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Abstract 

Bias terms of Markov reward structures are shown to play a key-role to 
conclude error bound or monotonicity results for steady state measures 
when dealing with approximate systems such as due to 

. perturbations 

. finite truncations 

. system modifications, or 

. system comparisons (bounds) 

The results are illustrated by a non-product form queueing network 
example with practical phenomena as blocking, overflow and breakdowns. 
Monotonicity results and explicit error bounds are hereby established 
for different approximations. 
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1 Introduction 

Markov chains are known to be a powerful modeling tooi for a variety of 
practical dynamic situations. Most notably, applications are found in 
areas of telecommunication (queueing networks, broadcasting, satellite 
communication), computer performance evaluation (computer networks, 
parallel programming, store and forward buffering), manufacturing 
(assembly lines, material handling systems), reliability (maintenance, 
breakdown analysis), inventory theory and combinations of these as per-
formability analysis of computer systems with breakdowns, error-
detections or fault-tolerancy. The modeling of realistic situations, 
however, may itself already introducé inaccuracies such as by simpli-
fying assumptions and the use of exact parameters. 

Traditionally, steady state behaviour is usually the prime interest, 
such as to estimate a throughput, system efficiency, mean workload, 
response time or system availability, but also transient analysis be-
comes more and more important. As closed form exact expressions are 
available only in a very limited number of practical situations (such as 
a Jackson network without blocking, a finite reversible material handl­
ing system or a simple parallel computer system with Poissonian input), 
numerical or approixmate computations are frequently employed. As exact 
numerical computations easily become astronomie while approximate re-
sults usually encounter unspecified imprecisions, error bounds, prefer-
ably a priori and analytic, for the accuracy or even just its order, are 
of significant interest. 

Generally, several categories of "approximate" results can thus be in-
volved. Let us discuss some of these more detailed. 

Perturbations Applications of Markov (reward) chains are usually 
studied under the assumption that the one-step transition probabilities 
(and rewards) are known exactly. However, in practice these 
characteristics are often determined by a few system parmeters, such as 
the arrival and service rates in a queueing system, which are to be 
estimated by statistical data. Inaccuracies such as from the confidence 
interval bounds for the estimated parameters are then naturally 
involved. 

By studying the effect of perturbations in the input data (parameters) 
of a Markov (reward) process qualitative or sensitivity results with 
respect to essential system parameters are obtained. In [8] and [13] 
perturbation results are given for stationary probabilites in the finite 
case. In [5] and [42] error bounds for approximate undiscounted finite-
and discounted infinite-horizon Markov reward structures were derived. 
The order of these bounds however did not allow a limiting result for 
the average reward case. To this end, perturbation results from infinite 
and average reward situations have been developed in [38] and extended 
to unbounded reward structures in [30] with applications to primarily 
dimensional queueing systems. 

State space truncation In practice, one often encounters large or 
infinite state spaces such as in an infinite server queue, an open 
queueing network or a maintenance system with an a priori unbounded 
lifetime. Truncation of the state space then becomes necessary for 
computational purposes. 
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Though the technique of state space truncation is a common feature in 
practice, theoretical support in terms of orders of accuracy or rates of 
convergence seems hardly available. Convergence proofs as the truncation 
size tends to infinity have already been investigated in the early 
fifties by Savymsakov and were cristallized most notably by Seneta 
(cf. [15], [16]) with reference to private Communications with Kendall. 
A detailed study of these convergence results as well as an extensive 
list of related literature can be found in Seneta (1980). In this latter 
reference, also simple error bounds are provided (cf. theorem 6.4 and 
its corollary, p.215), but these are just robust bounds which do not 
secure an order of accuracy. 
As a special application, methods based on bounded transition rate func-
tions such as the uniformization method are not generally applicable to 
infinite systems (e.g. an infinite server queue). By providing state 
space truncation error bounds such methods can be made applicable in an 
approximative manner (cf. [25]). Conversely, one might wish to know the 
accuracy of an infinite modeling of finite systems such as for theore­
tical purposes, to find bounds (cf. [32], [33], [36]) or to conclude a 
convergence rate rather than just limiting arguments (cf. [4]) when 
using approximating finite sequences. 

Modifications Explicit steady state expressions are usually obtainable 
only under strong assumptions that are often unrealistic. For example, a 
Poissonian unlimited input in a service system is frequently assumed 
merely for convenient modeling while more realistically inputs are much 
more likely to be of a large but finite and state dependent nature. By 
modelling or rather modifying such an input as a Poisson input simple 
approximate results, such as for the throughput, might be concluded. 

As another modification of interest, product form expressions for prac­
tical queueing networks typically fail as phenomena such as blocking, 
dynamic routing, breakdowns and priorities usually destroy necessary 
partial balance conditions to this end. By slightly modifiying the 
system protocols or rather the underlying transition structure, however, 
such conditions can be met from which product form 'approximations' can 
then be obtained. Simple performance esimates based on product form 
modifications have so been established for various non-product queueing 
systems (cf. [28], [31], [37], [40]). Error bounds for these estimates 
however have not been provided. 

Comparison results As a special modification, a system can be compared 
under two different situations. For example to (i) investigate the 
effect of enlarging certain system parameters such as a storage or 
service capacity (cf. [1], [2], [17], [18], [19], [20], [21], [22], 
[23], [24], [25]), (ii) determine a better protocol such as for dynamic 
job or server allocation (cf. [3], [17], [38], [41]) or (iii) conclude 
that transition modifications as product form estimates lead to perfor­
mance bounds (cf. [21], [28], [31], [37], [39], [40], [46]). 

All of such comparison results actually come down to proving monotonie!-
ty results. Established comparison or monotonicity prooftechniques as 
the one-step comparison technique employed in [6], [23], [44], [45] or 
the related sample path technique in [18], [19], [20], [22], [25], [39], 
however, do not generally apply (cf. [40]) to this end. The Markov 
reward prooftechnique that will be illustrated in this paper has already 
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proven to be a fruitful generalization (cf. [28], [29, [32], [33], [36], 
[37], [40]). 

All of the above "approximate results" thus come down to some kind of 
modification/perturbation of the transition structure and/or a trunca-
tion/extension of the state space. This paper will provide a general 
tooi to conclude error bounds for these approximations. More precisely, 
it will provide a unifying tooi from which error bound or monotonieity 
results can be concluded when dealing with 

. perturbations 

. finite truncations 

. system modifications, or 

. system comparisons (bounds). 

The key-step to these results turns out to be one and the same: "An 
estimation of the so-called bias terms for the specific required Markov 
reward structure in order". 

Bias-terms (or fundamental matrices) are common knowledge in Markov de-
cision theory as a key-factor to determine average optimal policies (cf. 
[11], [26]). They are also known to be directly related to mean first 
passage times which play a key-role in the conditioning and convergence 
of numerical procedures to solve steady state equations (cf. [7], [9]). 
Explicit expressions of passage times, however, can only be obtained in 
very simple situations such as a simple random walk (cf. [7]). 

The crucial point of this paper, in contrast, is that in many concrete 
situations one can derive explicit bounds for bias-terms by employing an 
inductive Markov reward prooftechnique. The steps can become technical 
and complicated when a large number of different types of transitions in 
a particular state are possible. For rather natural and simple multi-
dimensional transition structures though, such as most typically queue-
ing networks, it has already proven to be succesful in a number of situ­
ations (cf. [32], [36]). Given the importance of error bounds, this 
paper primarily aims to advocate this "novel" use of bias-terms. 

To this end, several results from [33], [34], and [38] will be combined 
and extended in a unifying manner. A pilot-example will be analyzed. 
This example concerns a simple but multi-dimensional queueing network 
which includes typical practical features as finite capacities, overflow 
and breakdowns. Monotonicity results and error bounds will be esta-
blished for a perturbation, state space truncation and system modifica-
tion. The verification of the necessary conditions and the importance of 
bias-terms are hereby illustrated. 

2 General results 

This section will provide the key-theorem from which error bound and 
monotonicity results of steady state measures of Markov chains can be 
concluded. First this theorem is presented in section 2.1. lts 
conditions will be discussed in section 2.2. Next, the transformation to 
continuous-time Markov chains is given in section 2.3 while in section 
2.4 the results are particularized for application to queueing networks. 
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2.1 Key-theorem 

Consider a Markov chain {Xj. , t-0,1,2,...} with states ordered at 
N=(l,2,...} and one-step transition probability matrix P=(p(i,j)). 
Without loss of generality assume that this Markov chain is irreducible 
at some set S. 

Let {Xt, t—0,1,2,...} be another Markov chain with states also ordered 
at N={1,2,...} and one-step transition probability matrix P=(p(i,j)). 
Again, without loss of generality assume that this Markov chain is 
irreducible at some set S. We essentiaTly impose the condition: 

S c S (2.1) 

From now on, we always use an upper bar "-" symbol for an express ion 
concerning the second chain and the symbol "(-)" to indicate that an 
expression is to be read for both chains. Let operators T and 
{T t 11-0,1,2, ... } on arbitrary functions f: S -»• Rx be defined by 

VfCI) = 2 . % f(J) 
(T^ + 1 =

C T } % (2.2) 

T0 = I 

and for given function r define functions VN, 'N-0,1,2,... by: 

(vi=/- 1 (^r (2.3) 

In words that is, v^(i) represents the total expected reward over N 
periods when starting in state i at time t=0 and receiving a _one step 
reward r(Xt) at time t=0,1,...,N-1. Then for any given state ieS : 

V - limH-.co ^ l (i) (2.4) 

is the expected average reward where this limit is assumed to exist. The 
following key-theorem can now be proven. It provides a pair of condi-
tions from which an error bound for the performances of both chains can 
be concluded. 

Theorem 2.1 (Error bound) Suppose that for some nonnegative function <£>, 
some initial state ieS, some constants c, S, ft > 0, all ieS and t > 0: 

|Sj[p<i,J)-P<i,j>] [Vt(j)-Vt(i)]| < e *(1) (2.5) 

|(r-r)(i)| < S *(i) (2.6) 

Tt4(i) < fi (2.7) 

Then 

|g-g| < [c+6]0 (2.8) 
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Proof As for all t: 

vt+i "
 r + T vt (2-9) 

by virtue of (2.3), while the transition probabilities p(.,.) remain 
restricted to ScS, for arbitrary ieS we can write: 

(VH-VH)(i) - (r-r)(je) + (TV,,̂  - TV^Xi.) 

- (r-r)(i) + (T-DV^^i) + TCVj-Vg.jXJ) 

= 2*~* T([r-r] + [(T-T)VN.t.1])(i) + t(V0-V0 ) (i) , (2.10) 

where the latter equality follows by iteration. Now note that the last 
term in the last right hand side is equal to 0 as vQ (. )-VQ (. )=0 by 
definition. Further, for any s and i: 

(T-T)V,(i)-E [p(i,j)-p(i,j)-]VB(j)-S,[p(i,j)-p(j,i)][Vs(j)-Vs(i)] 
(2.11) 

By substituting (2.11) in (2.10), taking absolute values and noting that 
Tt is a monotone operator for all t > 0, we obtain from (2.5), (2.6) 
and (2.10): 

Applying (2.4) completes the proof. D 

Remark 2.1 Clearly, the conditions (2.5), (2.6) and (2.7) could have 
been combined in one bounding condition that can be applied directly to 
(2.10). The present slightly move restrictive conditions are preferred 
as they appear more practical. In the next theorem, however, which 
concentrates only on monotonicity, the combination of (2.6) and (2.7) 
has proven to be most essential in applications (e.g. [28], [37], [40]). 

Theorem 2.2 (Monotonicity result) Suppose that for all ieS and t > 0: 

[r-r](i) + Sj[p(i,j)-p(i,j)][Vt(j)-Vt(i)] > 0 (< 0) (2.13) 

Th en 

'g > g (g < g) (2.14) 

Proof This follows directly from substituting (2.11) in (2.10) and not­
ing that the operators Tfc are monotone (i.e. Tfc f > f g whenever 
f > g componentwise). D 



- 7 -

Remark 2.2 (Importance of bias-terms) The crucial step for the above 
theorems is the simple relation (2.11). This step enables one to 
transform conditions upon Vt(.) in so-called bias-terms: Vt(j)-Vt(i). 
While Vt(.) generally grows linearly in t, bias terms for given i and j 
are generally bounded uniformly in t. More precisely, when r(.) is 
bounded, say |r(i)| < B for all i, by simple Markov reward arguments 
(cf. [38]) one proves: 

|Vt(j)-Vt(i)|<2B min [Rid , R^] (2.15) 

where Ri;j is the expected number of steps (mean first passage-time, e.g. 
[7]) to reach state j out of state i. A similar though more technical 
result in terms of such times can be given also for unbounded rewards 
(cf. [30]). Most essentially, however, closed form expressions or even 
simple bounds for such times seem to be limited to simple one-
dimensional random walks (cf. [7]). In the next section, we will illus-
trate how estimates for these bias-terms can be derived in a different 
analytic manner and most notably also for multi-dimensional applications 
such as queueing networks (also see step 1 in section 2.2). 

Remark 2.3 ((Un)bounded rewards) Note that no conditions are imposed 
upon the one-step reward function r(.) other than that we implicitly 
assume the average rewards g and g to be well-defined. Particularly, 
unbounded rewards are allowed. For instance, by using a linear one-step 
reward function r(i)=i we can compute a mean queue length of an infinite 
system. As a special applicatlon of the bounded case, g represents the 
steady state probability of a set G if we choose: 

rl for i e G 
r(i) = \ 

M) otherwise 

Remark 2.4 (State labeling) For expository convenience the states were 
labeled in a countable manner. Clearly, for multi-dimensional 
applications such as queueing networks we can always label the states in 
an appropriate one-dimensional manner. But more conveniently, the 
results of this section can directly be reread with multi-dimensional 
states by simply identifying a state with symbols i and j. In section 
2.5 this will be applied for queueing networks. 

Remark (2.5) (Transient results) Both theorem 2.3 and theorem 2.4 can 
be extended to transient analysis of reward structures up to an exit 
time (also see [38]). 

2.2 Discussion of conditions 

In order to give more practical insight in the conditions and the ir 
verifications, this section briefly discusses the steps involved. 
Hereby, we concentrate on theorem 2.1 only. 

First of all, one must typically think of either fi or [6+c] to be small. 
For convience, let A(i,j) = p(i,j)-p(i,j). 
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Step 1 (Bounded bias-terms). As first and most essential step, one has 
to find estimates (bounds) B. . for specific i and j such that for all 
s: 

|Vs(j)-Vs(i)| < BitJ (2.16) 

Fortunately, for condition (2.5) this is needed only for all i,j with 

|A(i,j)| > 0 (2.17) 

For example, with i the number of jobs in a discrete time birth-death 
queueing system we only need to consider j-i-1 and j-i+1. 

To find Bi ., an inductive Markov reward technique based on (2.9) can be 
applied whére T is to be written out in the transition probabilities as 
per (2.2). The structure of these probabilities and an induction 
hypothesis upon Vt and the reward r(.) together must prove (2.16) also 
for s—t+1. This key-step is conceptually straightforward but can be 
rather complicated in concrete multi-dimensional applications. 

Step 2 (Transition differences). Secondly, one has to find out whether 
the differences in the transition structure A(.,.) are small or just 
bounded up to a state dependent scaling function $(.). For illustration, 
think of $(.)-l and consider the following examples. 

Example 1 Consider a discrete-time birth-death model representing a 
discrete-time single-server queue with arrival probability a and 
service probability 7 per step (e.g. with probability a(l-7) a job 
arrivés but no job leaves while with probability y(l-a) a job leaves 
but no job arrivés) and consider the same model with arrival proba­
bility a±r (perturbation) as resulting from a statistical confi-
dence interval for estimating a, where r is to be thought of as 
being small. Then 

|A(.,.)| < r 

Example 2 Consider the model as in the example above but now with 
rejection of arrivals (state space truncation) if upon arrival the 
number n of jobs present is equal to some limit L. Then with 1(A) an 
indicator function of event A, 

|A(.,.)| < a l(n-L) 

Step 3 (Bounding Function $). By comparing the transition structures, 
candidates for an appropriate bounding function $(.) come up naturally. 
Here one may typically think of polynomial type functions, for example, 
$(n)=n with n the total number of jobs present in a queueing system. One 
may thus have various options. As illustration, in example 2 above, 
condition (2.5) will be satisfied with some constant 6 resulting from 
(2.16) and 

re = aB/L if $(.) = n 

S: - aB if *(.) - l(n-L) 
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Step 4 (Stability). Which option of $(.) is appropriate will eventually 
depend on whether we can easily verify (2.7), requiring that lts 
expected value over time remains bounded (stability) by either a small 
or just a finite number. As illustration, again for example 2 from 
above, analogously to the Standard continuous-time single-server queue 
one easily shows with A=a(l-7) and /i=7(l-a) 

f = /?! = 1 if *(.) = 1 

*fi - 02 - (A/M)
L / SL (A/M)

k if *(.) = l(n-L) 

If} _ p - S
L k(A/jOk / SL (A/M)k i f * ( . ) - n D 

° k=0 k=0 

Summary Roughly speaking, theorem 2.1 can be applicable in a twofold 
manner given that the bias-terms can be estimated as per (2.16): 

(i) By showing that the impact of the difference A in the tran-
sition structures upon the state-dependent estimates for the 
bias terms is sufficiently small, such as for example 1 with 
e^i/P and ̂ -1 by using $(.)=1, or example 2 with e=rB/L and /?=/S3 
by using $(.)=n. 

(ii) By showing that the expected value of the scaling function or 
the probability of being in states where this difference is 
significant, is sufficiently small, such as for example 2 with 
e=7B and /3-y92 by using $(.)=l(n=L). 

2.3 A special case: Truncation 

To illustrate how truncations are covered by the above theorems, consider 
the special case that for some L>«: 

r p(i,j) - 0, j>L, i<L, 

< p(i,j) -p(ij), j*t[i], j<L, i<L (2.18) 

^ p(i,t[i]) - p(i,t[i]) + E j > L p(i,j) i<L 

where t[i]<L is some given "state of truncation" for any i<L. In words 
that is, all transitions of the original matrix p(i,j) out of state i 
beyond a certain threshold L are reflected to one and the same state 
t[i]. Condition (2.5) now simply reduces to: 

|S.>L p(i,j)[Vt(j)-Vt(t[i])]| < e *(i) (2.19) 

The f act that different absorption states t[i] for different states i 
are to be chosen will naturally come in when multi-dimensional 
applications are transformed in the one-dimensional description given. 

Remark 2.6 (Other truncations) The truncation (2.18) is a natural one 
as it corresponds to the original model as long as the truncation limit 
L is not exceeded. Clearly, similar conditions can be provided for other 
types of truncations. For example, rather than letting a transition i-+j 
for all j>L transform into one and the same state t[i], we can also let 
it transform into different states in a randomized manner. 
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2.4 Contlnuous-time Markov chains 

Various Markov chain applications, such as most notably in queuelng, are 
of a continuous- rather than discrete-time nature. In order to apply the 
above results the Standard uniformization technique (cf. [12], p. 261, 
[26], p. 110) is then to be applied providedthe transition rates are 
uniformly bounded. More precisely, let (X t|t-0,1,2,..J be a 
continuous-time irreducible Markov chain at some set S with 
transition rates q (i,j) such that for some Q<«> and all ieS : 

(-) 

.) 

q (i,j) * Q (2.20) 

Let'R'(i) be a reward rate, that is the reward per unit of time when 
the chain is in state i and G the corresponding average expected 
reward (per unit of time). The results of section 2.1 then apply by 
substituting 

g - G /Q 

r - R /Q 

V(I,j) -(q'(i,j)/Q (j-i) 

'Vu.j) -(q}(i,j)/Q+ [l-S^JVd.jVQ] (2.21) 

The conditions (2.5) and (2.6) are then natural to be satisfied with 
fi=a/Q and c=7/Q, where a and 7 are to be thought of as small, so that 
from (2.8) and the above we conclude: 

|G-G| < [a+7]/3 (2.22) 

Remark 2.7 For the unbounded case, i.e. without (2.20), an approximate 
uniformization can be applied as in [35]. The details are rather 
technical. 

2.5 Special applicatlon: Queueing Networks 

As queueing networks are an application area of practical interest while 
both a multi-dimensional (remark 2.4) and special continuous-time (sec­
tion 2.4) structure of a random walk type nature are to be taken into 
account, below we particularize our results to queueing network appli­
cations. 

Model Consider an arbitrary open or closed single class exponential 
queueing network with N service stations (hereafter called the original 
model), for example as illustrated below. 
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The state of the network is described by n - ^ , . . . .r^) where n± is the 
number of jobs at station i, i-1 N. By n+e± or n-ei we denote the 
state equal to n except for one job more respectively less at station 
i, where n-ei=n for ^=0, i=l N and where we also allow i=0 with 
the convention that n+eQ-n. Consequently, by n-ei+e. we denote the 
state equal to n with one job moved from station i into station j , 
where i=0 corresponds to an external arrival at station j and j=0 to a 
departure from the system at station i. 

Let q(n, n-e^e.) for i,j-0,1, . . . ,N he the transition rate for a 
change from state n into state n-e^e. , while transition rates for 
changes not of this form are assumed to be 0. For example, for a 
Standard Jackson network we have 

q(n, n-e±+e.) - pi pAj 

with pL the service state at station i and pAj the routing probability 
from station i to j , while an additional capacity constraint N̂  at 
station j yielding a reflective blocking (communication protocol) is 
parametrized by 

q(n, n-ei+ej) - ̂  p,. l(n.<N.) 

Assumptions 
1. The underlying Markov jump process is irreducible at some set S of 

admissible states n with a unique stationary distribution ir(.). 
2. We can choose a finite Q such that 

Q > sup_ s. .q(n, n-e +e ) 
nes ,J J 

3. For given reward rate R(n) the measure G is well-defined by 

G - S_jr(fi)R(n) 
n 

Approximative model Now consider a modified version of the single class 
exponential queueing network (hereafter called the modified model) with 
a description as above, but with qCn.n-ei+ej) replaced by q^^-e^e^ ) , 
the assumptions 1, 2 and 3 adopted with S, ir, r and g replaced by S, TT, 
r and g, and S c S. 

Comparison result In order to compare the models now define the func-
tions V t and operators Tt for functions f: S -+R-L by 

(V^ + 1(n) - ^ ( n V Q + 'ï'v^n) 
and 

(Tjf(n) - f(n),(T^ + 1f(n) -'T' (
(T>f) (n) 

where 

T'f(n) - 2* [^'(n.n-ei+e^/Q] f (n-ei+ej) + 
1^J = 0 •>• J J - J 

[^'(n.^/Q + I-S". n 'q'Cn.n-ei+e^/Q] f(n) (2.23) 
5* J = 0 J 
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The following application of theorem 2.1 then provides an error bound 
for the difference j G-G| without having to compute the stationary 
distributions TT. Herein, let 

ACn.n-ei+ej) - q(n,n-.ei+e.J) - qCn.n-ei+ej) (neS) (2.24) 

Theorem 2.3 (Error bound) Suppose that for some nonnegatlve function $, 
some initial state ïeS, some constants a, -y, f}, > 0, all n&S and 
t>0: 

|2* .=oA(n,n-ei+e.j)[Vt(n-ei+e.j)-vt(n)]| < a $(n) (2.25) 

JR(n)-R(n)j < 7 *(n) (2.26) 

Tt$(5) < j8 (2.27) 

Then 

\G-G\ < yS[a+7] (2.28) 

Proof Directly by applying theorem 2.1 with the substitution (2.21) and 
5=a/Q, e=7/Q and noting that the difference A(n,n) in the transition 
rates for a change from a state n in itself vanishes in (2.5). D 

In a similar manner, we conclude from theorem 2.2: 

Theorem 2.4 (Monotonieity) Suppose that for all neS and t>0: 

[R-R](n)+2^ .^A^n-ei+ejMV^n-ei+e^-V^n)] > 0 (< 0) (2.29) 

Then 

G > G (G < G) (2.30) 

Remark 2.8 The application of theorems 2.1 and 2.2 seems most appro-
priate for queueing networks as per theorems 2.3 and 2.4 by virtue of 
the underlying relatively simple random walk type structure of this 
system. The inductive prooftechnique (see step 1 in section 2.2) for 
estimating the bias-terms will hereby become more tractable. 

3 A pilot-example: A breakdown overflow model 

In this section we will illustrate some possible applications of the 
results and most of all the way of estimating and the importance of the 
bias-terms. 

To this end, a special queueing network example will be analyzed. Though 
this example is relatively simple, it has no closed product form 
expression and serves as a pilot-example for practical aspects as: 
- a multi-dimensional structure 
- finite constraints and blocking 
- dynamic (overflow) routing 
- breakdowns 
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3.1 Model 

Description Consider a queueing network of two parallel service sta­
tions with capacities for containing at most Nx and N2 jobs respec­
tively, where Nx or N2 can be infinite. Jobs arrive at the system at a 
Poisson arrival rate \ . An arriving job first attempts to enter station 
1. If station 1 is saturated (nĵ -Nĵ ), it routes to station 2. If also 
this station is saturated (n^ï^ and n2«N2) it is lost. Further, jobs at 
station 2 can never switch (back) to station 1. The service rate at 
station i is (iL (nA) when nA jobs are present, where we assume A*i (•)

 to 

be non-decreasing as well as to be bounded, i—1,2. 

t\i v 
i i 

down 

Furthermore, as a special complication the output channel is subject to 
breakdowns which renders it inoperative for a period of time regardless 
of whether jobs are present or not. More precisely, this channel is 
alternatively "up" and "down" for exponential periods with parameters v1 

and u0 respectively. When this channel is down, jobs completing a ser­
vice are prohibited to leave the system and have to remain at their 
station. (This latter assumption corresponds to the so-called communi-
cation protocol and can be interpreted as if blocked jobs (messages) are 
to be reserved (retransmitted) or as if the servicing at the stations is 
stopped as long as the channel is down). 

Background The system under consideration has no product-form solution 
for the steady-state distribution as necessary partial balance condi-
tions to this end are easily shown to fail. Only some marginal explicit 
results are available. 
(i) For the pure overflow case, that is assuming î -O so that break­

downs never occur, the overflow stream is known to be hyperexpo-
nential (cf. [41]), so that the overflow station 2 separately can 
be analyzed as a G|M|N2-system. However, our performance of 
interest may also depend on station 1. 

(ii) For the simple single-station case, that is assuming either Nx=<» or 
N2=0, this example is known as an "independent breakdown" model for 
which, despite its simplicity and independence, a closed form 
expression seems to be available only for the generating functions 
(cf. [8], p.103). 

Parametrlzation Let the state [n,0] with n=(nltn2) denote the number 
of jobs nx and n2 at stations 1 and 2 while 0=1 or 0=0 depending upon 
whether the system (output channel) is "up" or "down" respectively. Set 
n=n!+n2. Further, throughout let 1(A) denote an indicator of an event A, 
i.e. 1{A.—1 if A is satisfied and l,A.-0 otherwise. 
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Note that the results of section 2.4 can be adopted directly with n 
replaced by [n,0] as we can simply interpret 6 as the number of jobs n3, 
being 1 or 0 at the "up" station in figure 2. From here onward this will 
be applied throughout without further mentioning. 

The transition rates of the above model are now given by 

q([n,0], [n',0']) -

f *!{!!!<»!> nJ-Hj+1, n^-n2) 0'=0=O,1 

A 1{n i-H l f n2<N2} n^=n2+l, n{=nlf e'-0-0,1 

/*i(ni)1{'fl-i} nf-nj-1, n^-n2, 0'«1 

At2(n2)1{e = i} n |=n z - l , nj-nj., fi'-l 

v0l{g = Q} n i -n l f n^=n2, $'-1 

-̂ u 1 l { e = 1 } n j -n^ n2=n2 , 0'=O (3.1) 

Clearly, the corresponding Markov chain is irreducible a t 

S - ilnj] |0<ni <N!, 0 < n2 < N2 , 9 = 0,1) (3-2) 

and by assumption we can choose a f in i te Q such that 

Q > A+v0+v1+/i1(n1)+u2(n2) (3.3) 

for a l l [n,0]eS. Consider the possible reward rates R: 

R - Rgdn.ff]) - l { e = 1}[/i1(n1)+M2(n2)] 

R = Rj([n,*]) = l{fl-1}Mj(nj) (j-1,2) 
(3 .4 ) 

Then G representing the average reward as according to section 2.4 is the 
actual "throughput" of the system (Rs) or of station j (Rj ) • We wish to 
compare this throughput G with values G and estimate 

|G-G| 

for values G in various "approximate" situations. The key-step to this 
end is the estimation of the bias-terms as established in the next 
section. 
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3.2 Estimation of bias-terms 

Let Vfc(.) be defined as according to (2.23) with R of any form (3.4) and 
define 

A^CIn,*]) - Vt([n+eiI(?])-Vt([n)ö]) (3.5) 

The following lemma then provides estimates for the bias-terms which will 
appear to be essential for the application of both theorem 2.1 and 
theorem 2.2 in various situations. 

Lemma 3.1 For both i-1,2, all [n+e^flleS and all t>0, we have 

0 < AiVt([n,ö]) < 1 (3.6) 

We will give the proof for the case R=Rg. The proof for the case R=Rj is 
almost identical and left as a remark (see remark 5.1 below). 

Proof The proof will be given by induction to t. Clearly, (3.6) holds 
for t-0 as V0(.)=0 by definition. Suppose that (3.6) holds for t<m. Then 
by virtue of (2.23), (3.1) and for convenience writing h=Q"1, we obtain 
for any [n+ei,ö]eS : 

A1Vm([n,ö]) = 

|h.[/i1(n1)+M2(n2) + [/*i(ni+l)-Mi(ni)]] 1{,_1} + 

h A 1{i = i}1{n1 + i<N1} Vm([ÜH-e1+elltf]) + 

h A 1
{ i = l } 1

{ n 1 + l = N 1 , n 2 < N 2 } V
m ( [ A + e i + e 2 • ö ] > + 

h A ^ i - U ^ n ^ l - H i . n 2 = N 2 } ^ ( [ n + e , , * ] ) + 

h A 1
{ i = 2 } 1

{ n i < N 1 } V m ( [ n + e 2 + e l t t f ] ) + 

h A 1 U = 2 } 1
{ n 1 = N 1 , n 2 + K N 2 } Vm < [ * + e 2 + e 2 • ̂  > + 

h X 1 U = 2 > 1
{ n 1 = N 1 , n 2 + l = N 2 } ^ ( [ n + e . , , * ] ) + 

hvolie.0}\(l^^i^]'> + h " 1 l { « - 1 } V m ( [ n + e 1 > 0 ] ) + 

h M n i > 1
{ e = u V m ( [ f i + e i - e 1 > l ] ) + h H (n2 ) 1 { fl = 1 } Vm ([ü+e, - e 2 ,1 ] ) + 

h [ M i ( n i + l ) - / i i ( n i ) ] l { e = 1 } V m ( [ n + e i - e i , l ] ) + 
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[ l - h A - h u e - h l { 9 = 1 } [Ml ( i ^ )+/i2 (n 2 )+fii 0 ^ + 1 ) - M i ( ^ ) ] ] Vm ( [ n + e i , 8 ] ) 

| h [ M i ( n 1 ) + M 2 ( n : 2 ) ] l { e = i } + 

h A 1 { i = i } : ' - { n 1 + i < N 1 } V m ( . [ ü + e 1 , t f ] ) + 

h X 1 { i - l } 1 { n 1 + l - N 1 , n 2 < N 2 } V m ( [ n + e i > ö ] ) + 

h X I f i - n l c B i + l - H i . n 2 = N 2 } V m ( [ n + e i l é ) ] ) + 

h * 1 { i = 2 } 1 { n 1 < N 1 } V n ( [ n + e 1 , f f ] ) + 

h A l , ( = , i l { i = 2 } 1 { n 1 = N 1 , n 2 + K N 2 } V m ( [ n + e 2 . ö D + 

h A l { i , 2 } l { n i _ N i > n 2 + l - N 2 } V n » ( [ n + e 2 , ö ] ) + 

h v 0 l { * - o } V m ( [ n , l ] ) + h u 1 l { ö _ 1 } V I B ( t n , 0 ] ) + 

h M i ( n x ) l { e = i} V B ( . [ n - e 1 , l ] ) + h M2 (n 2 ) 1 ( e = 1 }Vm ( [ n - e 2 , 1 ] ) + 

[ l - h A - h u . 9 - h l{e = l)[^1(n1)+fi2(n2)] V n ( [ n , 0 ] ) j 

h t M i C n i + D - M i d i i ) ] l{eml} + 

h A l { 1 - i } l { n i + i < H l } A 1 V m ( [ n + e 1 , ö ] ) + 

h A l { i - i } l { n i + i - H l , n 2 < N 2 } A 2 V m < f n + e 1 , e ] ) + 

h A l { i « 1 } l { n 1 + l = N 1 , n 2 = N 2 } V B ( t n + e 1 , * ] ) - V m ( [ n + e i , Ö ] ) 

h A l { i = 2 } l { n i < N i } A2Vm([n+e1,B]) + 
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h A 1 { i = 2 } 1 { n 1 = N 1 , n 2 + K N 2 } A2 Vm ( [ n + e 2 , 0 ] ) + 

Il A l { i « 2 } 1 { n 1 - N 1 , n 2 + l = K 2 } V m ( [ n + e 2 , 0 ] ) - V m ( [ n + e 2 , 0 ] ) 

h v0l{g„0}A±Vm([n,l]) + h U l l { e , 1 } A i V m ( [ n , 0 ] ) + 

h /ij. Ctii > l { 9 - 1 } A 1 V m ( [ n - e 1 , l ] ) + h n2 (n 2 ) 1 { e , 1 } A4VB ( [ n - e 2 , $] ) + 

h l ^ . i j t M i i i + D - M i i i ) ] [ v m ( [ n + e i - e i , l ] ) - V m ( [ n , l ] ) 

l - h A - h u e - h l { e = 1 } t / i 1 (n 1 )+At 2 (n 2 )+ / i i ( n A + l ) - ^ (n± ) ] AiVB(.[n,ff]) (3.7) 

First of all, note that the fourth, seventh and one but last term in the 
last expression are equal to 0, while the coëfficiënt in the last term is 
nonnegative by virtue of (3.2) and h=Q"1. By substituting the induction 
hypothesis AiVm(.) > 0 and recalling that ni (.) is nondecreasing we 
hereby conclude that AiVm+1(.) > 0. To conclude the upper estimate 
AiVm+1(.) < 1, recall that the one but last term is equal to 0 while its 
coëfficiënt is exactly equal to the additional nonnegative first term 
h 1{ e = 1 j [pL (n±+l) -fj,i (nL ) ] . By substituing the hypothesis AiVm(.) < 1 and 
using (3.2) again where h=Q"x, we hereby verify also 
AxV m + 1(.) < 1. D 

Remark 3.1 For the case R=Rj the only difference is the first term in 
the right hand side of expression (3.7). Here it would become: 
h l{j = i } [A*i (nA+l) -/̂  (^ ) ]1{ e = 1} . For j=i the arguments thus remain. For 
J7*i, substitution of the induction hypothesis (3.6) for t=m and (3.2) 
directly leads to (3.6) for t-m+1. 

3.3 Application 1: Perturbation 

Reconsider the model of section 3.1 with arrival rate A in stead of A. 
Let all quantities of section 3.1 be defined accordingly with an upper 
bar symbol where we assume that Q=Q also satisfies (3.2) with A (note 
that this can always be established) and where we use the same reward 
R - R. 

In order to determine the effect of the perturbation A-+A we will verify 
the conditions of theorems 2.3 and 2.4. To this end, we conclude from 
(2.24), (3.1) and with A([n, ff], [n-e^e^ , $' ]) = 0 if 6 '~B and i*j : 
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S A([n,0], fn-ei+ej,*']) [Vt([n-e i+e i ,6'])-Vt([n,9})] = 
e'=o,i 
i , j-O , 1 , 2 

[A-A] {l^^H^lVtdi+ei^D-Vtdn,*]) + 

l{n1=N1,n2<N2}[Vt([n+e2lö])-Vt(tn)ö])]} (3.8) 

Choosing 

*([n,«])-l ([n,0] € S) (3.9) 

so that (2.27) is satisfied with 0=1 for any initial state ï=[n,0] e S, 
and recalling that R - R, by substituing (3.8) in (2.25) and (2.29) 
using lemma 3.1 and applying theorem 2.3, we obtain: 

Result 3.1 With G the total throughput of the system: 

G > G (G < G) if A > A (A < A) (3.10) 

and 

IG-G| < I A-A I (3.11) 

Remark 3.2 Result (3.10) and also (3.11) may seem trivial. However, as 
per counterintuitive examples such as in [28], [40], the actual through­
put can sometimes be increased (decreased) by decreasing (increasing) 
arrival intensities at particular periods. 

3.4 Application 2: Finite truncation 

Assume that the second (or overflow) station is an infinite server queue, 
that is ^z

=xo an& M2(n2)=n2- ^ e a r e then involved with an infinite system. 
In order to apply methods (such as numerical) for finite systems, con-
sider the approximate truncated model with N2=L (and /i2(n2)=n2), where L 
is some fixed finite number. Further, in this case consider the reward 
rates R-Rj , j-1,2 to evaluate the station throughput. 

Thus let all expressions of section 3.1 with an upper bar correspond to 
the truncated model with N2=L while without bar to N2=a>, and use R=R=Rj 
for j=l or j=2. First of all, note that 

S = {[n,6] 'ICten!̂ ! , 0<n2<L, 0-0,1} c S 
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By comparing the transition rates (3.1) for N2=<*> (q-model) and N2=L (q-
model), we conclude from (2.24) and (3.1) that for [n,0]eS: 

2 A([n,ö], [n-e^e, ,*']) 
Ö'=0,1 J 

i , j-O, 1,2 

Vt([n-ei+ej,r])-Vt([n,ö]) 

- A ^n^N,, n2,L}[vt([n+e2>ö])-Vt([n,ö])j (3.12) 

Choosing 

*<[n,*]) = llni-Hl, n 2 = L } <[n,*]eS) (3.13) 

and applying lemma 3.1 thus implies that (2.25) is satisfied with a=A. As 
R = R at S, theorem 2.4 thus directly formalizes the intuitively 
obvious result 

G < G (R - R = R., j-1,2) (3.14) 

Lemma 3.2 With Ö=(0,0) and T=H2(1+V1/V0), we have for all t 

Tt*({Ö,l]) * (Ar)
L/L! (3.15) 

Proof This will only be given in heuristic steps. The details can be 
formalized but are rather technical and require application of theorem 
2.2 itself and an inductive prooftechnique as in the proof of lemma 3.1. 

Step 1 
Clearly, by directly routing all jobs to the second station, the steady-
state probability of L jobs at the second station is estimated from above 
by that for at least L jobs in an MJMJoojco-system with appropriate service 
rate /*2 so as to take into account the breakdowns. This tail probability 
in turn is estimated from above by the right hand side of (3.15). 

Step 2 
Similarly to lemma 3.1.2 in [30] and based upon the special initial state 
[0,1], one can show that 

Tt*([Ö,l]) 

is nondecreasing in t. Combination of step 1 and 2 completes the proof.D 

Recalling that R = R = R̂  for j=l, or j=2, we now obtain from theorem 
2.3, lemma 3.1 and (3.12): 

Result 3.2 With r=n2(l+v1/v0), we have 

|G-G| < A(AT)L/L! (3.16) 

Remark 3.3 Note here the special role of the initial state Ï-[0,1] and 
scaling function $. • 
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3.5 Application 3: Modification (simple throughput bound) 

Reconsider the model of section 3.1 in which the Poisson arrivals are 
replaced by a finite source input of M sources with exponential 
parameter 7 per source. More precisely, that is, when n jobs are present 
in the systera, a job will arrive with arrival intensity (M-n)7. Here it 
is quite natural to assume that M is large while 7 is sraall. Further, as 
in sector 3.4, let the second (overflow) station be an infinite server 
station, i.e. N2*«° and p2(n2)=n2 while also /i1(n1)—nt is assumed. The 
total number of jobs in the systera however can never exceed M. 

(M-rt)' (M-rt)' 

• 

m "1 

1 

• 

i 

I OOWfll 1 1 

• 

1 

• 

1 

• 

4 1 

1 

The throughput A of this system cannot be calculated easily. To this 
end, we will approximate this finite system by the infinite Poisson 
arrival system of section 3.1 with N2-«°, /i2(n2)-n2 and 

7M (3.17) 

Note that this 'approximation' involves in f act both a truncation (or 
equivalently an infinite extension) and a state-dependent perturbation 
(arrival rates (M-n)7 as opposed to A). 

We aim to show that A is a simple upper bound and calculate an error 
bound on its accuracy. To this end, denote the expressions of section 3.1 
for the finite source system with an upper bar and for the infinite 
system (as in section 3.1 itself) without. Hence, 

S - {[n,0]| 0 < nt < Nu, 0 < n2 < N2; "1+02 ^
 M» 0=0,1} c S 

Further, use R - R = Rs given by (3.4). From the difference in the 
arrival intensities and with 7=A/M as by (3.17) and n-n1+n2, we obtain 
for [n,0)e§: 

E A([n,0], [n-ei+e, ,6']) |Vt ( [ n - e ^ , 6' ] ) -Vt ( [n, 6 } ) 1 -
e • ~ o , 1 L J 

- n[A/M] {l{ni<Hl)[Vt[n+eiI«])-Vt(t-n,«]) 

+ l{ni=Nl)[Vt([n+e2,0])-Vt([n,0])} 

i, j-o,1,2 

(3.18) 
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Choosing, 

$([n,0]) = n <[n,*]eS) (3.19) 

and applying lemma 3.1 thus implies that (2.25) is satisfied with 
a=[A/M]. As R = R = Rg, theorem 2.3 can thus be applied if we determine 
P-

Lemma 3.3 With Ö=(0,0) and W the expected sojourn time of a job in the 
infinite model, we have 

Tt $([Ö,1]) < AW (3.20) 

Proof This can be given similar to that of lemma 3.2 in [32], based on 
showing that the left hand side of (3.20) is non-decreasing in t (as 
step 2 in lemma 3.2), a bounding argument (as step 1 in lemma 3.1) but 
now for mean queue lengths and Little's result. D 

Recalling that R = R - Rs and noting that the sojourn time is standard-
ly estimated from above, we thus obtain from theorems 2.3 and 2.4, 
relation (3.18), lemma 3.1 and lemma 3.2 

R e s u l t 3 . 3 

0 < A-A < A2/M max [ui1, ti'z
x] l+̂ i Ao 

Remark 3.4 As in section 3.4, again note the special role of the ini-
tial state Ï=[Ö,1] and scaling function $. Particularly, observe that 
the scaling function is unbounded. D 

Evaluation 

Various types of "approximate" systems may naturally arise when modeling 
and/or analyzing a Markov chain model such as representing a queuing 
network. Most notably, inaccuracies in system input data 
(perturbations), finite (numerical) approximations of infinite systems 
(truncations), simplifying transition assumptions for computational 
purposes, simple bounds (modifications), or comparison of system analogs 
under different parameters or protocols (comparisons) can be involved. A 
tooi has been provided by which error bounds or comparison results for 
"approximate" modeling (numerical, bounding, approximating) can be con-
cluded. The key to this tooi is the estimation (bounding) of so-called 
bias-terms for Markov reward structures. An inductive Markov reward 
technique to this end can be employed. Particularly, this technique 
applies also to multi-dimensional structures such as of exponential 
queueing networks and allows practical complicating phenomena as 
blocking, dynamic routing, machine failures and job-priorities. Further 
application of this tooi and most of all of bias-term estimates seems 
promising. 
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