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1 Introduction 

Markov decision theory is known as a succesful modeling tooi for dynamic 

sequential decision problems. Classical applications are found in fields 

as inventory management, maintenance and reliability while more presently 

a growing interest arises in manufacturing and, most notably, performance 

evaluation of computer or communication systems (e.g. Tijms [24]). One may 

think, for example, of dynamic or alternate routing of messages in commu­

nication systems or processor and resource allocation in computer networks 

(cf. Ott and Krishnan [12], Tijms [24]). Particulary in these latter 

present-day applications, however, the major practical drawback of compu-

tational complexity comes in as the number of states is often astronomie 

or even as in open systems, infinite. In addition, multi-dimensional 

structures are hereby frequently involved. As MDP's can only most rarely 

be solved analytically, state space truncation methods are thus of 

significant practical relevance. 

For uncontrolled Markov chains the technique of state space truncation is 

a common feature in practice. However, even in this case theoretical sup­

port in terms of orders of accuracy or rates of convergence seems hardly 

available. Convergence proofs as the truncation size tends to infinity 

have already been investigated in the early fifties by Savymsakov and were 

cristallized most notably by Seneta [21], [22] with reference to private 

Communications with Kendall. A detailed study of these convergence results 

as well as an extensive list of related literature can be found in Seneta 

[23]. In this latter reference, simple error bounds were provided (cf. 

theorem 6.4 and its corollary, p. 215), but these are just robust bounds 

which do not secure an order of accuracy. Recently, in Van Dijk [29] 

therefore, a condition has been provided from which error bound results 

for Markov chain truncation can be concluded. The crucial part of the 

verification of this condition comes down to the estimation (bounding) of 

so-called bias terms for appropriate reward structures. lts verification 

was illustrated for two specific two-dimensional queueing examples. 
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A somewhat related issue is that of computing an error bound for approxi-

mate or perturbed Markov (reward) chains. Error bound results to this end 

have been established. In Schweitzer [18] and Meyer [10] the effect of 

perturbations is studied for finite steady state distributions. In Whitt 

[33] and Hinderer [4] approximate dynamic programs are studied for the 

finite horizon and infinite horizon discounted reward case. In Van Dijk 

and Puterman [31] these results were generalized to the average reward 

case for uncontrolled Markov reward structures. None of these results, 

however, can directly be adopted for truncation purposes as they essen-

tially all require one and the same or at most minorly perturbated state 

space (cf. Whitt [33]). Furthermore, only Whitt [33] and Hinderer [4] are 

concerned with MDP. Their error bounds though do not allow a limiting 

argument for the average reward case (see remark 2.1). 

The present paper concerns both truncation, as it primary focus, and per-

turbation results in a unifying manner and extends the results from [29] 

and [31] to MDP's. This latter extension is briefly mentioned as rather 

direct in [31] for the perturbation part, but is less obvious and in fact 

as per the proof of theorem 2.2, turns out to be technically more compli-

cated when also truncations and/or unbounded reward structures are includ-

ed as total and possibly optimal reward structures are hereby cut off 

while also different states and optimal actions are to be compared. -Fur­

thermore, the essential step of estimating bias terms now has to be inves-

tigated under various policies. This in turn is briefly argued in [31] as 

similar to the uncontrolled case as based upon bounding mean first passage 

times but only for simple one-dimensional situations. For more complex 

structures such as queueing networks, however, it remained open. 

The essential part of this paper, therefore, is its illustration of how 

estimates for the bias terms can be obtained also under different policies 

and for multi-dimensional applications such as a queueing network. To this 

end the truncation of a Jacksonian network with overflow control will be 

studied as example. An explicit error bound for this example will be 

derived. 
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2 General results 

2.1 Model and notation 

The reader is assumed to be familiar with the concept of a Markov decision 

problem (MDP) or otherwise referred to excellent Standard books such as 

Bertsekas [1], Gihman and Skorohod [2], Heyman and Sobel [3], Hordijk [4], 

Howard [8], Ross [17] or Tijms [24] for a precise description. Below the 

essential ingredients are briefly reviewed. 

Consider an original discrete-time MDP with state space ScN, action sets 

A(i) in state i, one-step reward ra(i) under action a in state i and one-

step transmission probabilities pa(i,j) for a transition from state i into 

state j under action a. A decision rule S is a mapping from S into the set 

of actions A=U A(i) such that 6(i)eA(i) for all i. Let T be the set of 

all possible decision rules S and let Acr be a particular subset. 

Now, also consider a related MDP, referred to as modified model hereafter, 

with state space ScS, action sets A(i) as above but one-step rewards 

ra(i) and transition probabilities pa(i,j). The following assumption 

will be essential for comparing the original and the modified MDP. 

Assumption 2.1 Under any 5eA, the original and modified MDP are 

irreducible at some set Ss and S respectively, where S^DS . 

From now on, we always use an upper bar "—" symbol for an expression con-

cerning the modified MDP, in contrast with no extra symbol for the origin­

al, while the symbol "(—)" is used when an expression is to be read for 

both the original and modified MDP. Further, for notational convenience we 

introducé the notation r* ( . ) , r* ( .) , p"5 ( . , . ) and p5 ( . , . ) by 

(r)tf(i) - (r)a(i) for a - 5(i) 

(p),5(i,j) - (p>a(i,j) for a - S(i) 

and for arbitrary function ga(i) let f = sup^^f"5 be given by 
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f(i) = s u P ( 6 r f ïi)(I) - s u p . 6 A ( i ) f (i) 

2.2 Average case 

Define operators T.t , t-0,1,.,. on functions f: S -+R by: 

(Tj'f(I) - Sj V d J ) f(j) 

( T ^ X = (T>< <Tj' (2.1) 

CT)tf- I 

and introducé functions VN, N—O,1,2,... by 

In words that is, VN (i) is the expected total reward over N periods 

when starting in state i at time t=0 and applying the stationary policy 5°° 

= (5,6,5,...) which prescribes one and the same decision rule 5 for each 

period. Then under the assumption that for some ie S : 

(g ) 5 - lim i (V)5(i) (2.3) 

is well-defined, as naturally guaranteed when r is bounded and the MDP 

irreducible at S 

interest is given by 

irreducible at S for all stationary policies 5"°, our quantity of 

(-) (-) s / o / N 

which represents the optimal expected average reward under all stationary 

policies {5<D|5eA}. The following theorem provides conditions to conclude 

an error bound for g-g. 
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Theorem 2.1 (Average case) Suppose that for some nonnegative function <è, 

some initial state S,, with ieS CS for all SEA, some constants e,-y,fi> 0, 

and all 5eA, ieè, t>0: 

|Sj[p*(i,j) - p'(i,j)][V*(j)-Vj(i)jl < c *(i) (2.5) 

|r*(i) - r*(i)| < 7 $ (2.6) 

ïj *(*) * y8. (2.7) 

Then 

| g - g | < [£+7]y3 (2 .8) 

Proof As for a l l t : 

«Vj*,. - Cr)tf + ( T " V J (2.9) 

by virtue of (2.2), while the transition probabilities p(.,.) remain re-

stricted to S CS , for arbitrary ieS we can write: 

(V̂ -V*)(i) - (r'-r')(i) + (ïV^ - ïV^Ki) 

- (rV)(i) + (T*-T')v;_i(i) + T° (V*_ ^ - V ^ )(i) 

- 2""1 T'([r'-r'] + [(ÏÓ-T6)VÓ ])(i) + T* (V* - V*)(i), 

t=0 N-t-l 0 0 

(2.10) 

where the latter equality follows by iteration. Now note that the last 

term in the last right hand side is equal to 0 as V0 (. )=V0 (. )=0 by 

definition. Further, as both p (...) and p5 (. ,) have row sums equal to 

one, we obtain for any s and i: 

<T*-T*)V.(i) - Sj[p«(i,j)-p*(i,j)]vJ(j) 

= SJ[p*(i,j)-p'(i,j)][<(j)-V^(I)] (2.11) 
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By substituting (2.11) in (2.10), taking absolute values and noting that 

Tt is a monotone operator for all t>0, we obtain from (2.5), (2.6), (2.7) 

and (2.10): 

:|(V5-Vj)(*)| * [T+£] 2?lJ ïj*(i) * l7+e])8N (2.12) 

Applying (2.4) completes the proof. D 

Remark 2.1 (Literature) 

(i) In Hinderer [4] and Whitt [33] the average case has not been dealt 

with. In the present setting their results would essentially lead to an 

error bound in (2.12) of order 0(N2) (see [ ]) or 0(l/(l-a)2) (see [ ]), 

where a is a discount factor per step, so that the average case by using 

linijj-o l/N or lin^.^ (1-a) cannot be concluded. 

(ii) The uncontrolled results from Van Dijk and Puterman [31] are closely 

related but do not incorporate the special function $ and initial state ü . 

In contrast they essentially require S*=S, which excludes truncations, and 

r(.) to be uniformly bounded. The inclusion of this special function $ and 

state X. will be crucial for truncations and unbounded rewards. (See remark 

2.3). 

Remark 2.2 (Importance of bias-terms) The crucial step for the aböve 

theorem is the simple relation (2.11). This step enables one to transform 

conditions upon V£(.) in so-called bias-terms: V£(j)-V£(i). While 

V£(.) can grow linearly in t, bias terms for given i and j are generally 

bounded uniformly in t. More precisely, when r*(.) is bounded, say 

|r'(i)|<B for all i,5, then by simple Markov reward arguments (cf. [31]) 

one proves: 

|V|(j)-V«(i)| < 2B min [R«JfRfj] 

where R^ is the expected number of steps (mean first passage-time, e.g. 

[17]) to reach state j out of state i under decision rule S. A similar 

though more technical result in terms of such times can be given also for 



- 7 -

unbounded rewards (cf. [27]). Most essentially, however, closed form ex­

pres sions or even simple bounds for such times seem to be limited to 

simple one-dimensional random walks (cf. [31]). In the next section there-

fore, we wi.11 illustrate how estimates for these bias-terms can be derived 

in a different analytic manner. Most notably, this applies also to multi-

dimensional applications such as queueing networks. 

Remark 2.3 (Use of conditions) Roughly speaking, theorem 2.1 can be 

applicable in the following twofold manners given that the bias-terms can 

be uniformly bounded from above: 

(i) By showing that the expected value of the scaling function $ or the 

probability of being in states where differences in reward and tran-

sition structure are significant, is sufficiently small. This is ty-

pically the case for truncations or other types of transition modifi-

cations. 

(ii) By showing that these differences themselves are sufficiently small, 

possibly up to a scaling funcation $. This typically applies to 

perturbations. 

Both situations need to be regarded conditional to only one particular 

initial state i at time t=0. 

Remark 2.4 (Unbounded rewards) Note that no conditions are imposed upon 

the one-step reward function r(.) other than that we implicitly assume the 

average rewards g and g to be well-defined. Particularly, unbounded 

rewards are allowed as will be used in section 3. 

Remark 2.5 (Combination) Clearly, the conditions (2.5), (2.6) and (2.7) 

could have been combined in one bounding condition that can be applied 

directly to (2.10). The present slightly more restrictive conditions are 

preferred as they are naturally verified. 

Remark 2.6 (Subset A) Note that the value (g} as per (2.4) and dealt 

with in theorem 2.1 concerns an optimum over a possibly restricted subset 

Acr. 
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2.3 Finite horizon case 

Assume A=T and for arbltrary finite integer N let the finite horizon opti-

mal reward functions VN(.) be recursively determined by V (.)=0 and 

(V^+1 = sup, r(r)5 + (T ) d (V^ ] (n«0,l,...,N-l) (2.13) 

The following theorem provides conditions, similarly to theorem 2.1, to 

conclude an error bound for VN-VN linearly in N. To this end, for arbi-

trary ix = (50 , Sx ,S2 .... , 5N _ x ) with 5j e A, j=0 N-l, define for 

t-0,1,...,N-1: 

f" + 1 = f
d° TSK..Tót. 

Theorem 2.2 Suppose that for nonnegative function $, some initial state 

ie 3 , some constants e,-y>0, all ieS and n<N: 

sup |2j[p
a(i)j)-p

a(i,j)][Vn(j)-Vn(i)]| < e $(i) (2.14) 
aeA(i) 

sup |ra(i)-ra(i)| < 7 $(i) (2.15) 

aeA(i) 

sup T* $(i) < 0 (2.16) 

Th en 

1(VN - VH)(i)| < [£+1] p N. (2.17) 

Proof First note that for arbitrary functions gx ( . , . ) ,g2 ( . , . ) : SxA ->• R 

lsuP,ser gl(i) " supier g2'(i)| -

|supaeA(i) gid/a) - supa6A(i) g2(i,a)| < 

suPaeA(i)jgi(i.a) - g2(i,a)| = supJer|g*(i)- g2(i)| (2.18) 

As a result, from (2.13), (2.18) and the fact that T remains restricted 

to S c S, we obtain similarly to (2.10) for ieS: 
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| (V n + i - V n + 1 ) ( i ) | < 

| s u p , 6 r [ r t f + T t f V n ] ( i ) - s u P i e r [ r t f + T 5 V n ] ( i ) | + 

| s u P , e r [ r * + T 5 V n ] ( i ) - s u P t f 6 r [ r 5 + T * V J ( i ) | < 

s u p 4 6 r | T ' ( V n - V n ) ( i ) i + s«p | ( r ' - r ' ) ( i ) | + s u p t f e r | ( T d - T 5 ) V n ( i ) 
o E l 

(2 .19) 

Now note that for arbitrary r>0 and any n<N there exist a decision rule 5n 

such that for all ieS: 

supier|T*(Vn-Vn)(i)| < |f'»(Vn-Vn)(i)j + [r/N] (2.20) 

Repeat ing (2 .19) for n = N , . . . , 0 and us ing ( 2 . 1 4 ) , ( 2 . 1 5 ) , (2 .16) and (2.20) 

g i v e s : 

| ( V N - V N ) ( i ) | < N [ r / N ] + [ £ + 7 ] g i j T*N T * » - i . . . T * * + i *<i) 

< T + [e+7] 0 N (2.21) 

Choosing r arbitrarily yields (2.17). • 

Remark 2.7 (Average result) ünder Standard regularity conditions (e.g. 

Ross [17] we have 

(g } - lirn^ i (VN
} (i) , (2.22) 

so that (2.8) might also be concluded by applying theorem 2.2 for arbitra­

rily large N. Clearly, however, the conditions are more difficult to veri-

fy, of which particularly the estimation of the bias-terms Vn(j)-Vn(i). 

Moreover, note that in this subsection we imposed the restrictive 

condition A=r, as used in the crucial inequality (2.18). 
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2.4 Special situations 

(i) Pure perturbation: The case of merely perturbed one-step rewards 

and transition probabilities as in [27] and [31] is obtained by assuming: 

§ - S 

(ii) Pure truncation : To illustrate how truncations are covered assume 

for instance that for some L < »; 

r p'(i,j) - 0 j>L, i<L 

« p'(i.j) -p'(i,j) ;Ht'[i], j<L, i<L (2.23) 

L ptf(i,t5[i]) - p*(i,t'{i]) + Y T p'd.j) î L 

where t [i]<L is some given "state of truncation" for any i<L. In words 

that is, all transitions of the original matrix plS(i,j) out of state i 

beyond a certain threshold L are reflected to one and the same state 

t [i]. Condition (2.5) then simply reduces to: 

IXJ»L P'(i,j){vj(j)-Vj(t'tl])]| < e. »(i) (2.24) 

The fact that different absorption states t'{i] for different states i can 

be chosen will naturally come up when multi-dimensional applications are 

transformed in a one-dimensional description given. 

Remark 2.8 (Other truncations) The truncation (2.23) is a natural one as 

it corresponds to the original model as long as the truncation limit L is 

not exceeded. Clearly, similar conditions can be provided for other types 

of truncations. For example, rather than letting a transition i-+j for all 

j>L transform into one and the same state ts [i], we can also let it trans-

form into different states in a randomized manner. 
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3. Application 

In this section we wish to illustrate the preceding results and most of 

all the verification of the necessary conditions in a concrete situation. 

To this end, a queueing network with overflow control will be investi-

gatod. Even in the uncontrolled case or under a fixed stationary policy a 

closed form express ion for this example is not available. The verification 

of the conditions, such as the estimation of bias-terms, is of particular 

interest as a multi-dimensional state space is involved (see remark 2.2). 

As per our prime motivation, we restrict the application to the average 

case (section 2.2) and a state-space trucation (section 2.4 ii). The 

essential difficulties of having to estimate bias-terms under different 

decisions and to verify condition (2.7) with p small for an appropriate 

scaling function $ are hereby illustrated. With more complex notation 

small perturbations in the transmission and reward structure can easily be 

included. 

3.1 Model. 

Consider an open Jacksonian queueing network of N service stations with 

jobs routing from one station to another to receive certain amounts of 

service before leaving the network again. Jobs arriving from outside at 

the network however can be rejected and rerouted to an additional 

"overflow" service station N+l when the network is "overloaded". 

Jackson ^"*\ 

' V ^ network ( 

0 0 0 0 

More precisely, when accepted by the network an arriving job is assigned 

station j with probability «j — p0J, j—1,...,N. Upon service completion at 

a station i, i~l,...,N n job routes to another station j, j—1,...,N with 
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probability pXJ or leaves the system with probability pi0 = [pu+...+piN]. 

The service rate at station i is ni(ni) when n± jobs are present, where 

H± (.) is assumed to be bounded and nondecreasing. With ft — (̂ .....nj,) 

denoting the number of jobs n± at stations i=l,...,N, the arrival rate at 

the network is state-dependent as denoted by A(fi), where A(fi) is assumed 

to be bounded by some number A. 

Overflow control. Upon arrival a job can be rejected and rerouted to the 

overflow station N+l depending upon the current state n of the Jackson 

network only. A control policy will determine in which states jobs are 

accepted/rejected by the network under the condition that the network is 

assumed to have a large but limited capacity of no more than C jobs in 

total. The overflow station is a multi-server station, say with M exponen-

tial servers at a rate /* each, and an infinite capacity. Hence, 

A%+1(m) = m/i for m < M and M/i for m > M, denotes its service rate when m 

jobs are present. (Here one may typically think of M to be very large). 

Assume A < /xM. 

Objective. The control objective is to minimize the work to be offered 

by the system, i.e. the total amount of service provided at any of the 

stations i=l,...,N+l per unit of time when the system is in equilibrium. 

Remark. Under fixed control policies the system is not of product form 

due to the dynamic (state-dependent) routing feature. For example, even 

with N=l (only one regular station), A(.)=A for some constant A and under 

the simple decision rule that jobs are routed to the overflow station only 

when nx>C (in that case the capacity of station 1) , an explicit product 

form expression for the steady state distribution does not hold. 

A computational procedure, such as successive approximation or policy 

improvement, is therefore required. To this end, in turn, as the state 

space is infinite, a state space truncation is needed. 
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3.2 Parametrization 

In advance it is noted that it is more natural and convenient to use a 

multi-dimensional rather than one-dimensional description. Clearly, in 

order to apply the results of section 2 directly we could label the states 

one-dimensionally. It is more convenient though, to simply reread all 

results of section 2 with multi-dimensional states by identifying a state 

with a symbol i or j . This will be assumed hereaf ter without further 

mentioning. 

Denote by [n,m] the state with the network configuration n=(nx,...,nN) 

with nj jobs at station j=l,...,N and m jobs at the overflow station N+l, 

and consider the set of possible actions A = A(n,m) for all (n,m) given 

by 

A - {1,2} 

where 

1: "accept an arriving job" 

2: "reroute an arriving job" 

Let S - {(11,111)1̂  + ...+^ < C, m > 0}, and 

A = {6: S ->• A| 5(n,m)=7(n) for some 7(.) 

and 7(n)=2 for nx+...+nN = C} 

the set of possible decision rules S describing action 5(n,m)=l (accept) 

or S(n,m)=2 (reroute) for all states (n,m)eS. Further, let Q<« be a 

finite number such that 

Q > A(n) + [Ai1(n1)+...+/iN(nN)] + /*(m) for all (n,m)eS. (3.1) 

By n+e± .n-eĵ  and n+eL -e^ we denote the network configuration equal to 

n up to one job more at station i, one job less at station i or one job 

moved from station i to station j respectively. 

The underlying continuous-time control problem can then be transformed in 

a discrete-time MDP by virtue of the data-transformation or uniformization 
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technique (e.g. [24], p.110) as follows: 

r'Cln.m]) - [2* /x.(n.) + M(m)]/Q (a-1,2) 
j-i j j 

and 

pa([n,m],[n+ei,m]) = A(n)Qi/Q (a-1) (i-1 N) 

pa([n,m],[n,m+l]) - A(n)/Q (a-2) 

p^In.ml.tn-ei.m]) - M ^ P i o / Q (a-1,2) (i-1 N) (3.2) 

pa([n,m],[n,m-l]) = ^(m)/Q (a-1,2) 

Pa(;[n,m] , [n-ei+ej ,m]) - ^(n^Pij/Q (a=l,2) (i,j=l, . . . ,N) 

pa([n,m],[n,m]) - 1 - [A(n) + A«1 (nx )+. . ,+pg (nN) + p(m)]/q (a-1,2) 

Assumption 3.1 For each SeA the above MDP is irreducible at some set S* 

with [Ö,0]eS, where Ö-(0 0). 

The value g* as defined by (2.3) is then well-defined and represents the 

work W5 offered by the system per unit of time in equilibrium under the 

stationary control policy 8. 

3.3 Truncation 

We will truncate the queue length of the overflow station, say at some 

level Z. More precisely, let 

S = {(n, m) | nx +. . . +nN < C, m < Z} 

and define the modified MDP as according to (2.23) with t([n,m])=[n,m] 

by 
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ra(.) - ra(.) 

pa([n,Z],[n,Z+l]) - O (a-2) 

pa([n,Z],[n,Z]) = pa([n,Z],[n,Z]) + pa([n,Z],[n,Z+l]) 

pa([n,m] ,[n' ,m']) = p*([nf.m], [n',m']) otherwise. (3.3) 

The following assumption is a natural consequence of the assumption above 

for the original MDP. 

Assumption 3.2 For each 5eA the truncated MDP is irreducible at some set 

S5 c (S5 n S) with [Ö,0]e§5. 

Then also the value g as defined by (2.3) is well-defined. 

We are now ready to apply the results of section 2.2 or more precisely 

theorem 2.1 with i-[Ö,0]. 

3.4 Error bound 

To apply theorem 2.1 the following key-lemma will be proven first. 

Lemma 3.1. For any SeA, all t>0 and [n,m+l],[n,m]eS: 

0 < <([n,m+l]) - vj([n,m]) < 1. (3.4) 

Proof. This will be given by induction to t. Clearly, (3.4) holds for 

t=0 as V0(.)=0. Suppose that (3.4) holds for t<z. Then we will verify 

(3.4) for t-z+1. 

To this end, let 1{A} denote an indicator of an event A, i.e. 1{A}=1 if A 

is satisfied and 1{A}=0 otherwise, and for convenience substitute Q
_1=h. 
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V*+ 1(n,m+l) - V z + 1 (n ,m) 

j s * = i h / i j ( i i j ) + h/z(m+l) + 

h A(ri) 1 { 7 ( 5 ) = = 2 } Vz(n,m+2) + 

h A(n) 1 { 7 ( 5 ) - 1 } S j - i oj V z (n+ e j ,m+l ) + 

h ^ - i ^ - i M J ( n J } p d i V 2 ( n - e j + e i ) m + l ) + 

h tf / i j (n j ) p j 0 Vz (n-ej ,m+l) + h/z(m+l) Vz(n,m) + 

[1 - hA(n) - h sJM i / i j ( ix , ) - h/i(m+l)] V z (n ,m+l ) j 

y?iml
 h M j ( n j ) + h/x(m) + 

h A(n) l { 7 ( - ) = 2 } Vz(n,m+1) + 

h A(n) l { 7 ( f i ) = 1 } s " = i Q j V z ( n + e j i m ) + 

h ^ - i K-i ^ ( n J } p j i ^ ( n - e j + e ^ m ) + 

h ^ = 1 ^ j ( n j ) Pjo V z (n -e j ,m) + h/*(m) V z(n,m-1) + 

[1 - h A(n) - h s j . i / i jdx,) - h/*(m)] Vz ( n , m ) | 

h[/i(m+l) - ju(m)] + 

h A(n) l { 7 ( f i ) « 2 } [Vz(n,m+1) - V z(n,m)] + 

h A(n) 1 { 7 ( 5 ) = 1 } s j . x ad [V z (n+ e j ,m+l) - V z ( n+ e j ) m )] + 

h ^ = i * W M V p j i [ v
z ( n - e j + e i , m + l ) - V z ( n - e j + e i , m ) ] + 

h s j _ a Mj(nj) PJO [V z (n-ej ,m+l) - V z ( n - e j > m ) ] + hp(m) [V z (n ,m)-V z (n .m-l ) ] + 

h [/i(nri-l) - /x(m)] [V«(n,m) - V£(n,m)] + 

[1 - hA(n) - h s" l i j (nj ) - hp(m+l)] [Vz (n.nri-1) - Vz(n,m)J (3 .5) 
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Here it is noted that the one but last term is equal to 0 but kept in for 

clarity of the arguments below. As /i(m) is nondecreasing in m, the right 

hand side of (3.5) is directly estimated from below by 0 by substituting 

the lower estimate 0 from (3.4) for t=z as per induction hypothesis. To 

estimate the right hand side of (3.5) from above by 1, now recall that the 

one but last term is equal to 0 while its coëfficiënt is exactly equal to 

the first term in this right hand side: h[/i(m+l) -ju(m) ] . By substituting 

the upper estimates 1 from (3.4) for t=z as per induction hypothesis 

again, summing all terms and recalling (3.1) with Q=h"1, the upper esti­

mate 1 is then concluded, that is (3.4) with t=z+l. 

We are now able to verify condition (2.5). By combining (3.2), (3.3) and 

(3.4), similarly to (2.24) we find for any SeA and [ft,m]eS : 

ls
l5.fB., [P5([n,m],[n',m']) - P*([n,m],[n',m'])]fvf([n',m']) -vj([n,m])] 

|A(n)Q"1l . 1 [v£([n,Z+l]) - vf ([n,Z])]| < 1 (3.6) 

With c=l and 7=0 (since r(.)=r(.) as per (3.3)), for applying theorem 2.1 

it thus remains to verify (2.7) with 

*([n,m]) = l{m>z} (3.7) 

_ r 

and ft as defined by (2.1) with (3.3) substituted. This will be estab-

lished by the following technical lemma. 

Lemma 3.2 For any SeA and all t>0: 

T£ *(tÖ,0]) < T« *([Ö,0]) (3.8) 

Proof. Let f: S-* E. be an arbitrary function such that for all [n.mjeS: 

f([n,m+l]) - f([n,m]) > 0 (3.9) 

Then, from (2.1) and the fact that S C SS we obtain similarly to (2.10) 
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or by direct telescoping: 

(T£-T£) f([Ö,0]) = ^:l Tf(T5-T5)Tf.s.1f([Ö,0]) (3.10) 

Substituting (2.1), (3.2) and (3.3) we also obtain as in (3.6) for any 
r 

[n,m]GS : 

(T*-T«) f([n,m]) = A(n)Q"Uu (5 ,m) = 2} l{ra=z} X 

[f([n,Z+l]) - f([n,Z])] < 0 (3.11) 

for any f(.) satisfying (3.9). As the operators (or transition matrices) 
- fi - & - fi 

Ts remain restricted to S and are monotone (i.e. TSV> < 0 if V><0) , 
from (3.10) and (3.11) we thus conclude 

(ff - < ) f([Ö,0]) < 0 (3.12) 

provided (3.9) holds also with f replaced by T^f for all s and any f 

which itself satisfies (3.9). This in turn will be proven by induction to 

s as follows. 

Clearly, for s=0 it holds as T0f=f by definition. Suppose that Tsf, with 

f satisfying (3.9), satisfies (3.9) for s<z. Then, similarly to (3.5) and 

with h=Q"x we derive 

T*+1f(n,m+l) - T«+1f(n,m) = 

h A(n) 1 { 7 ( S ) = 2 } [Tff(n,m+2)-Tf(n,m+l)] + 

h A(n) l{7(fi)=1} Sj-i aj[T*f(n+ejlm+l)-Tff(n+ej,m)] + 

h ï?mi S " = i Mjdij) P j i [T*f (n -e j +e i ,m+l ) - T^f ( n - e . ^ ,m) ] + 

h 2N / i j (n j ) p J 0 [T*f(n-e J fnH-l) - T*f(n-e j ,m)] + 
J X Z 

h /i(m) [T£f(n,m) - T*f(n ,m- l ) ] + 

h[/i(m+l) - /i(m)] [T | f (n ,m) - T*f(n,m)] + 

[1 - hA(n) - h s" = i /x J (n j ) -h M (m+l ) ] [T* f (n,m+l)-T* f (n,m) ] (3 .13) 
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Substitution of the induction hypothesis T£f(n,m+l)-T*f(n,m)>0 for all 

(n,m) then directly shows that the right hand side is estimated from 

below by 0, i.e. (3.9) holds also with f replaced by Tz + 1f. Inequality 

(3.12) is thus proven for arbitrary t>0. • 

Lemma 3.3 Let n(.) be the steady state distribution of an .infinite 

single queue with Poisson arrivals with parameter X, where X > X(n) for 

all h, and M exponential servers at a rate fi each. Then 

ij $ <[Ö,0]) < 7r(m > Z) (3.14) 

Proof. Consider the Markov chain at N defined by transition probabilities 

P(i.j): 

P(i,j) - -

•hA 

h/*(i), 

j-i+1 

j-i-1 

4l-hA-hM(i)], j-i 

and let Tt be the corresponding operators as defined, similarly to (2.1), 

by 

T0-I, ft+1 = f (ft), (t>0), and 

ff(i) - Sj5(i,j)f.(j). 

Then, as in [28] 6r similarly to the proof of lemma 3.2 ór by using the 

Standard sample path arguments such as in [32], one can show that 

Tt*(Ö,0) < Tt $(0) (t>0) 

where <£>(m)=l{m2.z} . 
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Roughly speaking that is, at any time t, the probability of at least Z 

jobs at the overflow station is bounded from above by the corresponding 

probability when this station is considered in isolation with a constant 

dominating Poisson arrival rate A and starting with an empty queue at time 

t=0. By virtue of dominated monotone convergence and the f act that $ is 

nondecreasing, the proof is hereby completed by showing 

!t+1f(0) > ftf(0) (3.15) 

for all t and nondecreasing functions f(.). This will be proven by 

induction. For t=0: 

fxf(0) = ff(0) - hAf(l) + [l-hA]f(0) > f(0) - T0f(0) (3.16) 

Suppose t h a t (3 .15) ho lds for t < z . Then 

(T z + 2 " T z + 1 ) f ( 0 ) = (TZ + 1 - T 2 ) (Tf ) (0 ) > 0 (3.17) 

by induction assumption provided Tf is nondecreasing for any nondecreasing 

f. This in turns follows similarly to (3.13), by 

(Tf)(m+1) - (Tf)(m) -

hA[f(m+2) - f(m+l)] + h^m) [f (m) - f(m-l)] + 

h[/x(m+l) - At(m)][f(m) - f(m)] + [l-hA-h/x(m+l) ] [f (m+1)-f (m) ] > 0 

(3.18) 

D 

As the value 

rc[I?~* (A/M)
k/k! + (A/MM)

M/iM/(MM-A)], (Z < M) 

w(m>Z) -

c(A//iM)Z/xM/(/iM-A), ( Z > M ) , (3.19) 

with 

c"1 = 2f II (X/nf/kl + (A/MM)
M/ZM/(MM-A) , 
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is rather simple to estimate and of small order for Z sufficiently large, 

all ingredients of theorem 2.1 have hereby been established. More precise-

ly, by combining (3.6) (as based upon lemma 3.1), (3.8) and (3.9), and 

applying theorem 2.1 with c-1, 7-O, i=[Ö,0], $(n,m)-l{m>z} and /?=jr(m>Z) , 

we have proven: 

Result 3.4 (Error bound) With n(m>Z) given by (3.19), and g and g the 

optimal (i.e. minimal) amounts of work offered by the system in equili-

brium for the original (infinite) and the truncated (finite) Z-model 

respectively, (precisely: g ~ x
 Seii g '' we nave-

|g-g| < 7r(m<Z) (3.20) 

Remark 3.5 Note that theorem 2.1 is here applied for minimization rather 

than maximization. This however is directly justified by standardly adding 

a minus sign —, that is considering costs as a negative reward. 

Conclusion 3.6 (Finite MDP) For arbitrary system parametrizations A(ft) 

and Mj(•) for j^N, the service optimization (minimization) problem of 

section 3.1 can be solved up to an error bound 7r(m>Z) (given by (3.19)) by 

solving a finite MDP. To this end, Standard computational procedures can 

be employed such as most notably: 

(i) Successive approximation along with Odoni is error bounds (cf. 

[11], [24]) for its accuracy at each step. 

(ii) Modified policy iteration (improvement) methods as developed in 

[13], [14], [15]. 

(iii) Linear programming codes based on LP-formulations (cf. [6] , 

[7]). 

For a detailed description of these methods the reader is referred to 

these references among various others. 
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