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Abstract 

Simple analytic estimates and corresponding error bounds are provided for 

communication or broadcast systems with state dependent message loss proba-

bilities, such as slotted ALOHA loss systems. 
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1. Introduction 

Since the introduction of the famous ALOHA communication network in the 

early 1970's (cf. [1]), communication or broadcast protocols such as slot-

ted ALOHA, CSMA, BTMA and CDMA have obtained considerable attention with 

typical applications in computer performance evaluation, radio packet 

switching, satellite communication and data processing (cf. [3], [4], [11], 

[14], [17], [21], [22]). 

These protocols involve practical features such as access limitations 

(e.g., a finite number of links or time slots), technical restrictions 

(e.g., a node cannot hear and transmit at the same time) and collisions 

(e.g., resulting from time slotting or propagation delays) . As a resul t-

closed product form expressions have been reported for some special 

architectures, (cf. [4], [12], [15], [27]), but generally cannot be 

provided (e.g., [14]). Most of the associated literature, therefore, for 

example on ALOHA-systems, deals with modeling and stability issues and 

employs approximate analyses (e.g., [5]-[9], [22]). Particularly, 

approximate "averaging" assumptions such as aggregate attempt rates and/or 

aggregate state-independent success probabilities, are most common (e.g., 

[3], pp. 213-215, [11], pp. 166-169, [17], pp. 429-433, [20], [21]). 

This paper concerns random access schemes with state dependent loss proba

bilities, such as a slotted ALOHA-loss system, and makes no averaging as

sumptions. In contrast, it allows the random. access or success probabili

ties to depend on the detailed information of which other sources are busy. 

The main results developed are: 

(i) Simple robust bounds for performance measures. 

(ii) Analytic error bounds of their accuracy. 

The performance bounds are based upon a product form simplification and are 

typically developed for quick engineering purposes such as to obtain: 

(i) A first indication of order of magnitude. 

(ii) Qualitative or quantitative insights. 
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The error bounds follow from a Markov reward comparison technique. This 

technique can be see.n as a partial extension of monotonicity prooftech-

niques such as applied in [2], [18], [19] and [28] and has already been 

successful in various queueing network problems (cf. [24], [25], [26]). In 

contrast, however, in none of these references explicit error bounds are 

provided. Further, the application of this technique to random access 

protocols appears to be new. 

Particularizing to slotted ALOHA-loss systems a simple throughput estimate 

is suggested and proven to be an upper bound within an accuracy of order d, 

the length of a time slot. The results seem promising for further applic

ation of the technique to more complex random access schemes, such as car

rier sense multiple access protocols with collision detection (CSMA-CD). 

The primary motivation for developing these results was to investigate the 

effect of "time slotting or relatedly "propagation delays" (cf. [13]) in 

ALOHA-systems. In principle, this would require a discrete-time analysis. 

For convenience of presentation, however, a continuous time modeling will 

be employed (e.g., similarly to [11], p. 168) without excluding the 

essential feature of interferences such as reflecting collisions. 

2. Model, performance and error bounds 

2.1 Model 

Consider a communication system consisting of M transmitters (nodes), num-

bered 1,..,M. When idle, (i.e. not transmitting), node h wants to transmit 

a message after an exponential time with parameter 7h . lts message length 

is exponential with parameter #h . Throughout, let H = {hx h^ } denote 

the currently busy (i.e. transmitting) nodes and write H + h = H U {h} 

and H - h = H/h. When nodes H = {h1 \ } are busy (i.e. currently 

transmitting), a transmission that node h requests is 

r accepted and initiated with probability: /3(h|H) 
(1) \ 

*- rejected and lost with probability: l-/9(h|H) . 
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Example 2.1 (Slotted ALOHA) Let d be the length of some fixed time slot 

and assume that a transmission can be started only at time integer values 

of d. Further, when two or more transmissions are requested in one and the 

same time slot they have to be aborted and to be considered as lost, or 

equivalently, they have to be rescheduled at the original scheduling rates. 

Then, 

(2) /3(h|H) - n e~d7*. 
sÉH + h 

Example 2.2 (Memory accessing) A transmission is to be intiated by first 

storing or retrieving some address at a memory disk. Each idle node h, how-

ever, regularly "conrmunicates" with this memory disk, on che average during 

a fraction ph of its idle time. As the memory disk has access for only one 

node at a time, we have 

O) /?(h|H) = n [i-pj. 

2.2 Simple performance estimates 

Let {w(H)}HsS denote the steady state distribution of the system described 

above, assuming that this distribution is unique for the set of reachable 

states S. 

An explicit product form expression for this distribution can be given only 

in special situations, such as with all nodes being indistinguishable or 

with different node-classes satisfying a "coordinate convexity" condition 

(cf. [4], [12], [15], [27]). Generally, however, with distinguishable nodes 

a closed-form expression cannot be provided. 

Let {7r(H)}H6g be the corresponding steady state distribution for the 

system in which transmission requests are never rejected, i.e., assuming 

that for all h,H such that H+h e S: 

(4) /3(h|H) = 1. 
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Then one easily checks or concludes from literature (e.g., [4], [27],) that 

with c a normalizing constant: 

(5) w<H) - c n Wh/^1-
heK 

Now assume that for some performance function r(.) we are interested in the 

performance measure 

(6) g = X T(H)r(H). 
HeS 

A simple and computationally attractive estimate is then suggested by 

(7) g = I - *(H)r(H). 
HeS 

2.3 Error Bounds 

To compare g and g let Q be such that 

(8) Q > l [7h+Mh 
h 

and define Markov chains X and X with one-step transition probabilities 

p(H,H + h) and p(H,H + h) given by: 

(9) 

V(H,H) - 1 - V(H,H+h) - '̂ '(H.H-h) 

p (H,H+h) = 7h^
J(h|H)/Q 

^p'CH.H-h) = ̂ h/Q 

where the symbol •(-) denotes throughout that the expression is to be read 

both with and without upper bar "-" symbol and where /3(. | .) = 1. 

(-) 
Further, define functions VN and VN for N=0,l,2,... by V0(.)=0 and 

(10) CV^+1(H) = r(H)/Q + £__
 (p)(H>H)

(V^(H). 
H 



Then by Standard Markov reward arguments (e.g., [10], [16]) and the unifor-

mization technique (e.g., [23], p. 110), we conclude 

(11) V - limN_ §
 (vJ(H) 

(-) 
for arbitrary H e S . The following key-result can now be proven. It 

enables one to conclude that g is an upper or lower bound of g as well as 

to compute an error bound on its accuracy. 

Theorem 2.1 

(i) We have 

(12) g > (<) g 

if for all h, H and n: 

(13) Vn(H+h) > (<) Vn(H). 

(ii) We have 

(14) j i-gi < £ C 

if for all h, H and n: 

(15) [l-/3(h|H)] < £ 

(16) |Vn(H+h)-Vn(H)| < C. 

Proof First note that for arbitrary H e S : p(H,H') remains restricted to 

H' G S while also S c §. As a result, from (10) we derive for H e S: 

(17) (Vn-Vn)(H) -

X [p(H,H')-p(H,H')]vn.1(H') + 
H ' 

l pCH.H'MViOO-V^Oi')]. 
H ' 
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Further, from (9) we find: 

(18) l [p(H,H')-p(H,H')]Vn.1(H') = 
H ' 

l 7h[l-/3(h|H)][V_1(H+h)-Vn.1(H)]/Q. 
h«ÊH 

As p(H,H') > 0 and [l-/3(h|H)] > 0 for all H,H' and h, we obtain from sub

stituting (18) in (17) that Vn(H) > (<) Vn(H) provided Vn.x(H') > (<) 

Vn.1(H') for all H'. Induction to n, as V0 (.) •=» V0 (.) = 0, and applying 

(11) proves (i). 

By substituting (18) in (17) again but now taking absolute values we obtain 

from (15) and (16) that for any H e S: 

(19) |Vn(H)-Vn(H)| < e C/Q + max |Vn_1(H')-Vn.x(H')| < c n C/Q 
H 'es 

where the latter inequality follows by iteration and noting that V0(.) = 

V0 (.) • Relation (11) hereby also proves (ii). • 

Remarks 2.2 

(i) (Bounds 12) Inequalities as (12) may seem trivial. For example, with 

g and g representing the succesful number of transmission requests one di-

rectly expects the > sign. However, one can give counterintuitive examples 

(cf. [2], [24], [26]) in which the throughput of service systems can be in-

creased by rejecting specific arrivals. 

(ii) (Condition 15) With [1-/S(.|.)] modeling some sort of collision due to 

time slotting or propagation delays, one should typically think of e being 

small. For example, for y9(.|.) given by (2) the value c is of order d, the 

length of the time slots. 

(iii) (Condition 16) From Standard Markov reward theory differences of the 

form Vn(H)-Vn(H') are generally known to be uniformly bounded in n as based 

upon mean first passage times (e.g., [16]). These times, however, are gen

erally just as difficult to estimate as the steady state distribution it-



self when a multi-dimensional state space is involved. In the next section 

therefore we apply a direct method to verify (16). 

3. Application: A simple throughput bound, e.g. for slotted ALOHA-loss 

systems 

As an application and illustration of the preceding results, in this sec

tion we will establish a simple upper bound g as well as an error bound of 

its accuracy on the system throughput g as determined by (5), (6), (7) and 

(20) r(H) = l üfc. 
heH 

First, a key-lemma is given. 

Lemma 3.1 For all n,h and H: 

(21) 0 < Vn(H+h)-Vn(H) < 1. 

Proof This will follow by induction to n. As V0(.)=0, (21) holds for n=0. 

Suppose that (21) holds for all n < m, h and H. Then by (10) and (20) we 

conclude: 

(22) Vm+1(H+h)-Vm(H) -

il. [Mi/Q] + ln [7i/Q]Vm(H+h+i) + 
l ieH + h igH + h 

ï„ [Mi/Q]Vm(H+h-i) + (1-Y [7i/Q] + L [Mi/Q])Vm(H+h)j 
ieH + h i^H+h ieH + h J 

he t/*i/Q] + lB [7i/Q]Vm(H+i) + 
L ieH i*H 

l [Mi/Q]Vm(H-i) + (1-Y [7i/Q] + Y [A*i/Q])Vm(H)j 
ieH i(ÉH ieH J 
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E^h/Q] + X„ [Mi/Q][Vro(H+h-i) - Vm(H-i)] + 

I„ [7i/Q]fVm(H+h+i) - Vm(H+i)] + 
i é H + h 

(i-I, [Mi/Q] - l„ [7i/Q]) • 
ieH+h igH + h 

CVm(H+h) - Vm(H)] 

By substituting the induction hypothesis (21) for n=m and recalling (8), 

one immediately verifies (21) also for n=m+l. O 

Now let g be computed by (5), (7) and (20). Then, by combining theorem 2.1 

and lemma 3.1, we immediately obtain: 

Corollary 3.2 (Throughput bounds) With c given by (15): 

(23) g < g < g + e 

Example (Slotted ALOHA) . With /3(.|.) given by (2): 

(24) g < g < g + d[7l+...+7M]. 

Evaluation A technique is introduced so as to provide simple performance 

bounds or study the effect of interferences and collisions in ALOHA-type 

communication or broadcast structures. Extensions such as to CSMA-schemes 

seem promising. 
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