chain is irreducible at some set 
of states. (Clearly, this set is determined by the A(.|.) access mechanism 
for busy source configurations) . Two results will now be proven. The first 
is the technical one. The second is the practical consequence revealing an 
insensitive product form. For H - (t^,...,!^) let 

(7) P(H) - 5 A(ht K +...+ hl ) 
k«l 

for arbitrary permutation (i1(...,in) e (l,...,n) as justified by (2). 
Further for h = giGSx let sh = s± and for h = hjeS2 let th = ti . 

Result 1 (Detailed product form) With c a normalizing constant 

(8) 7C([(S1,Rl),(Sz,Rz)]) - c P(S2) n rh(sh) n vh(th) 

heSj h 6 S 2 

Proof It suffices to verify the global balance equations: 
(9) 7r(i) 2 ^ p(i,j) - S^i 7r(j) p(j,i) 

where i and j symbolize the different possible states and where p(.,.) re-
presents the corresponding one-step transition probabilities. Herein, tran-
sitions from a state into itself are excluded as these would equally contri-
bute to both hand sides. To specify these equations in more detail, the 
following notation is used for any [S1,S2], subset acS-,̂  and subset jScS2 : 

L(o|Sx) = n 7h n [1 - 7hl 
heet heSj^-a 

(10) 

L(^3|s2) - n i/.h n [ï - vh] 
he/3 heS2-0 

Consider a fixed state [(Sx,RX),(S2,R2)] as symbolized by i in (9). The left 
hand side (probability flux out state [(S1,R1), (S2,R2)]) of (9) then be-
comes: 

(11) 2 T([(S 1,R 1),(S 2,R 2)]) L(GX) M(G2), 
Gl c Sl ' G2 c S2 

while the right hand side (probability flux into state [(S^R^, (S2,R2)]) 
equals: 



(12) E S 

G^Sj OJCGJ, l̂ = G l " a l 

G 2 C S 2 a 2 c G 2 , ^ 2
= G 2 " a 2 

J 7 r ( [ ( S i , R 1 ) , ( S 2 , R 2 ) ] - [ ( Q i + ^ 1 I R i ) , ( a 2 + / 9 2 > R 2 ) ] 

+ [ ( o 2 t l ) , ( a 1 . l > ] + [ ( / 3 i , R i + l ) , ( / 3 2 . R 2 + l ) ] ) x 

L ( a 2 + / 3 i | S i - Q i + a 2 ) M ( a i + £ 2 | S 2 - a 2 + a i ) A ( a 2 | S 2 - a 2 ) H p h ( s h ) n - q h ( t h ) 
h e o , hee t , 

T ( [ ( S I , R I ) , ( S 2 , R 2 ) ] - [ ( a i + ^ i , R i ) , ( a 2 + / 3 2 , R 2 ) ] 

+ t ( a l f l ) . ( « 2 . l ' ) ] + [ ( / 3 i , R i + l ) . ( / 3 2 . R 2 + l ) ] ) x 

L ( a ! + / 3 i | S i ) M ( a 2 + / 3 2 | S 2 ) [ l - A ( a i | S 2 - a 2 ) ] n p h ( s h ) n q h ( t h ) | 
h € d j ^ e a 2 

By substituting (8) this dan be rewritten as: 

(13) E S 

G J C S J a1CG1,^ i = Gi-a i 

G 2 c S 2 a 2 c G 2 ' ' J 2 = G2"0;2 

P(S 2 - a 2 +« i ) [ n r h ( s h + l ) n v h ( t h + l ) n v h ( l ) n r h ( l ) x 
he/3i h E ^ 2 h € a j h e a 2 

n r h ( s h ) n v h ( t h ) ] x 
h c S j - o j - f l j h e S 2 - a 2 - / 3 2 

L ( a 2 + ) 8 i | S i - a i + a 2 ) M ( a 1 + / 9 2 | S 2 - a 2 + a i ) A ( a 2 | S 2 - a 2 ) H P h ( s h ) II q h ' ( t h ) 
hea - i h e a 9 

p(s 2 ) [ n r h ( s h + i ) n v h ( t h + i ) n rh .( i) n v h ( i ) x 
h e ^ i h e ^ 2 h e a i h e a ^ 

n r h ( s h ) •= n v h ( t h ) ] x 
h G S 1 - a 1 - ^ 1

 h e S 2 ' a 2 " ^ 2 

» 

L ( a i + ^ | S i ) H(.a2+p2\S2)[l-A(ai\S2-a2)] n p h ( s h ) H q h ( t h ) 1 
h€a i heer , 
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Now first conclude from (2) and (9): 

P(S2-a2+ai) - P(S2) A(a1|S2-o2)/A(a2|S2-a2) 

provided A ( a 2 | S 2 - a 2 ) > 0 . This , however, follows from the f ac t t h a t ( S ^ S ^ 
i s assumed to be an admissible conf igura t ion (otherwise g loba l balance 
d o e s n ' t need to be v e r i f i e d in t h i s s t a t e ) , so t h a t the conf igura t ion 
(Sl+az ,S2-a2) i s a l so admissible and thus , as the b locking cond i t ion 
r e q u i r e s P(S2) = A(S 2 |0) = A(S 2 -a 2 | 0 ) A ( a 2 | s 2 - a 2 ) > 0, t h a t A ( a 2 | s 2 - a 2 ) > 
0. Fur the r , by ( 5 ) : 

r h ( D - Th1 

while by (10) : 

L ( a 2 + ^ 1 | s l - a 1 + a 2 ) = U a ^ J S J l n 7h ] [ ü yh }"l 

h e a 2 h e a ^ 

M(a 1 +^ 2 | s 2 - a 2 +a 1 ) = M(a 2+^ 2 |S 2 ) [ n i/h ] [ II i/h ]" * 

By s u b s t i t u t i n g these express ions in (13) , no t ing t h a t a1+/31=G1 , a2+/?2=G2 

and c o l l e c t i n g the terms A ( a x | S 2 - a 2 ) + [ l - A ( a 1 j S 2 - a 2 ) ] = 1 we ob ta in : 

SG c S P(S1) K G J S ^ M(G2 |S2) n r h ( s h ) n v h ( t h ) x 
1 1 h 6 S 1 - G 1 h e S 2 - G 2 

n [ p h ( s h ) 7h x ] n [qh(%) u^1] x 
h € a i h e a 2 

n rh(sh+i) n vh(th+i) . 

[Ph<sh)7h1] + [ r h ( s h + l ) ] - r h ( s h ) 

[ q h C t h ) ^ 1 ] + [ v h ( t h + l ) ] = v h ( t h ) 

and in terchanging summation and f a c t o r i z a t i o n , the summation in the l a s t 
express ion over a l l Q1CG1 and a2cG2 can be r e w r i t t e n a s : 

n rh(sh) n vh(th) 
heGj^ h s G 2 

By also substituting (8) in (1.1) we have thus proven that both (11) (the 
left hand side of (9)) and (12) (the right hand side of (9)) are equal to: 

a i c G i • /'I = G 1-Q: 1 

a 2 c G 2 , 0 2 = G2-o:2 

Noting that by (5): 
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c P(S2) 2 U G j S ^ M(G2|S2) n rh(sh) n vh(th) 
G,CS,,G,CS, hes, hes, 

Result 2 (Insensitive busy source distribution). With c a normalizing 
constant: 

(14) *(H) - c P(H) n [rh/ah] 
heH 

Proof This follows by summing (8) over all possible residual numbers sh 
and th for all sources h, recalling (6) and substituting c 
~c[a1 ,az , . . .CTN ]'l . D 

Remark (Group balance) One may note that the proof has actually been 
established by showing that for each group (G1,G2) separately the 
corresponding terms in (11) and (12) were equal. This observation is of 
interest as a multiple extension of the Standard local- or job-local-
balance in continuous-time systems which is known to be responsible for 
insensitivity results. The idea of group balance has been introduced in 
[21] and exploited in [3] and [10] as a responsible factor for product 
form results. 

4. Applications 

To illustrate the possible practical applications of the abstract model 
description and the blocking condition of section 2, this section provides 
some examples of present-day interest. For none of these a discrete-time 
insensitive product form has been reported in the literature. For each of 
them, however, the discrete-time product form result (25) turns out to 
have a similar form as their continuous-time analogues. The examples 
4.1(i), (ii) , 4.2(i) and 4.3(i) are all coordinate convex, so that P(.)=l 
and S=C. Examples 4.1(iii), 4.2(ii) and 4.3(ii) involve a randomized 
blocking and P(.) as according to (7) takes a special form. 

4.1 CSMA-protocols (cf. [2], [4], [5], [6], [9], [15], [23], [24], [25]) 

(i) CSMA Let the sources correspond to transmitters that can be graphic-
ally represented such that adjacent sources (neighbors) cannot be busy 
(transmit) at the same time. In practice this is achieved by the so-called 
"Carrier Sense Multiple Access" (CSMA)-scheme in which a transmitter 
senses the state of its channels just prior to starting a transmission and 
where upon sensing a busy channel from a neighbor the transmission is 
aborted (inhibited). For example, in the figure below a transmission from 
source 1 prohibits any source 3...6 to start a transmission. 

With N(h) the set of neighbors of source h, the coordinate convexity 
condition (4) is guaranteed by 

(15) C = {H |h2 £ Nthi) for all h:,h2eH) 
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(ii) BTMA (cf. [22]) In the above example the sources 1 and 2 which are 
outside hearing range can transmit at the same time. This will lead to a 
collision at nodes 4 and 6 which in turn will result in lost messages. 
This is known as the "hidden terminal problem". To eliminate this problem, 
the so-called Busy Tone Multiple Access (BTMA)-scheme has been introduced 
(cf. [22]). Under BTMA a node which senses a busy channel (in other words, 
which hears a transmitting neighbor) broadcasts a busy tone to all its 
neighbors to prevent idle neighbors from starting a transmission. 

The set C from (15) now still applies (i.e., is coordinate convex), 
provided we replace N(h) by the set of all one and two-link neighbors 
(e.g. N(5) - {2,...,7}). 

In continuous-time the corresponding solution (25), along with necessary 
and sufficiënt conditions for arbitrary 0-1 CSMA blocking protocols to 
have this form, can be found in [4], [5], [6]. 

(iii) Rude-CSMA (cf. [15]) Another way to take into account the hidden 
terminal problem is introduced in [15] under the name of "rude-CSMA". In 
"Rude-CSMA" the access mechanism is randomized as according to 

(16) A(h|H) = x u y 1 

where N^ (H) and Nx (H) are the numbers of idle (not transmitting) and 
busy (transmitting) neighbors from h when the sytstem is in state H and 
where x and y are given system parameters, with 0<x,y<l. For instance x-1, 
y=l corresponds to the ALOHA-protocol (no collisions), x=l, y=0 models the 
Standard CSMA protocol (example 4.1(i)) and other values of x and y may 
reflect for instance that sensing of channels is not always reliable (cf. 
[25]). Condition (3) is easily verified with: 

(17) P(H) = x-Bo<H> yBi(H) 

where 

B0(H): number of idle pairs of neighbors in state H 
(18) 

Bx(H): number of busy pairs of neighbors in state H. 

In continuous-time this solution was provided in [15] under exponentiality 
assumptions and source independent characteristics, extended in [9] to 
source dependent parameters generalized in [25] to non-exponential idle 
(scheduling) and busy (transmission) times. 

4.2 Circuit switching 

(i) Restricted trunkgroups (cf. [7], [14]) Consider a circuit switching 
network with 4 different types of sources with a fixed path along which a 
message from that source to the destination is to be transmitted. This 
transmission requires one trunk from each trunkgroup along this path. 
Interference thus arises with limited trunkgroups and messages using the 
same trunkgroups. 
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With MA the number of trunks in trunkgroup i and nt the number of busy 
sources of type i, the coordinate convexity condition is satisfied by C 
the set of states H such that 

(19) 

nL < Mi 
nx + n2 
n 

(i-1, 
< M 

:3 + n, < M, 

,4) 

+ n, + n, + nL < M7 

HL input channels for sources of type i and M common output 

(ii) (Random gradings) In analogy with the classical Engset random 
grading, assume a circuit switching as depicted below with two types of 
sources, 
channels. 

Upon transmission request by a group of sources G with gj sources of type 
j while the system is in state H with n̂  sources of type j transmitting, 
this total group request is accepted with probability 

,-s. (20) A(G|H) = n (Mj-nj)...(MJ-nJ-gJ+l) M ° J l ^ n ^ ^ g ^ ) 
j = l . 2 

as corresponding to individual random selection probabilities of the form: 

(21) A(h|H) = [CMj-n^/Mj] K ^ + n ^ ) 

for a source h of type j , where 1(A) = 1 if an event A is satisfied and 
1(A) - 0 otherwise. Condition (1) or (2) is readily verified. Hence 

(22) P(H) = A(H||3) 

4.3 Interconnected Metropolitan Area Networks (MAN's) (cf. [16]) 

Consider a communication system with two groups of subscribers, say a 
group A and B with M and N subscribers, such as representing two 
metropolitan or local area networks. Both within a group and in between 
the groups communication between subscribers might be possible. To this 
end, number all subscribers 1,...,M+N' and identify each possible 
connection from a source subscriber m to a destination subscriber n as a 
source (m,n). The description of section 2 now applies by saying that a 
connection is busy when a transmission along this connection takes place 
and idle otherwise. 
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LA LB LA LB LA LB LA s LB 

(i) (Limited total number of circuits) (cf. [18]) For a given state H of 
busy connections let nA, nB and nA B denote the number of busy connections 
within A, within B and in between A and B respectively. Assume finite 
numbers of LA and LB local circuits within A and B and S circuits in 
between A and B. Then the continuous-time model of [18] is extended to 
a coordinate convex discrete-time model by: 

(23) (H |nA < LA, nB < LB, n A B < S} 

for the "dedicated allocation policy" with separate circuits for local and 
long-distance transmissions and by 

(24) C - {H |nA < LA+S, nB < LB+S , 0 < nA B < S-(nA-LA)
+-(nB-LB)

+ 

where (y)+=0 for y<0 and y+ for y>0, for the "shared allocation policy" in 
which the inter MAN circuits are shared among local and long-distance 
calls. As another shared allocation policy, each long-distance connection 
may require a local circuit within each local area, which is reflected by 

(25) C - (H |nA+nAB < LA, nB+nA_B < LB, nA_B < S) 

(ii) (Error detection) In the examples (i) above, each long distance 
transmission may have to be registered before it can be started. However, 
the registration of each source separately, assumed to take place in 
negligible time, may lead to an error, say with probability p, in which 
case the total transmission request is to be rescheduled. Condition (3) 
for this example is directly verified by 

A(h|H) = -

(27) 

p if h=(m,n) with meA, neB or meB and H+heC 

1 if h=(m,n) with m.neA or m.neB and H+heC 

0 otherwise, and 

P(H) = p"A" 
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