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Abstract A general c ̂ ndition is provided from which an error bound can be 

concluded for approximations of queueing networks which are based on 

modifications of the transition and state space structure. This condition 

relies upon Markov reward theory and can be verified inductively in 

concrete situations. The results are illustrated by estimating the accuracy 

of a simple throughput bound for a closed queueing network with alternate 

routing and a large finite source input. An explicit error bound for this 

example is derived, o': order M"1, where M is the number of sources. 

Keywords Queueing network * throughput * finite source input * alter­
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1 Introduction 

Ever since Erltng's and Engset's classical results in the early 

twenties, queueing theory has been extensively involved in teletraffic and 

communication theory Particularly, motivated, by Jackson's celebrated 

product form results in the late fifties (cf. [10]), the theory of queueing 

networks has gained a wide popularity in telecommunication and computer 

performance evaluatit n. Part of this success can be attributed to the 

various product form extensions and their robustness with respect to the 

underlying distributional assumptions (insensitivity properties), (e.g. 

[2-9], [12], [14], [18], [29], [32]. Most unfortunately, typical practical 

features such as blocking phenomena, dynamic routing, overflow, breakdowns 

and job-priorities i sually destroy the appealing product form from an 

analytical point of view, (e.g. [8], [19], [23], [33]). 

Another part of their success, however, can be explained by the f act 

that simplifying assumptions (such as infinite and independent stations) 

which guarantee product forms, tend to give "reasonable" approximate 

results in various practical situations, especially when the system is 

large, (cf. [19], [33]). These simplications can often be seen as minor 

though critical modi.1 ications of the underlying transition structure such 

as by adding or deletIng particular transitions. Despite numerical support, 

however, analytic a priori error bounds for the accuracy of such "product 

form" approximations lo not seem to be available. 

Also other typ as of approximate modeling issues are typically 

concerned with netwoiks of queues. One of these is the issue of a closed 

(finite source input) or open (Poissonian input) description (cf.[31]), 

with advantages (e.g computational, finiteness) and disadvantages (e.g. 

complexity, station dependence) for either of them. Convergence results for 

closed approximations of open systems have been established (cf. 

[20],[31]). But (error) bounds of this form are limited to simple Erlang 

type systems (cf [31') or robust bounds for state space truncations which 

do not secure an order of accuracy (cf. [20]). 
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Another approximate or modeling issue is the exactness of system input 

parameters such as th •. mean arrival and service rates, as in practice these 

are usually subject to randomness (e.g. resulting from confidence intervals 

for statistical estimates or external fluctuations). To this end, 

perturbation results with error bounds have recently been developed in 

[27], with one dimens_onal queueing applications. 

All of the above "approximations" come down to some kind of 

modification or perturbation of the transition structure and/or a 

truncation or an extension of the state space. This paper, therefore, aims 

to provide a general tooi for concluding error bounds for such 

approximations. It thereby extends the perturbation error bound results 

from [27] in that it 

(i) allows modifieations of the state space such as a truncation for 

closed or an i ïfinite extension for open modeling and 

(ii) particularizes to networks of queues rather than one-dimensional 

queueing appliiations. 

A pair of simple conditions is provided from which error bounds can be 

concluded. The actua . verification of these conditions, however, is the 

crucial part for practical application To this end, an inductive 

verification technique based on Markov reward equations will be presented. 

This technique has already proven to be succesful in somewhat related 

situations (cf. [24] [26], [28]), but cannot be guaranteed in generality 

as complex technica'. ities are involved. The main part of this paper, 

therefore, is concerned with illustrating how the necessary conditions can 

be verified for a particular non-product form system of practical interest 

(cf. [1] , [15]). Thi i concerns a queueing network with alternate routing 

upon saturation of a primary access station and a large finite source 

input. A simple throughput is proposed and an explicit error bound is 

derived of order M"1 , with M the number of sources. 

Though the example is to be seen as mainly generic as it is 

relatively simple from a practical point of view, it includes the essential 

phenomenon of a fii ite capacity constraint (or blocking) and a state 

^ 



- 4 -

dependent (thus dynami.c) routing. For more complex situations, suc'h as with 

more capacity constiaints and blocking phenomena, similar though more 

complicated proofs eau be expected along essentially the; same lines. 

First, the general models are presented in section 2. Next, the 

corresponding error bound result is developed in section 3. Finally, an 

illustrative network with alternate routing is analyzed in section 4. An 

evaluation concludes the paper. 

2 Comparative Models 

Consider an arbii:rary open or closed single class exponential queueing 

network with N servic ; stations (hereafter called the original model), such 

as illustrated below. 

X1 X1 V. " / \ . X1 
\ /" \ 

, / . \ , / . \ 

N y \ V 
% ' 4 X / % 

.. ",;, 
/ 

»"i j \"i 

The state of the network is described by n — (nj,...,^) where ni is the 

number of jobs at station i, i=l,...,N. By nfe1 or n-e± we detiote the 

state equal to n except for one job more respectively less at station i, 

where n-ei=n for ni=0, i=l,...,N and where we also allow i=0 with the 

convention that n+en=n. Consequently, by n-et+ej we denote the state 

equal to n with one job moved from station i into station j, where i=0 

corresponds to an ext?rnal arrival at station j and j=0 to a departure from 

the system at station i. Let q(n, n-e^+ej) for i,j = 0,1 N be the 

transition rate for a change from state n into state n-ej+ej, while 

transition rates for changes not of this form are assumed to be 0. For 

example, for a Standard Jackson network we have 

q(n, n-e^ej ) - ,il pu 

with Hj, the service 1 ate at station i and p£J the routing probability from 

station i to j , whJ l.e an ndditional enpneity construlnt Nj yiflldlng n 
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reflective blocking (communication protocol) is parametrized by 

q(n, n-ei+ej) = ̂  p£j lCn^N^ ) 

where 1(A) or 1 denotes an indicator of event A, i.e. 1(A)=1 =1 if 

{A} {A} 
event A is satisfied and 1(A)=1 -0 otherwise. Without restriction of 

{ A} 
generality, the following assumptions are made: 

1. The underlying Markov jump process is irreducible at some set S of 

admissible states n, with a unique stationary distribution 7r(.). 

2. The transition rates are uniformly bounded. That is, we can choose a 

finite Q such that 

Q > sup;eg Z ._. q(n, n-ei+ej) (2.1) 

3. For some given reward rate r(n) the value g is finite and well-

defined by 

g = S s 7r(n) r(-a) (2.2) 

The value g then represents some performance measure of interest, such as 

the throughput of a particular station j by 

r(ri) - jij (np 

or the steady state probability of a particular subset B by 

r(n) - l(neB) 

Comparative model. Now consider a modified version of the single class 

ejiponential queueing network (hereafter called the modified model) with a 

description as above, but with q(n,n-ei+eJ) replaced by q(n,n-ei+ej), 

the assumptions 1, 2 and 3 adopted with S, »r, r and g replaced by S, TT, 

r and g, but Q kept the same, and most essentially 

SCS (2.3) 
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3 Comparison Result 

We now wish to evaluate the difference |g-g|, that is the difference 

of the performance measure for he original and modified queueing network, 

without having to compute the stationalry probabilities n(.) and TT(.). 

To this end, as justified by the boundedness assumption (2.2), we first 

apply the Standard uniformization technique (e.g. [23], p. 110) in order to 

transform the continuous-time description in a discrete-time formulation. 

More precisely, let Q be any arbitrary finite number satisfying (2.2) and 

define one-step transition probabilities p(n,n-ei+eJ) and p(n,n-ei+ej) by 

p(n, n-ei+e^) = q(n, n-ei+ei)/q 

p(ü, n-ei+ej) - q [n, n-ei+e.j)/Q 

(3.1) 

p(n, n) - 1-[E l >j = 0 q(n, n-e^e^/Q] 

P(n, n) - 1[S »iJ-0 q(n, n-e^e^/Q] 
i 

while transition pr<babilities p(.,.) and p(.,.) for any other type 

transition are assumed to be 0. From now on, we always use an upper bar "-" 

symbol to indicate an expression for the modified system and the symbol "(-

)" to indicate that the expression is to be read for both the original and 

modified system. Further, let operators T and { Tt|t-0,1,2,...} upon 

arbitrary functions f: S -* R be defined by 

4'fCn) = S «^„„VCn.n-ei+ej) f(n-ei+ej) 

(3.2) 
(ï[+1f =

(f)(Ttf (ttO), 

io L 
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And define the reward functions {(V}|t-0,1,2,...} at<S) by 

(V> - Q"1 S «:*(T> r (3.3) 

Then by virtue of the uniformization technïqüe (cf. [23], p. 110) and the 

irreducibility assumptions of S , by Standard Markov reward theory (cf. 

[16]) we conclude 

(-) 

for arbitrary ï e S . This leads to the following key-theorem which 

guarantees an error bound for the difference |g-g|. lts conditions will be 

discussed later on. Herein, we use the abbreviation 

A(n, n-ei+e^) - [q(n, n-e^e^) - q(n, ü-e^e^)] 

Theorem 3.1 (General Conditions) Suppose that for some constants 8, 8, 

e > 0, some state ïeS, some nonnegative function $(.) and all t>0, neS: 

Tt*(ï) < P (3.5) 

|r(n)-r(n)| < 8 *(n) (3.6) 

14,0=0 ACn.n-e^ej) [Vt (n-ei+ej)-Vt (n) ] | < e 4(n) (3.7) 

Then 

| ( V V < Ï ) | < p[3+e] N/Q (3.8) 

and 

|g-g| < B[6+e] (3.9). 
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Proof Clearly, (3.9) immediately follows from (3.4) and (3.8). To prove 

(3.8) first conclude from (3.2) and (3.3) that for any t>0: 

^i^rVQ+^rVt (3.10) 

As the transition probabilities p(.,.) remain restricted to S while 

also S cS, we can thus write for arbitrary neS : 

(VR-VN)(n) = (r-r)(n,/Q + (TV,,., -TV,^) (n) 

- (r-r)(n)/Q + (f-T)VN.r(n) + T < V i " V i > (n) 

- 2 lil Tt([r-r]/Q + [ ( T - T ) ^ . ^ ] ) (n) + T„ (V0 -V0 ) (n), (3.11) 

where the latter equality follows by iteration. Now note that the last term 

in the last right hand side is equal to 0 as V0 (.) - V0 (.) = 0 by 

definition. Further, from (3.1) and (3.2) we find for any s and neS: 

(T-T)Vs(n) - s ; > d _ 0 qCn.i-ei+ejMV.Cn-ei+ep-V.^l/Q 

- E * _ . _ 0 qCi .n -e i+e jMV.Cn-e i+ep-V. t fÜl /Q 

= E « . = 0 A(n,n-ei+ej)[Vs(n-ei+ej)-Vs(n)]/Q (3.12) 

Further, note that Ttfl < Tfcf2 for any fi^f2 in component-wise sense as 

Tt is an expectation operation. As a result, by substituting (3.12) in 

(3.11), substituting n - ï, taking absolute values and applying (3.5) 

(3.7), we obtain: 

|(VK-VN)(Ï)| < [Ói-^Q-
1 S •:; Tt*(i) < y3[5+£]N/Q. (3.13) 

Remark 3.2 (Discussion of the theorem). In the above theorem one must 

typically think of fi and/or [S+c] to be small. To this end, several steps 

are involved, as wil] be discussed below. 



- 9 -

Step 1 (Bounded bias-terms) As first and most essential step one has to 

estimate (bound) the so-called bias terms Vt (n-e±+ej) - Vt (n) as: 

|vt(n-ei+e;j)-Vt(n)| <B._. (3.14) 

uniformly in t. From Markov reward theory it is standardly known that such 

terms are bounded uniformly in t for any given i and j as based upon mean 

first passage time results (cf. [16], [27]) and assuming r(.) to be 

bounded. For finite networks a bound B uniformly in t and i,j can thus be 

concluded. The actual computation of such bounds by means of mean first 

passage times, however, becomes practically impossible for multi-

dimensional applications such as considered in this paper (See [11] or [27] 

for simple one-dimensional cases). In the next section, therefore, we will 

illustrate how estimates for these bias-terms can be derived analytically. 

Step 2 (Transition differences) Secondly, one has to find out whether the 

differences in the transition structure A(.,.) are small or just bounded up 

to a state dependent scaling function $(.). For illustration, think of 

$(.)—1 and consider the following examples. 

Example 1 Consider a Standard single-server queue with arrival rate X 

and service rate p as original model and the same model with arrival rate 

X±T (perturbation).resulting from a statistical confidence interval, as 

modified model, where T is small. Then 

|A(.,.)| < r 

Example 2 Consider the same original model as in the example above but 

now with rejection of arrivals (state space truncation) if upon arrival the 

number n of jobs present is equal to some limit L. Then 

|A(.,.)| < Al(n=L) 

Step 3 (Bounding function $) By comparing the transition structures, 

candidates for an appropriate bounding function function $(.) come up 

naturally. Here one may typically think of polynomial type functions, for 

example, $(n) - n with n the total number of jobs present. One may thus 

have various options. As illustration, in example 2 above, condition (3.7) 

will be satisfied with some constant B resulting from (3.14) and 
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C e = AB/L if #(.) - n 

<- c - AB if *(.) - l(n-L) 

Step 4 (Stability) Which option of $(.) is appropriate will eventually 

depend on whether we can easily verify (3.5), requiring that its expected 

value over time remains bounded (stability) by either a small or just a 

finite number. As illustration, again for example 2 from above, we have 

, p - f)x - 1 if *(.) - 1 

, fi - fi2 - (A/M)L/SJ;_o(VAOk if •(.) - l(n-L) 

L )8 - fl, - ̂  = 0k(A/ M)
k / 4 = 0(A/ M)

k if *(.) = n 

Roughly speaking, theorem 3.1 can thus be applicable in a twofold 

manner given that the bias-terms can be sufficiently estimated: 

(i) By showing that the impact of the difference A in the transition 

structures upon the state-dependent estimates for the bias terms is 

sufficiently small, such as for example 1 with £=rB and 0=1 by using 

$(.)=1, or example 2 with e=rB/L and 0=03 by using $(.)=n. 

(ii) By showing that the expected value of the scaling function or the 

probability of being in states where this difference is significant, 

is sufficiently small, such as for example 2 with e-rB and 0=/82 by 

using $(.)=l(n=L). 

Remark 3.3 (ünbounded rewards) Note that no assumption has been made as to 

any boundedness of the reward rate. For example, we can have r(n)-=nj so as 

to calculate the mean queue length at a particular infinite station j. 

Remark 3.4 (ünbounded intensities) The boundedness assumption (2.1) is made 

in order to apply the uniformatization technique (3.1) yielding a recursive 

formulation. This, however, can be avoided in a technical manner similarly 

to [25] so as to allrw ünbounded intensities, such as from infinite server 

stations. 
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4 Application: A simple throughput and explicit error bound for 

a closed queueing network with alternate routing 

4.1 Model 

This section investigates an application of the preceeding results 

which contains both a perturbation of the transition structure and a state 

space truncation. Moreover, the performance measure of interest, the system 

throughput, involves an unbounded reward structure. The application 

concerns a generic example of a practical phenomenon in teletraffic 

analysis: blocking with alternate routing. 

Consider a queueing network with N service stations, as illustrated 

below, of which the first station is a primary entrance station which 

allows no more than some finite number L of jobs and where upon saturation 

of this station jobs have to take an alternate route according to routing 

probabilities pAJ , i,j=0,2,... ,N, starting at station j with probability 

P0J= c*j . Upon service completion at station i a job leaves the system with 

probability pi0=l-E Jj^Pij f°
r *-*l a n d Pio~l> where the transition matrix 

(piJ) for i,j-0,2,...,N is assumed to be irreducible. 

The service rate at station i is fjti(ni) when nL jobs are present where 

fiL (nt) is assumed to be nondecreasing in nt . Jobs arrive at the system 

according to a finite source exponential input with M sources and 

exponential idle times with parameter 7. That is, if n jobs are present in 

the system the arrival rate is (M-n)7. 

M- n 
l> A 

M 
l> A 

M 
A 

M 

•> r 

< r 
— • — 

•> r 

< 
^ i ^ r 

— • — 

< 
^ i ^ r 

Pu 
r 

<J 
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The system under consideration is not of product-form due to the 

dynamic routing feature upon saturation. This feature naturally arises in 

teletraffic applications for which various altemate routing schemes are of 

actual interest (cf. [1],[15]). Here a large finite source input is most 

realistic, so that often a Poissonian input approximation is used to 

simplify analysis or avoid complex computations of a performance measure 

such as the throughput. Below we will investigate the accuracy of such an 

approximation, or more precisely, of the throughput bound (it can be shown 

to be indeed an upper bound): 

A = 7 M (4.1) 

4.2 Parametrization 

As we require ScS, we consider the open Poisson input case as the 

original model and the closed finite source case as the modified model. 

Then with 

Q > A + S i M M ) , (4.2) 

and choosing 

Mi (n± ) - nt (M) 

for ^ > M, as well as 

S - {üln^L} 

(4.3) 

S - {iilnj^L, nx + . . .+1^=11) , 

the assumptions 1, 2 and 3 of section 2 are guaranteed for both the closed 

and open version witl respective transition rates q(.,.) and q(.,.) given 

by 

V ^ . n - e i ) = p _ ( n i ) P i 0 (i-1, . . . ,N) 

^'(n.n-ei+e,) = //.(n^pn (i,j"2 N) 
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b u t 

{ 
qCn.n+e^ = A l(nx<L) 

q ( n , n + e j ) - A l ^ - L ) et, ( j -2 N) 

and 

{ 
q ( n , n + e i ) = (M-n)7 l(nx<L) 

q(n,n+e.;) = (M-n)7 l ( n i - L ) a., ( j -2 N) (4.4) 

The uni formiza t ion (3.1) i s thus j u s t i f i e d and with 

' ^ ( n ) - S *ml M i ( n i ) P i 0 (neS) (4.5) 

the values g and g, as per (2.2) or equivalently (3.4), represent the 

throughput of the closed and open system. Since, however, g=A=7 M while g 

cannot be computed easily, it is of interest to investigate theorem 3.1 so 

as to estimate the difference |g-A|. 

4.3 Comparison result 

We adopt all notation from section 3. As per the discussion in remark 

3.2, the following lemma is the most crucial step. Herein, for arbitrary 

functions f :S-+R and j=l N we use the notation: 

Ajf(n) - f(n+ej)-f(n) (4.6) 

Lemma 4.1 For all t>0 and j and n such that n+e^GS: 

0 < AjVt(n) < 1 (4.7) 

Proof This will be g: ven by induction to t. For t-0., (4.7) trivially holds 

as V0(.)=0. Suppose that (4.7) holds for t<m and for convenience write 
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h-Q"1. In advance it is noted that in the derivation below terms are added 

artificially and splitted for appropriate comparison of corresponding 

terms. Also, some terms that are actually equal to 0 will be written out 

for clarity. Further, we note that this lemma concerns the open case with a 

Poisson intensity A as according to (4.4) for the transition rates q(.,.). 

Then from (3.10), (4.4), (4.5) and (4.6) we find for t-m+1 and i-1 N: 

Ai Vm+1(n) -

{ S ï-i MnJ> h PJO + 

[/ii(ni+l)-/ii(ni)] h pi0 + 

Ah 1 Vm (n+e, +e, ) + 

Ah 1 Vm(n+e,+e,) + 
{i = l,n1 + K L } m V x 1 J 

Ah 1 2 * a, Vm(n+e, +e4) + 

Ah 1 2 N _ a, V(n+e,+e<) + 
{i = l,n1 + l = L} J = 2 J m v 1 j / 

2 "iml Pd(nj)h 2 » Q p.k Vm(-+e..ej+ek) + 

[^ («,+!)-M1(»1)3 h Z j _ a P i k V m(n +e k ) + 

[Midii+l)-/*!^)] h pi0Vm(n) + 

[l-Ah-f/üdii+D-Pi^^lh - S *.x Mj(nj)h]Vm(n+ei) j 

{2*=i Mj(nj) h p j 0 + 

Ah 1 V„ (ü+e, ) + 
{1*1, n x<L} "

 1 

Ah 1 Vm(n+e1) + 
{ i = l , n i + l < L } m V X' 
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Ah 1 
{i 

2*L, «ivm(n+e,) + 

Ah 1 2* aiVm(n+e1) + 

2 »_! /ij(nj)h S *. 0p J k Vm(n-ej+ek) + 

[Aii(ni-+l)-/ii(ni)]h E £ = 2 pik Vm (n) + 

[Mi(ni+1)-A*i(ni)]h pi0Vm(n) + 

[l-Ah-[Mi(ni+l)-/i1(ni)]h-S ».x ^ <nj )h]Vm (n) J 

[pi(ni+l)-/ii(ni)]h Pi0 + 

Ah 1 A, Vm (ü+e, ) + 
{i»'l,n1<L}

 1 m v 1 / 

Ah 1 A, Vm (ü+e, ) + 
{i-l,.n1 + K L } * m 1 

^ W - ^ M *U ^ W n + e j ) + 

Ah 1 2 " •aiA,V_(n+e1) + 
{i«l,n1+l=L} J=2 J J mV x' 

2 ;.x /ij(nd)h 2 ̂ „ p ^ A ^ C n - . e j + e O + 

[./i1(n1+l)-Aii(ti1)]h 2 « = 2PikAkVm(n) + 

t/ii(n1+l)-P1(ni)]h p 1 0 [Vm(n)-Vm(n)j + 

[l-Ah-tMiCni+D-p^n^h-S » = 1 ^ (n,, )h] A ^ ü ) (4.8) 

The lower estimate A^^^n)^) now directly follows from substituting the 

induction hypothesis AjVro(.)^0 for all j, noting that the one but last term 
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is equal to 0, recalling that the service rate /JL± (.) is nondecreasing by 

assumption and observing that the last term is nonnegative by virtue of 

h=Q_1 satisfying (4.3). 

The upper estimate AiVm+1(n)<l is concluded similarly by substituting the 

induction hypothesis AiVm(n)<l for all j, again noting that the one but 

last term is equal to 0, for which the first term [fit (n±+l) -Ui (iij) ]h pi0 

can be substituted, and observing that all coefficients together than sum 

up to 1. 

We are now able to verify condition (3.8). To this end, recall that the 

transition structures q(.,.)and q(.,.) as according to (4.4) differ only 

in their arrival rates. With (4.7) and 7-AM"1 as per (4.1), we then find 

|S»fj.0 A(n,n-ei+ej) [Vt(n-e1+ej)-Vt(n)]| -

iKM-nUM^-A] {1 [Vt(n+ei)-Vt(n)] + 

^ - M s;.a0j[vt<^ej>-Vt(ü)] }| * 

nA/M (4.9) 

The following choice thus seems appropriate 

$(n) = n (4.10) 

Lemma 3.2 below investigates whether (3.5) can then be verified. 

Lemma 3.2 Let W the sojourn time of a job, in the open version. And 

Ö=(0 0) the empty state. Then for all t2:0: 

Tt$(Ö) < Tt$(Ö) < AW (4.11) 
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v Proof First we will prove that for all t>0: 

Ttf(Ö) - Ttf(Ö) < 0 (4.12) 

for any f such that for all n,n+ejSS: 

f(n+ej)-f(n)>0 (j-l,...,N) (4.13) 

To this end, from (3.10) and the fact that ScS we obtain similarly to 

(3.11) or by direct telescoping: 

(ït-Tt)f(Ö) - S*:J T^T-T)^.,.^) (4.14) 

As per (3.12) and (4.9) however we also have for any neS and function V 

(T-T)V(n) = -[A/M]{1 [V(n+ex)-V(n)] + 
{n1<L} 

+ l{n =L}t^=2aj[V(n+ej)-V(n)]} (4.15) 

Since the operators Ts remain restricted to S while Ts^ > 0 whenever ̂  > 0 

componentwise, from (4.14) and (4.15) inequality (4.12) is concluded, 

provided (4.13) holds with f replaced by Tsf for any s, where f itself also 

satisfies (4.13). 

This will be proven by induction to s. For s=0 it is satisfied by 

definition. Suppose that Ts satisfies (4.13) for s<m, then similarly to 

(4.8): 

A ^ T ^ f X n ) -

T(Tmf)(n+ei)-T(Tmf)(n) -

Ah 1 Ai(rmf)(n+e1) + 

Ah 1 t (Tmf)(ti+e1) + 

{i-l,n1 + K L } • m 1 
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Ah 1 Sf,, a,Ai(T_.f)(.n+e,) + 

Ah 1 E1?- a.A, (T_f)(n+e1) + 
{i-l.nj + l-L} J=2 J J ra X 

[/ii(n1+l)-/i1(ni)]h s£=2Pik Ak(Tmf)(n) + 

[l-Ah-t/üdii+D-Pidi^lh-^.^jdiph] A i ^ f H n ) (4.16) 

The induction hypotheses Â  (Tmf)a;0 for all j, now yield as in the proof of 

lemma 4.1: Ai(Tm+1f)>0. 

Inequality (4.12) is hereby proven and particularly, since $(n)=n 

satisfies (4.13), also the first inequality of (4.11). To prove the second, 

we will now inductively prove that, again for f satisfying (4.13), for all 

t>0: 

Ttf(Ö) < Tt+1f(Ó) (4.17) 

For t=0, we have with h=Q_1: 

Tf(0) = Ah £(0+e!) + [1-Ah]f(0) > f(Ö) (4.18) 

Assume that (4.17) holds for t<m for any f satisfying (4.13). Then from 

this induction hypothesis and, as proven above, the f act that (4.13) also 

holds with f replaced by Tf=Txf when f satisfies (4.13), inequality (4.17) 

is proven for t=m+l by: 

(Tm+1f-Tm+2f)(Ó) - (Tm-Tm+1)(Tf)(Ó) < 0 (4.19) 

With L the mean number of jobs in the open system, finally, we conclude 

from (4.12) and (4.17) with f(ri)=*(n)«n and Little's result: 

Tt*(0) < Tt*(0) lim T.*(0) - L - AW 
t "* <D U 

(4.20) 
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From r(.)=r(.) as per (4.5), lemma 4.1, inequality (4.9) and lemma 4.2., we 

now directly obtain by applying theorem 3.1: 

Theorem 4.2 Throughput error bound With A the throughput of the (7,M)-

finite source system, W the sojourn time of a job in the open version and 

A « 7M: 

|A-AJ < AW/M (4.21) 

Example 4.3 (Deterministic alternate routing) Let all stations be infinite 

server stations with service parameters fiL at station i, and assume that 

a2=l, p± i+1=l for i=2 N-l and pN „-1, then 

| A-A | < AM^max {/ij1, S ? ^ - 1 } . (4.22) 

Remark 4.4 (A<A) By using the lower estimates AjVm>0 from lemma 4.1 in 

(3.11) and (4.9), rather than upper estimates after taking absolute values, 

as in (3.13) and noting that (r-r)(.)-0, from (3.11), (3.12), (4.9) and 

(3.4) we can also conclude: A<A. Intuitively, this may seem trivial. 

Counter-intuitively, however, as per counterexamples of related situations 
«i ld 

in [] and [], such monotonicity results will not generally hold. 

Evaluation Approximations for queueing networks are often based on 

modifications of the original transition structure and/or the set of 

admissible states. An analytical tooi is provided in order to estimate the 

accuracy of such approximations. Particularly, as scaling functions such as 

polynomials are allowed, the results do not require the modifications 

themselves to be smail. The necessary conditions are generally verifiable 

by inductive Markov reward arguments. A typical application is an open 

approximation of a large closed system. Extensions to multi-class and non-

exponential networks seem possible. 
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