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1 Introduction 

Blocking phenomena in queueing networks arise most naturally in applica-

tions such as in telecommunication due to restricted links, in computer 

systems due to shared resources and in manufacturing due to finite 

storage buffers. Most notably among practical protocols in order are the 

"stop (or service)" and "repeating (or rejection)" communication 

protocol, in which services such as message transmissions are stopped 

(interrupted) respectively repeated upon blocking, and the "production 

(transfer or manufacturing)" protocol in which jobs continue their 

service and wait upon blocking (cf. [1], [13], [21]). In the exponential 

case equivalencies between these different protocols have been 

established (cf. [13]) and product form results for the stationary joint 

queue length distribution have been widely reported (e.g. [6], [7], [9], 

[14], [16], [17], [18], [20], [21]). 

In practice, however, a total service may involve a number of service 

phases and is therefore no longer of an exponential form. For example, 

the total service may consist of a number of services at different ser

vice stations such as along an assembly line. Another protocol introduced 

therefore, which is to be seen as an extension of the repeating 

communication protocol to multi-stage services, is the "recirculate" 

protocol under which a blocked job is recirculated as a newly arriving 

job which has to undergo (repeat) a number of service stages, such as 

throughout an entire network. In his historical paper [10] Jackson 

already showed that his product form result was retained under the 

"recirculate" protocol (formulated by lost and triggered arrivals) when 

imposing a total network size constraint. This result was extended in 

[11] to multi-class queueing networks and class-interdependent blocking. 

For the "stop" protocol, however, no such results have been reported. 

This note aims to illustrate that the "stop" and "recirculate" 

protocol are effectively the same when the system exhibits a product 

form. This result is of interest as: 
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(i) the "stop" protocol seems more practical 

(ii) the "stop" protocol simplifies product form verifications 

(iii) it formalizes the intuitive equivalence of state dependent 

global delay or geometrical repetition of multi-stage services. 

(iv) the "stop" protocol naturally leads to necessary blocking con-

ditions to conclude a product form (see remarks 3.2 and 3.5). 

More precisely, for a Jackson network with departure blocking we show: 

1. the "stop" and "recirculate" protocol yield equal product forms. 

2. station balance is responsible for this. 

The insight that station or partial balance is responsible directly sug-

gests generalizations. Two extending examples will be given: (i) the 

multi-class network with arrival and departure blocking from [11], and 

(ii) a network that consists of three finite Jacksonian clusters that are 

interconnected in a non-reversible manner. 

2 Standard model 

ƒ Jackson ) 

( n / 
V ^ network f 

w 

a(n) 

ƒ Jackson ) 

( n / 
V ^ network f d(n) 

Consider a Jackson network with N service stations and: 

. exponential arrival rates a(n) when n jobs are present 

. departure blocking function d(n) when n jobs are present 

. routing probabilities p0j for arriving jobs to route to station j 

. routing probabilities pid for jobs to route from station i to j < N 

. exonential*'single services with parameter nL at each station i < N. 

In view of the departure blocking function two protocols are considered: 
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PI (Stop) The service rate of each station is delayed by a factor 

d(n)<l whenever n jobs are present. Upon completion of service at station 

i a job leaves the system with probability pi0*=l- [pA 1 + . . .+PiN ] . Partic-

ularly, for d(n)=0 this means that all stations are stopped and can re

sumé service only after an arrival. 

P2 (Recirculate) When a job completes its service at station i it 

leaves the system with probability pi0d(n) while it routes to station j<N 

with probability 

Pij + Pio U " d(«)]Poj • 

The P2 protocol can be seen as the "triggering" protocol from [10] and [11] 

where a departure from the system triggers an instantaneous new arrival 

with probability [l-d(n)] when n-1 jobs are left behind. 

Example 

B 
Jackson 

network 

n 

B 

a(n) 

Jackson 

network 

n 
d(n) a(n) d(n) 

To illustrate the departure blocking function, let the Jackson 

network described above be connected to a service station (e.g. 

representing a finite source input), numbered station 0, as illustrated 

above. The total network contains a fixed total number of M jobs. Station 

0 cannot contain more than B jobs and services at a rate a(n) when it 

contains M-n jobs. Then, with 1(A) denoting the indicator of an event A 

and n the total number of jobs in the Jackson network, the 

parametrization .given above applies with 

d(n) - l(n > M - B). 
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Assumptions Without restriction of generality assume that there exists: 

(i) a unique solution of the traffic equations 

r A0 - A 
(1) l + 

(ü) unique stationary distributions {jr1(n)} and {7r2(n)} under protocol 

PI and P2 respectively, restricted to some irreducible set S of feasible 

states n-(n! ,n2 , . . . ,Hj,) , denoting the number nL at stations i= 1 N, 

which with n = n1+...+1^ is of the form 

(2) S = (n| L < n < U} 

for certain numbers L and U, so that necessarily 

a(U) = 0 if U < « and a(n) > 0 for L < n < U 

d(L) = 0 if L > 0 and d(n) > 0 for L < n < U. 

Theorem With c a normalizing constant, we have 

n -1 H n j 

(3) ffl(n) - 7r2(n) - c n [a(k)/d(k+l)] n (A^/^) (n e S) 
k=L j-1 

Proof By n+eL or n-ei we denote the state equal to n with one job 

more or less, provided n^O, at station i respectively. In order to bet-

ter highlight the differences we will deal with both protocols simultane-

ously. To this end, let p denote the protocol under consideration with 

p=l for protocol PI and p=2 for protocol P2. As Standard it suffices to 

verify the global balance equations which in turn are verified by showing 

that for each station separately: 

"the rate out of a state due to a "departure" at that station = 

the rate into that state due to an "arrival" at that station. 
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Here, for notational convenience below we consider a transition from a 

station into itself as both a departure and an arrival. Now fix a state 

neS and station j . Then, the rate out of this state due to a departure 

at station j equals 

r ixx (n) fió d(n) for p=l 
(4) < 

^ 7r2 (n) /ij for p=2 

while the rate into this state due to an arrival at station j is given by 

(5) 

TTpCn-ej )a(n) p0j + 

l(p=l) S* = i ^(n-ej+e^ /^(n)?^ + 

<* l(p=2) S" = i ^(n-ej+ej /^{p^ + pi0[l-d(n)]p0j} 

By substituting 

(6) np(n-ed+&i) <= np(n) [ni/ni][Xi/Xi] 

(7) 7 r p (n - e j ) a(n) - 7rp (n) [^/X^ d(n) 

as according to (3), where a(n)=0 is excluded as we assumed 7r(n)>0, one 

directly concludes from the traffic equations (1) that for d(n)>0: 

(8) 7rp(n-ej) a(n)p0j/d(n) + Si = 1 7rp (n-ej+ei )/ii p£j =7rp(n)/ij. 

For protocol 1, equality of (4) and (5) is hereby directly proven in any 

state n with d(n)>0, while for a state n with d(n)=0 it holds trivially 

as n-e^ is not reachable so that n1 (
n~ej)"0-

For protocol 2, equality of (4) and (5) also follows from (8) provided 

(9) S* = 1 ^(n-e^+ei) H pi0[l-d(n)] = 7r2(n-ej) a(n) [l/d(n)-1] . 

for any state n with d(n)>0, as for n with d(n)=0 and thus 7r(n-ej)=0: 

(10) sj.j_ ̂ (n-ej+ej) nL {Pij + PioPj) - *2 (n) A*j 
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by virtue of (1) and (6) and the traffic relation, following from (1): 

(11) Si-iAiPio " *i~ixi " Sj = i ̂ ï-iVPij = ^-I^OPOJ - A0 - 1. 

Relation (9), however, directly results from combining (6) and (7), 

noting that l/d(n)-l = [l-d(n)]/d(n) and using the traffic relation (11) 

again. D 

Remark 2.1 (Standard result?) Expression 7r2(.) is a slight extension 

of the results by [10] and [11] as departure blocking probabilities 

rather than 0-1 values are allowed. Expression nx(.) may seem a Standard 

application of a Kelly network (cf. [9], [18], [20]) with state dependent 

service capacity functions of the form <p(n-e± )/cp(n) at station i. 

However, in these as well as related references (e.g. [4], [12]) such 

capacity functions are implicitly assumed to be strictly positive for all 

feasible states with jobs present (see [18], p.193, theorem 2.2, p.194, 

p.195 or [20], p.119, fact. 3.7.4). Though the present result can be 

obtained from these frameworks if one carefully allows 0 capacity values 

in boundary states, no mentioning in any such direction has been made in 

these references. In contrast, theorem 3.4, p.200 in [20] states that 

"partial balance of the form 5", which is equivalent to the station 

balance employed above, "is inconsistent with the phenomenon of 

blocking". Proposition 3.5.5 in [18], furthermore, which does deal with 

networks with delays, just proves an opposite result when a fixed service 

delay d tends to 0. Beyond the rather technical proof of this 

proposition, our result is of the form d-*o, where d is state dependent, 

while the proof is straightforward. 

Finally, for d(.)=0 the particular example of this section can be seen as 

a reversible state space restriction if one regards the whole network as 

one station. However, as this network does not have a reversible routing 

itself, the truncation results from [9], section 1.6, [14] or [18], defi-

nition 3.7.2, which concern reversible systems do not apply. Moreover, as 

per the example in the next secion, the product form and equivalence 

result extend to clusters connected by non-reversible routing. 
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Remark 2.2 (Partial balance and protocol equivalence) The equivalence 

proof is essentially based upon the same station or partial balance rela

tions (8) for both protocols and the fact that the relations (9) and (10) 

are satisfied with TT2 (. )—it1 (.) sübstituted. These latter two relations, 

in turn, also come down to a station or partial balance interpretation 

reading that the rate into the exterior (to be seen as a station) is 

equal to the rate out of the exterior (that station). As partial balance 

notions are generally known to be responsible for product form type 

results, cf. [2], [3], [4], [7], [9], [12], [20], the equivalence result 

seems to be extendable to more complex product form networks. In the next 

section we will simply present two of such examples of special interest. 

Remark 2.3 Note that the proof of the product form by equating (3) and 

(4) is simpler under the "stop" protocol. In this case it simply comes 

down to the Standard balance equations for a network without blocking up 

to a scaling factor d(n). Clearly, the complexity of the equations under 

the recirculate protocol will grow for more complex networks. 

3 Two further examples 

Rather than investigating to which extent the preceding equivalence re

sult generalizes, which would require an extensive analysis of product 

form results, this section will simply present two more examples. These 

examples further support the relation of product forms or relatedly 

notions of partial balance and equivalence of stopping and recirculating 

protocols also in more complex situations. The proofs are omitted as 

these can be given along similar lines of substitution. 

3.1 Multiple-classes (cf. [11]) 

Consider a Jackson network with N service stations and R fixed job-

classes. Jobs of different classes arrive according to independent 

Poisson processes with parameter Ar(mr) for class r when mr jobs of this 

class are already present, where Ar(m)>0 for m>0. The class-type of a job 

will be fixed throughout its residence in the system. Upon acceptance, a 

class-r job routes to station j with probability p£. and after a service 
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completion at station i it routes to another station j with probability 

pfj or attempts to leave the system with probability 1-S. = 1 pf j • The 

service stations are infinite server stations. A job of class r requires 

an exponential amount of service with parameter /x'J at station i. 

To describe the arrival and departure blocking , let m=(m1,...,mR) denote 

the numbers mr of class-r jobs present and introducé functions Ar(m) and 

Dr(m) for any class r, which can only take on values 0 and 1. 

Arrival and departure protocol With m denoting the configuration of 

jobs currently present, an arriving class-r job is: 

r rejected and lost when Ar(m) = 0 

*- accepted when Ar (m) = 1. 

and either one of the following departure protocols, in analogy with sec-

tion 1, is employed: 

Px (Stopping protocol) Servicing of class-r jobs is stopped through-

out the entire network as long as Dr(m)=0. 

P2 (Recirculating protocol) Upon completing a service at station i a 

job of class r routes to station j with probability: 

pfd + p^0 [1-D
r(m)] pgj 

while it leaves the system with probability 

VÏo Dr(m). 

Assumptions In analogy with section 1 we make the assumptions: 

(i) For each r=l R there exists a unique solution {A0 AN ) of: 

(12) Â  = 2* = 0 A^ p » J f Xl - 1. 



- 9 -

(ii) There exist unique stationary distributions {n-j(ii)} and {n?(n)) 

under protocol ?1 and P2 respectively, rcstricted to somo 

irreducible set S of feasible states n=(n1,...,nN) where 

ni = (nj n?) denotes the number rif of class-r jobs at station 

i, suc'h that with mr=nf+...+njj for all r, m-er the vector equal 

to m with one class-r job less and V—{m|neS): 

(13) Ar(m-er) - 0 <=> Dr(ra-er) - 0 (m,m-er e V) 

Example. As a special example illustrating (13) consider 2 jobclasses 

where class-2 jobs are stopped to be served (as lower priority jobs) but 

also rejected upon arrival, when the number of class-1 jobs exceeds some 

threshold T. Illustratively, 

^ y-^ y-
Ni 

Jackson network 

Ni 

Jackson network 

Class-1 jobs thus receive strong priority over class-2 jobs when their 

number becomes too large. The corresponding parametrization is: 

A1 ( . ) - D1 (. ) - 1 

A2(m-e2) - D2(m) - Km 1 < T) 

Resu l t 2 With c a normal iz ing c o n s t a n t , we have for a l l n e S: 

(14) 
R r n* - i i f N i 

jrx (n) t - ixz (n) - c H < II Ar (k) M n — 
. r - l *• k-O - ' ' - 1 = 1 n* 

r XL 

i u t*t 

n. 
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Remark 3.1 (Extension) Under the recirculating protocol P2 the above 

result is proven in [11] in a slightly more general form by allowing jobs 

to change their classnumber. This extension can easily be included but is 

excluded here so as not to distract the attention form the novelty: the 

protocol equivalence. Similarly, as in [11], processor sharing or last-

come first-served preemptive disciplines could have been included as 

these preserve thre balance principle per class at a given station. Only 

first-come first-served stations, also covered in [11], would require a 

somewhat more detailed specification as different job-classes at these 

stations have to be indistinguishable. The equivalence result, however, 

can be given also in that case. 

Remark 3.2 (Stop protocol -»• condition (13)) The underlying insight of 

the stopping protocol is: "If at some service stage jobs are blocked to 

continue and thus to get out of a station, one should also avoid jobs to 

get into that station so as to preserve its station balance (both the 

station in- and outrate then become 0)". This principle repeates at each 

preceding station so that eventually along a total station trajectory 

out- and inrates are to be avoided. In particular, exterior arrivals are 

then to be excluded also. We thus conclude: Dr(m)=0 => Ar(m-er)=0. A 

similar arguing holds for the reverse direction. Roughly speaking, by 

employing the stopping principle necessary (and usually sufficiënt) 

conditions are thus concluded naturally. 

3.2 Closed networks of finite Jackson clusters (cf. [17]) 

Consider a single-class closed queueing network with M jobs and N service 

stations that are partitioned in P fixed station clusters, labeled 

C1 Cp, such that cluster Cp cannot contain more than Np jobs. 

The scheduled routing probabilities (that is, disregarding blocking con-

sequences as described below) from stations i to j are given by 

f Pij i.J € c p 
( 1 5 > P i j " \ 

1 P?o Rpq POJ i e CpI j e Cq wi th p * q 
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where p^j and p^j are arbitrary probabilities and p?0=[l-£.ec p^. ]. 

In words that is, routing from one cluster to another is station indepen

dent, while upon arrival at and within a cluster arbitrary routing is al 

lowed. 

The services are assumed to be exponential with parameter fii at station i 

while each station contains a single server. The illustrative example 

below, in which the routing between the clusters is cyclic, visualizes 

that not only the routing within a cluster (as in a Standard Jackson net-

work) but also in betwéen clusters is allowed to be nón-reversible. 

Example Consider a network of 3 clusters with finite capacity Np for 

cluster p-1,2,3. Upon leaving a cluster p a job routes to the next 

cluster p+1, i.e. R12 R 2 1 " R31 - 1-

4-D-CH> 
Jackson network 

-O-ChO ' 
Jackson network 

N, 

Protocols In view of the finite capacity limitations the following pro-

tocols are considered. 

71 (Stop) As long as one of the clusters is saturated, the servicing at 

all stations outside this cluster is stopped. 

P2 (Recirculate) ' As long as one of the clusters is saturated a job 

which completes its service at some station iwithin another cluster, say 

q, cannot leave this cluster and routes to station j within this cluster 

q with probability: 
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q q q 
Pij + Pi0P0j • 

For illustration, in the cyclic 3-cluster example above, upon saturation 

of cluster 3 when m3=N3 , under Px the servicing at any station of 

clusters 1 and 2 is stopped, while under P2 servicing at these clusters 

is continued but a job wishing to leave its cluster is recirculated as a 

newly arriving job at that cluster. Note that either protocol avoids two 

(or more) clusters to become saturated at the same time. 

Assumption Let the traffic equation (1) with A0=0 have a unique proba-

bility solution {Ax,...,AN}. 

Denote by S the set of feasible states (which is the same under either 

protocol) and by {^(n)} and {7r2(n)} the unique stationary dis-

tributions under Px and P2 respectively, with n=(nx nN) the vector 

of queue lengths. 

Result 3 With c a normalizing constant, we have: 

N 

(16) ^ ( n ) - ?r2(n) - c II (Xi/fii)
Tli (n e S) . 

i-l 

Remark 3.3 (Literature) Under Px the result can be concluded directly 

from [17] and indirectly from [7] and [16]. Under P2 the result seems to 

be totally new. 

Remark 3.4 (Extensions) Clearly, extensions where in addition to the 

protocols above each cluster itself can have a mechanism as in section 2 

or 3.1 are possible. As another extension, mixing of protocols Px and P2 

for different clusters is allowed without affecting the product form. For 

instance in the above example, stopping cluster 1 and recirculating jobs 

at cluster 2 when cluster 3 is saturated will retain the product form. 

Finally, similar results can be provided for open verslons. 

Remark 3.5 (Stop protocol -* blocking condition) Once again, also see 

remark 3.2, note that the station balance principle in combination with 

the stopping protocol directly leads to the condition that in the example 

above not only cluster 2 but also cluster 1 should effectively be stopped 

when cluster 3 is saturated. 
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