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1 Introduction 

Since the introduction of the ALOHA-system in the early seventies, a large 

variety of random access protocols for (tele)communication networks has 

been proposed and implemented over the last decade (cf. [4], [19], [20], 

[21]). Particularizing to CSMA-protocols and variants as BTMA (cf. [19]) or 

rude-CSMA (cf. [13]) which take into account the "hidden terminal problem", 

explicit product form results have been established (cf. [2], [4], [5], 

[6]). Recently, by introducing randomized blocking functions and under a 

so-called protocol invariance condition, these results were unified and 

generalized in [22]. 

All these product form results, however, have been obtained under a conti-

nuous time modeling assumption. This has the simplifying consequence that 

only one source can change its status at a time. Present-day communication 

in contrast becomes more and more digitized and is thus actually to be 

analyzed in discrete-time. This distinction is most crucial as a digital 

transmission may require only one or a few time slots. The maximum through-

put of the Standard slotted ALOHA-protocol, for example, is known to be 

doubled by halving the duration of time slots. The major complication here 

is that more than one source may wish to change its status at the end of 

one and the same time slot, so that collisions for instance may arise. 

This note will give a discrete-time extension of the results in [22] . As 

simultaneous transitions are to be taken into account, this extension is 

non-trivial since Standard partial balance principles for continuous-time 

analysis do no longer apply. Several discrete-time analogues of Jackson's 

celebrated product form have been reported over the last couple of years 

(cf. [14], [15], [18], [23]). Most essentially, however, blocking or 

interference phenomena, which are most essential in random access schemes, 

have hereby remained untouched. Only recently, the issue of multiple 

transitions and blocking has been addressed by the author in a joint report 

but in a continuous-time setting (cf. [3]). Product form results are herein 

concluded provided the transition rates exhibit a particular functional 

form. Whether a particular concrete random access protocol such as rude-

CSMA has this form, and whether and how the results trans form to a 
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discrete-time setting, as of interest in this paper, hereby remains 

unanswered. 

More precisely, to the best of knowledge, the prooftechnique that will be 

foliowed is new in that the global balance equations, which are much more 

complicated that the continuous-time analogues, are verified by inductively 

proving a multiple partial balance notion. An illustration of present-day 

applications is given. Particularly, randomized protocols are hereby 

included and explicit discrete-time product form analogues of continuous-

time results are obtained. Applications are included of: 

. CSMA-protocols such as BTMA and Rude-CSMA 

. Circuit switching structures, and 

. MAN-systerns. 

2 Model and result 

This section presents the main result in an abstract formulation so as to 

avoid technicalissues and to allow different interpretations later on. 

Illustration of practical applications will be given in section 3. 

State description Consider a set of N transmitters, such as satellites, 

terminals or in/output devices, which will be called sources hereafter. 

Each source is alternatively in an "idle" (non-transmitting/scheduling) and 

"busy" (transmitting) mode as according to the protocol described below. A 

state H={h1 , . . . ,1^ } represents that currently sources h-^ , . . . ^ are busy. 

Write H - {h|h£H}, H+h = H U {h}, H-h - H/{h}, H+G - H U G and H-G = H/G 

and denote by $ the state in which none of the sources is busy. 

Idle-busy mechanism The time is slotted in fixed intervals of length A 

and a change of state is possible only at the end of a time slot. More pre

cisely, at the end of a time slot an idle source h attempts to become busy 

with probability Ah while a busy source h attempts to become idle with pro-

bability fih , independently of the other sources. Particularly, note that 

more than one source is thus allowed to change its mode at the same time. 

These attempts, however, can be blocked as per the description below. 
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Blocking mechanism Assume that in state H a group of idle sources G' c H 

attempts to become busy, which occurs with probability 

L(G') - n Ah II [1-Ah] 
{heG'} {heH-G' } 

while a group G c H of busy sources attempts to become idle, which occurs 

with probability 

M(G) - n Mh n [i-Mh]-

{heG} {geH-G} 

Then with probability 

A(G'|H-G) 

all these attempts are successful so that the state changes in H-G+G' while 

with probability 

1 - A(G'|H-G) 

all of these attempts are blocked in which case the state remains unchang-

ed, that is H. 

Blocking condition For all H and G c H, we have 

A(G|H) - A(h|H) A(G-h|H+h) (heG) (2.1) 

Remark 2.1 (Condition 2.1) Condition (2.1) reflects that the success 

probability for a group of sources to become busy is actually determined by 

letting the sources attempt to become busy one after the other in a given 

order. This probability furthermore has to be independent of the order. 

More precisely, similarly to the Kolmogorov criterion for reversibility 

(cf. Kelly [11]) one easily verifies that (2.1) is equivalent to: 
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Invariance condition For any H.G-tgj^ , . ., .g,,,} c H and all permutations 

(kx , . . . .k,,,) e (1 m), we have: 

m 

A(G|H) -. n A ( E |H+E +...+£ ) (2.2) 

Special case 2.1 (Coordinate convex) As an important class of examples 

satisfying condition (2.1) let 

A(h|H) = l(H+h e C) 

where C is a set of states such that (2.3) 

H e C => H-h e C (heH). 

As a consequence, the admissible states are restricted to the set C. In 

correspondence with literature (cf. [10], [12]), this set or blocking 

protocol is called "coordinate convex". In the next section various con

crete "coordinate convex" examples will be given. D 

Without restriction of generality, now assume that the system is irredu-

cible at some set S with unique stationary distribution {?r(H)|H€S} and 

define 

n 

P(H) = II A(h | h +...+h ) (2.4) 
i = 1 *i kl ki-l 

which is well-defined regardless of the chosen permutation (kx kjj) e 

(l,...,n) by virtue of condition (2.1) or equivalently (2.2). The following 

key-result is then obtained. lts proof will be given at the end of the sec

tion. 

Theorem 2.1 With c a normalizing constant, we have for all HES: 

r *h [ i-Mhl i 
TT(H) - c P(H) n 

{heH} Mh H-Ah] J 
(2.5) 
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Special case 2.2 (Coordinate convex) ünder (2.3), we have S=C and 

P(H) = 1 (HeC) (2.6) 

Remark 2.2 (Possible extensions) In analogy with [22] also blocking proba-

bilities D(GJH) can be included which makes the "idle-busy" mechanism com-

pletely synimetrical. Particularly, features as priority messages or break

downs could hereby be modelled in certain situations. As another extension 

in analogy with [22], the idle and busy probabilities Ah and p^ can be made 

state dependent provided a condition similar to (2.1) or (2.2) is included. 

The present mechanism is kept restricted so as to concentrate on merely the 

essential novel aspect of discrete-time analysis. 

Remark 2.3 (Total group retransmission) The protocol that upon blocking of 

any of the attempts, all attempts are blocked may naturally reflect for 

instance that only collisions but not the individual sources causing them 

can be detected by the system (e.g. as in slotted ALOHA or CSMA). 

Proof of the theorem We need to verify the global balance (or forward 

Kolmogorov) equations. For a given state HeS and recalling the shorthand 

notation M(G) and L(G'), these are given by 

*(H) 2 GcHjG.ci M(G) L(G') A(G'|H-G) -

2 G-ci.GcH ir(H-G+G') M(G') L(G) A(GJH-G), (2.7) 

where the expressions corresponding to a blocking are deleted as they would 

contribute equally to both the left and right hand side of (2.7). These 

equations in turn are verified by showing that for each pair of groups GcH 

and G'cH separately: 

JT(H) M(G) L(G') A(G'|H-G) - *r(H-G+G') M(G') L(G) A(G|H-G). (2.8) 

This will be proven by induction to s=n(G)+n(G') with n(M) the cardinality 

of M. Clearly, (2.8) holds for s=0. Assume that (2.8) holds for all G and 

G' with s=n(G)+n(G' )=m. As n(G) or n(G') can be equal to 0, in order to 
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prove (2.8) for s«=m+l we need to distinguish the two situations 

(i) n(G+h) + n(G') = m + 1 for some G, G' and h e H-G. 

(ii) n(G) + n(G'+h) = m + 1 for some G, G' and h e H-G'. 

(i) (G -* G+h) From the definition of M(G) and expressions (2.4) and (2.5), 

we obtain 

L(G+h) = L(G) A ^ I - A J " 1 

(2 .9) 

M(G+h) - M(G) M h [ l - / i h ] _ 1 

TT(H) - *(H-h) A(h|H-h) A h [ l - M h ] MhMl-Ah]" 1 . (2 .10) 

By s u b s t i t u t i n g these r e l a t i o n s , applying the induc t ion hypo thes i s (2 .8) 

for G and G' r ep l aced by H-h and r e c a l l i n g cond i t i on ( 2 . 1 ) , we f ind 

ir(H) M(G+h) L(G') A(G'|H-(G+h)) -

ir(H-h) A(h|H-h) A h [ l - A h ] _ 1 M(G) L(G') A(G'|H-G-h) = 

7r(H-G-h+G') AhCl-Aj,]"1 L(G) M(G') A(G|H-G-h) A(h|H-h) = 

7r(H-G-h+G') M(G') L(G+h) A(G+h|H-G-h) (2.11) 

which proves (2.8) with G replaced by G+h and where n(G+h)+n(G') - m+1. 

(ii) (G'-KÏ+h) Similarly, by directly using condition (2.1), substituting 

(2.9) with G replaced by G' as well as 

*(H-G+G'+h) - *(H-G+G') A(h|H-G+G') Ah[1-/^ ]f^1[1-Ah]"*, (2.12) 

and applying the induction hypothesis (2.8) for G and G', we also obtain 
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TT(H) M(G) L(G'+h) A(G'+h|H-G) -

ir(H) M(G) L(G') Ah[l-Ah]
_1 A(G'JH-G) A(h|H-G+G') 

TT(H-G+G') M(G') L(G) A(GJH-G) A(h|H-G+G') Ah{l-Ah ]
_ 1 

7r(H-G+G'+h) /^[l-/^]"1 M<G'> L<G) A(G|H-G) 

jr(H-G+G'+h) M(G'+h) L(G) A(G|H-G) (2.13) 

which proves (2.8) with G' replaced by G'+h where n(G)+n(G'+h) = m+1. As 

the induction hypothesis (2.8) is hereby proven for all s, the proof is 

completed. D 

3 Applications 

To illustrate the possible practical applications of the abstract descrip-

tion and the blocking or invariance condition of section 2, this section 

provides some examples of present-day interest. For none of these a dis

crete-time product form has been reported in the literature. For each of 

them, however, the discrete-time product form result (25) turns out to have 

a similar form as their continuous-time analogues. The examples 3.1(i), 

(ii), 3.2(i) and 3.3(ii) are all coordinate convex, so that P(.)=l and S=C. 

Examples 3.1(iii), 3.2(ii) and 3.3(ii) are randomized. 

3.1 CSMA-protocols (cf. [2], [4], [5], [6], [8], [13], [20], [21], [22]) 

(i) CSMA Let the sources correspond to transmitters that can be graphic-

ally represented such that adjacent sources (neighbors) cannot be busy 

(transmit) at the same time. In practice this is achieved by the so-called 

"Carrier Sense Multiple Access" (CSMA)-scheme in which a transmitter senses 

the state of its channels just prior to starting a transmission and where 

upon sensing a busy channel from a neighbor the transmission is aborted 

(inhibited). For example, in the figure below a transmission from source 1 

prohibits any source 3...6 to start a transmission. 
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Wlth N(h) the set of all nelghbors of source h, the coordlnate convexity 

condition (2.3) is guaranteed by 

C - (H | h2 £ N(hx) for all hx,h2eH) (3.1) 

(ii) BTMA (cf. [19] In the example above sources 1 and 2, for example, 

which are outside hearing range can transmit at the same time. This will 

lead to a collision at nodes 4 and 6 which in turn will result in lost 

messages. This is known as the "bidden terminal problem". To eliminate this 

problem, the so-called Busy Tone Multiple Access (BTMA)-scheme has been 

introduced (cf. [19]). Under BTMA a node which senses a busy channel (in 

other words, which hears a transmitting neighbor) broadcasts a busy tone to 

all its neighbors to prevent idle nelghbors from starting a transmission. 

The set C from (3.1) now still applies (i.e., satisfies (2.3)), provided we 

replace N(h) by the set of all one and two-link neighbors (e.g. N(5) -

(2....,7}). 

In continuous-time the corresponding solution (25) along with necessary and 

sufficiënt conditions for arbitrary 0-1 CSMA blocking protocols to have 

this form can be found in [4], [5.J and [6]. 

(ili) Rude-CSMA (cf. [13]) Another way to take into account the hidden 

terminal problem, which is introduced in [13] under the name of "rude-

CSMA", is to let the access mechanism be randomized as according to 

A(h|H) = xN° (H) yNl(H) (3.2) 

where N̂j (H) and N^ (H) are the numbers of idle (not transmitting) and busy 

(transmitting) neighbors from h in state H and where x and y are given 

system parameters, with 0<x,y<l. For instance x-1, y-1 corresponds to the 

ALOHA-protocol (no collisions), x-1, y-0 models the Standard CSMA protocol 

of example 2.1 and other values of x and y may reflect for instance that 
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sensing of channels is not always reliable (cf. [22]). Condition (2.1) and 

(2.4) are easily verified with: 

P /..v "Bn (H ) B i ( H ) (H) - x ° y 1 

where 

B0(H): number of idle pairs of neighbors in state H 

Bx(H): number of busy pairs of neighbors in state H. (3.3) 

In continuous-time this solution was provided in [13] under exponentiality 

assumptions and source independent characteristics, extended in [8] to 

source dependent parameters and in [22] generalized to non-exponential idle 

(scheduling) and busy (transmission) times. 

3.2 Circuit switching 

(i) Restricted trunkgroups (cf. [12]) Consider a circuit switching net-

work with 4 different types of sources with a fixed path along which a mes

sage from that source to the destination is to be transmitted. This trans

mission requires one trunk from each trunkgroup along this path. Inter-

ference thus arises with limited trunkgroups and messages using the same 

trunkgroups. 

With M± the number of trunks in trunkgroup i and nx tne number of busy 

sources of type i, the coordinate convexity condition (2.3) is satisfied by 

C the set of states H such that: 

^ < M4 (i=l 4) 

nx + n2 < M5 

n3 + nA < M6 

n: + n2 + n3 + n4 < M7 . (3.4) 
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(il) (Random gradings) In analogy with the classical Engset random grad-

ing, assume a circuit switching as depicted below with two types of sour

ces, Hl input channels for sources of type i and M common output channels. 

Upon transmission request by a group of sources G with gj sources of type j 

while the system is in state H with n, sources of type j transmitting, this 

total group request is accepted with probability 

A(G|H) - n (Mj-nJ)...(MJ-nJ-gJ+l) Mj"
8J l(n1+n2+g1+g2<M) (3.5) 

as corresponding to individual random selection probabilities 

A(hJH) - [(Mj-n^/Mj] l(ni+n2 < M) (3.6) 

for a source h of type j. Condition (2.1) is satisfied and 

P(H) - A(H|p) (3.7) 

3.3 Interconnected Metropolitan Area Networks (MAN's) (cf. [16]) 

Consider a communication system with two groups of subscribers, say a group 

A and B with M and N subscribers, such as representing two metropolitan or 

local area networks. Both within a group and in between the groups communi

cation between subscribers might be possible. To this end, number all sub

scribers 1,...,M+N and identify each possible connection from a source sub

scriber m to a destination subscriber n as a source (m,n). The description 

of section 2 now applies by saying that a connection is busy when a trans

mission along this connection takes place and idle otherwise and assuming 

some circuit allocation policy which restricts the feasible busy configura-

tion, to some "coordinate convex" region C. We give some examples below. 
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IA LB IA LB IA LB IA S LB 

(i) (Limited total nutnber of circuits) (cf. [16]) For a given state H of 

busy connections let nA, nB and nA B denote the number of busy connections 

within A, within B and in between A and B respectively. Assume finite num-

bers of LA and LB local circuits within A and B and S circuits in between A 

and B. Then the continuous-time model of [16] is extended to discrete-time 

by 

C = {H| nA < LA, nB < LB, nA B < S} (3.8) 

for the "dedicated allocation policy" with separate circuits for local and 

long-distance transmissions and by 

C - (H| nA < LA+S, nB < LB+S, 0 < nA B < S-(nA-LA)
+-(nB-LB)

+} (3.9) 

where (y)+=0 for y<0 and y* for y>0, for the "shared allocation policy" in 

which the inter-MAN circuits are shared among local and long-distance 

calls. As another shared allocation policy, each long-distance connection 

may require a local circuit within each local area, which is reflected by 

C - (H| nA+nA B < LA, nB+nA B < LB, nA_B < S) (3.10) 

(ii) (Excluding connections) Certain connections may have to be excluded 

to be busy at the same time. For example, exclusion of busy connections 

(m,n) and (n,m) at the same time reflects one-way communication systems 

such as in air traffic. The corresponding set of admissible states is "co-

ordinate convex" by: 

l((m,n)eH) + l((n,m)ell) < 1 (v(n,m)) (3.11) 
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(iii) (Error detection) In the exaraples (i) above, each long distance 

transmission may have to be registered first before it can be started. How-

ever, the registration of each source separately, assumed to take place in 

negligable time, may lead to an error, say with probability p, in which 

case the total transmission request is to be rescheduled. Condition (2.1) 

for this example is directly verified by 

t A(hJH) - p 

(3.12) 

l P(H) - pn 
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