ET

05348

g% .
& SERIE RESEARIH MEMORANDA

PSEUDC MAXIMUM LIKELTHCOD TECHNIQUES IN A SIMPLE

RATIONING MODEL OF THE DUTCH LABOUR MARKET

Harry Bierings

Koos Sneek

Regearch Memorandum 1989 - 63 September, 1959

VRHE UNIVERSITEIT
FACULTEIT DER ECONOMISCHE WETENSCHAPPEN
EN ECONOMETRIE
AMSTERDAM






PSEUDO MAXIMUM LIKELIHOOD TECHNIQUES IN
A SIMPLE RATIONING MODEL OF THE DUTCH LABOUR MARKET

Harry Bierings®
Koos Sneek**

June 1989

ABSTRACT: Using pseudo maximum likelihood methods {combined with a simulated

{Monte Carlo) objective function we estimate several variants of
an aggregated (fix-price) rationing model for the Dutch economy.
Our findings tend support to the following conclusions: (i) The
theoretically most efficient PML method considered in the paper is
not robust with respect to the existence of micro markets;
(11) The simulated objective function variants of the model yield
parameter estimates that roughly converge to the analytic PML
estimates when a sufficiently large number of replications is
used. However, consistency for a2 finite number of replications is
not approved. To fulfill the consistency requirement we introduce
a bias correction, resulting in substantial gains in computer
efficiency; (iii) a useful extension of the basic model both from
a theoretical and empirical perspective allows for disturbances
that are heteroskedastic.
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1. INTRODUCTION

There has been a growing interest in the estimation of non-linear econome-
tric models by Pseudo Maximum Likelihood (PML) methods [see eg. Gourieroux
et al. (1984)]. A very promising extension of PML estimation {is provided by
Laroque and Salanié (1988), further referred to as L&S, who combine this
technique with a simulated objective function. Their application 1ies in the
field of micro based rationing econometrics using aggregate data. Within
this field their major contribution 1ies in the fact that the aggregation
matter can be solved more easily by “aggregation by simulation® over fix-
price micro markets instead of “aggregation by integration" [Kooiman and
Kloek (1979}, Lambert (1988)}]. This is still accentuated when micro labour
markets and goods markets are assumed to be related in the sense of
Malinvaud (1977) [compare Kooiman (1985) where highly intractable functions
are derived using the “aggregation by integration" techniquel. The alterna-
tive approach of estimating an aggregate discrete rationing model without
micro considerations, at Jleast theoretically becomes obsociete, not to
mention the wusual but troublesome (Full Information Maximum Likelihood)
estimation involved [see Kooiman and Kloek (1985)].1 In this paper we will
elaborate on the work of L&S in several ways.

Our main objective 1is to test the performance of a simple aggregate
(fix-price) rationing model for the Dutch labour market using Pseudo Maximum
Likelihood estimation technigues. Related purposes are (i) to test the
robustness of the estimators with respect to the introduction of micro
markets and (ii) to examine the compatibility of the various PML estimation
results,

As far as the estimation method is concerned, the paper builds on LA&S.
We consider two versions of PML estimation. In the terminology of the latter
authors we distinguish PML;, which is a first order based method and PML,,
which also takes into account second order effects. Each apptication of the
PML method defines an aggregate and a disaggregate variant and each variant
is subdivided into an analytic version and a Monte Carlo version; in the
latter the objective function is computed through simulation. For PML; the
aggregate and the disaggregate variant are observationally equivalent.

Our results constitute an extension of the ongoing literature in several
ways. The econometric contributions of the paper are of both a practical and

1See Quandt (1988) and the references cited there for the applications
in this respect.



theoretical nature. The practical side is embedded 1in the two points
mentioned earlier. Theoretical results relate to asymptotic theory. L&S
prove the almost sure convergence of the simulated PML estimates to the
analytical PML estimates if the number of replications G in the Monte Carlo
experiment to compute the moments of the endogenous variables goes to
infinity. They further prove that the asymptotic distribution of the
simulated PML estimators when sample size T+« coincides with that of the PML
estimators if G/¥(T)+=. A major finding in this paper is the convergence of
the simulated PML; estimates to the PML; estimates if T+~ for fixed G if a
bias correction is applied. Furthermore, the asymptotic distribution of the
corrected simulated PML; estimators {if T+~ coincides with that of the PML;
estimators if Goe, As to be expected, substantial gains in computer
efficiency can be obtained. From an economic point of view, the paper gives
some new results in the field of (micro based) macroeconomic rationing
modelling as we show how an estimator of the number of micro labour markets
can be obtained.

The remainder of the paper is organized as follows., In Section 2 we
present the basic model and describe the two PML estimation methods.
Section 3 lays out the analytic results for the aggregate and disaggregate
rationing model, Section 4 is attributed to the consistency matter for a
finite number of replications in the Monte Carlo version of PMLy. In Section
5 the empirical analysis is presented. An extension of the basic model
together with its estimation results §s considered in Section 6. The final
section presents the conclusions and some suggestions for future research.
Details on the calculation of the covariance matrix are described in the
Appendices.

2. BASIC MODEL AND ESTIMATION METHODS

In this section we present the (fix-price) rationing model for the labour
market and discuss the (pseudo maximum likelihood) estimation techniques.
Since our focus 1ies on the performance of the pseudo maximum Vikelihood
techniques and not on a rigorous description of economic behaviour, the
model s kept intentionally simple. However, it still has attractive
properties which will become clear later.

Suppose that the typicatl labour market j can be represented by the



following equations of demand Dy, supply 55, and employment 03:2

L S (1)
N N

s, = E(S) . P n2y» (2)
N W

Q; = Min(Dy, Sy), (3)

where E(D) and E(S) relate to the expectations of demand and supply over j
{j=1,...,N), respectively; N (treated as a real number) is the number of
labour markets and ny = (n;5, nzy) s normal with zero mean and unit
covariance matrix

ny - N(0,1). (4)

The varijables n; are assumed to be independent over time. The parameter
¢ = (03, 0p) is a vector of scales of the disturbances in (1) and (2). It is
clear that the model can only be a simple representation of reality. All
markets have identical expectations of D and S. Heterogeneity across markets
comes up stochastically in actual! labour demand, supply and employment, that
is Dy, 5S4 and Q4, respectively. It seems that the specification of the model
implies that the value of N should be interpreted as a lower limit. To
develop some intuition, if one multiplies E(D) and E(S) with some random
variable in order to bring about some variation over j in the size of
markets, N will probabiy be estimated higher. This is because the expected
value of Q; must be well below E(P) and E(S), but splitting a large market
contributes more to a decrease in E(Q,) than splitting a small market.
Further note that model (1)-(4) is only defined for a value of N which is
sufficiently small to ensure DJ,SJ>0. Too large a value of N breaks down
the normality assumption., We indicate the above model specification as the
disaggregate variant. The aggregate variant, which we also consider to test
the robustness of the disaggregate model with respect to the introduction of

2T*ilme subscripts are deleted throughout the text unless ambiguity
arises.



micro labour markets, is but a special case defined for N=1.3
To estimate model (1)-(4), we use the above mentioned two PML methods. We
N

assume that only E(D), E(S) and } Q; (=Q) are observed from the data. 7o be
j=1

more explicit:

E(D) =L9=Q+V, - (5)
E(S) = LS =Q + U, ' (6)

where Q, Vv, U represent aggregate employment, aggregate vacancies and aggre-
gate unemployment, respectively.

To describe the PML procedure, let Q = {Q;,...,Q7)', and E(Q) and V(Q} be
the expectation of Q and the variance of Q, respectively where V(Q) is
assumed to be dfagonal. Then, the PML methods provide consistent estimators
of o, and 0, by minimizing the PML function ¥y:

Vit = (Q - E(Q))'(v4(Q))-1(Q - E(Q)) + log(det(V{{Q))), (7)

where f=1 and i=3 refer to PML; and PML;, respectively and V,(Q)=I and
V3(Q)=V(Q).

In addition to the aggregate and disaggregate variant, an apalytic, and
a Monte Carlo (MC) varjant of PML estimation is considered. The distinction
between the analytic and MC variants is made to monitor the extra variabil-
ity in the parameter estimates induced by the simulation of the objective
function., In the analytic variants, explicit expressions for E(Q:) and
¥(Qy) are used, whereas in the MC variants these are assumed to be untrac-
table.

In the MC variants, the procedure comprises the minimization of an
approximate PML function, y§;, as defined in (7), except that the compu-

3For N=1 the aggregate (discrete rationing) model of L&S emerges. In
particular, their model shows:

D = E{(D) + oyny3 S = E(S) + opnz; Q = min(D,S) with Var(n) = 1.

One easily verifies that aggregation over markets j yields the aggregate
model with the desired variance property. Note in this respect that:

) )
n n
J=1 1 j=1 2]

and n; = .

M =



tation of E(Q) and V(Q) is performed by using Monte Carlo methods.4 As an
example we describe the aggregate MC PMLj; variant more precisely, i.e. the
model implied by (1)-{(4) for N=1. The remaining variants can be easily
understood from this perspective.

The objective is to minimize the function ¢ defined in (7) for i=3. It is
assumed that the quantities E(Q.) and V{Q;) can not be obtained explicitly
from the data, so for each period t and for given ¢ we generated sequences
{54}, {S54} and {Qyg}, 9=1,...6 (G is fixed in advance and J=1 in this

case) by
Q59 = Min(Djq, Sygls

using observed quantities on E(D) and E(S). The sequences {aijg} and {azjg}
are random but once generated fixed throughout the minimization. The next
step is to approximate E(Qy) and V(Qy) from

it 1D

Qy9 = Qjg» (8)

ol -

E(Q¢)=

' 1 G .
V ' — 3 - G H . g
(Qt) ol 321059 [} (9)

Finally, the function ¢ in (7) is evaluated using the previous approxima-
tions and can then be minimized with respect to ¢.5 Assuming some regularity
conditions (satisfied in the model), LAS prove that for any T, any conver

G G G
ging sequence of approximate estimators, in our case o,y, 0,7 and Np,
converge to the corresponding PML estimators oy, o027, Ny when G goes to

4Under PML,, only E{Q;) 1s computed.

SNote that numerical errors {n the use of explicit expressions for
E(Q,) and V(Q;) can be seen as special cases of the procedure if G is large,
apart perhaps from the normal distribution we used.



infinity (compare their Theorem 1).® The magnitude of G fs mainly con-
strained by computer budgets. Furthermore, the asymptotic properties of the
PML estimator {itself are taken from Gourieroux et al. (1984). We will
return to this subject in Section 4 where we dispose of the reguirement
that G»= to obtain consistency in case of PML,.

3. ROBUSTNESS WITH RESPECT TO THE INTRODUCTION OF MICRO LABOUR MARKETS

The conventiona) approach to the estimation of aggregate rationing models
pictures employment as the minimum of demand for labour and supply of
labour.? Its fundamental weakness 1ies in the inability to describe the
simultaneous existence of unemployment and vacancies in the aggregate. In
the more modern approach this limitation is obviated through the dntroduc-
tion of fix-price labour markets at the micro level. In its formal develop-
ment this approach can explain the aggregate and simultaneous occurrence of
unempioyment and vacancies [see e.g. Kooiman and Kloek (1979) and Lambert
(1988)1.8

Despite the shortcoming of the discrete switching model it is still being
apptied.® We will try to settle this controversy empirically for our appli-
cation of the model to the Dutch labour market. For that purpose we use PMLj
estimation using anaiytical expressions for the moments of Qi implied by
(1}-(4). |

First consider the expectation of Q, E(Q), and the variance of Q, V(Q).
By definition:

N .
E(Q) = E(T O4y). (10)
§=1

6In this respect also note that for our model, N must be bounded away
from zero because of the Lipschitz continuity and must be sufficiently
small for other reasons (see text).

7Compare eq. (1)-(4) for N=1. We will refer to this model as the
aggregate model.

8Compare eq. (1)-(4) for N>I. We will refer to this mode! as the
disaggregate model.

9See e.g. Quandt and Rosen (1978 and 1987) 4in the setting of one
aggregate market model and e.g9. Sneessens (1983), Artus et al. (1985), Kooi-
man and Kloek (1985) in an environment of two (related) aggregate markets.



After some manipulation, using the formulas in Kooiman and Kloek (1979,
Appendix A), this can be rewritten as:

E(Qy) = Ls0(-Ye) + LiB(Y) - (W/N)W(Y,), (11)

Zy ¢ s d s + s
where Y‘I’.' a;N', Lt-‘-E(Dt), Lt=E(St), Z-Lt-Lt and { = V(Cll'l-ﬂz).

d
Equation (11) satisfies the following properties: B8E(Qy)/3L¢>0, as(ot)/aLi>o
and BE{Q,)/8N<0.10 Obviously 6,, 0, and N are not individually identified.
For the computation of V(Qi) we use

N 1
L (E@)* = < (LY + L) - Kl (12)

and

dyy Sya
o Wy
L E(Qf3)= (—— + 01)3(-Yy) + (— + 03)%(Yy)
J=1 N N

(47 BT
- "'N— (Ly + LedW(Ye). (13)

Finally, the expression for V(Q.) can be easily determined using independen-
ce over j:

N N N
V(Qt) = I V(Qy) = T E(0¢5) - L (E(Q:y))". (14)
j=1 j=1 je1

V(Q) is not monotonous in any of the parameters o4, 6, and N. Note that o,
o, and N are identified at the second order. Further note that for N=1 the
expressions coincide with the moments of the aggregate model (compare L&S).
Here we wish to stress the very interesting feature of our PML3; version that

10Note that mode) (1)-(4) s defined for sufficient small values of N
as mentioned before. Expressions 1ike 1im E{Q) -+ -= therefore have no
N+

meaning.



a Tower bound of the number of micro markets is identified. It is clear
that, when it comes to estimation PML; s robust with respect to the
introduction of micro markets, whereas PML3 s not.

4, THE MODIFIED SIMULATED PML; ESTIMATOR

In this section we propose a modification to the procedure in L&3 who prove
consistency of the simulated PML estimators if T and G go to infinity, where
G can be considered to be the number of replications in the Monte Carlo
part. For the simulated PML; case we suggest a bfias correction such that
‘consistency results even for finite G.

17
Let Y1 = ; tzl (04-E(Q¢)) ' (Q4-E(Q;)), where E(Qy) i5 a function of the

parameter 8 of interest and where (in this section only) Q; may be a vector.
The PML method is based on the fact that y;r converges to some function
Y (8); 1f Y, has a unique minimum at @° and 6% is the *true" parameter we
then hope that o7 converges to 69, where 8T minimizes Vite

For the simulated PML method E(Qy) is replaced by a random variable that
converges to E(Qy) if some index G goes to infinity. We write the cor-
responding function as

17
Vo1 = " txl(ot‘E(Qt)+atG)'(Qt“E(Qt)*atG)’ (15)

where a,; is a random variable that is independent of Q.; we choose agq to
have zero mean and finite second order moments. We note that the variables
are findependent for different values of t. Then wusing the results of
Gourieroux et al., (1984) and L&S the following theorem applies:

1
THEOREM 1: ¥p1 - (Y11 + — 3 8yqdyrg) converges almost surely to zero if
T tal

To»,

2 T
Note that the expression 1n the theorem equals — Y a;q{0Q:-E(Q;)).
T t=1

We leave it to the reader to impose conditions such that some version of a
Jaw of large numbers applies. In this respect the results obtained by L&S
are more general, but in their context a bias correction is not easily
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implemented.

In our study ayg is a simple average of simulated (Q¢-E(Qy)) values
according to so called ‘crude' Monte Carlo [Hammersley and Handscomb
(1964)]. Of course variance reducing techniques 1ike importance sampling,
control variates or antithetic variables may in general alleviate the compu-
tational burden of the simuiated PML method substantially, but is not
applied here as it is rather specific to each application. For the same
reason we did not consider replacing simple averages of simulated values by
more robust and under certain conditions more efficient functions of simula-
ted vaiues.

From the theorem we conclude that there are two possibiiities with
respect to consistency:

1 7

(1) 14f var(ayg) does not depend on 8, then — } a{GatG will become a 'flat’
T t=l

function if T»=~. In this case the sequence fa,q)} will not have any

influence on the location of the minimum of ¢{8) and if T is large
enough, then var(a,q) does not necessarily have to be very small for
ail t. Consistency, in this case is approved for finite G. '

(i1) if var(a,g) is a function of & then there is a problem, because
1 T
the shape of (@) will be different from ¢(8) + — ¥ aigaig. In this
T t=1

case the number of replications G must be large enough to have a small
1 T

— I ajgayg relative to ¢(6). Consistency is only obtained if Goe,
T

It is precisely point (i1} of the conclusion above which applies to the
simulated PML; method: var(a.q) depends on @, since var(Q.) depends on o,
o2 and N. Thus, the method is not consistent for any finite G.

We will show how consistency can be obtained for finite G, replacing Yy,;
in (15) by

17T
Y37 = T tgli(ot - E{Q¢)+aeg) (Q¢ - E(Qi)+agg) - tr(var(age))d. (16)
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Then we have the foliowing Theorem:

THEOREM 2: Let the modified simulated PML, estimator be given by the
parameter value @7 that minimizes 3y, then this estimator is consistent if
T+, even for finite G.

Note from the definitions of y;¢ and Y37 that

1 7
¥ir - Wiy = ; tzliaiaﬂts - tr(var{ayg)) + 2a:6{0Q¢-E(Q¢))]. (17)

Under appropriate moment conditions this expression converges almost surely

to zero if T+= for any G. In our setup convergence is uniform over 8 (note
1

that var(asg)=— var(Q.)).
6

As for the asymptotic distribution of the modified simulated PML,
estimator it is unlikely that it coincides with that of the PML, estimator
itself for any finite G. Developing ;7 and Y31 into the familiar Taylor
expansions we get:

8y (6]) 8v3(8)  8%%3(6;) A
3 (88 0 = Y(T)———n + ——— ¥(T)(8]-8,),
06 00 28!

Y(T)

8y, (87 341 (8) 8%V, (8p) .
100 = Y(T)— o) , TN (% Y(T)(67-6,).
29 86 80" |

V(1)

The two matrices of second derivatives will converge to the same {constant)
matrix if T+= {compare L&S). What we need is the same asymptotic distributi-

on for yQT)Efié;El and VIT)EEl;;EE but from (17) we would obtain

393 (8) 3, (8,)
. V(T

V(T) + K, (18)

where K is a non-degenerate finite stochastic variable. The variance of X
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would approach zero if Go-.

The bias correction can have considerable practical advantages. Assume
that we want to approximate the PML, estimator as closely as possible by the
adjusted simulated PML; estimator. The first option obviously is to increase
G, but computationally this is not very attractive. Moreover, we would stil}
have no jdea about the variability introduced by simulating the objective
function for that particular value of G (we just get one realization of the
variabie K). Another option now can be to do several independent estimations
for a fixed G; the estimates can be averaged, the variabiiity introduced by
simulation goes down and one will have an idea about the magnitude of this
variability (we sample over X). We stress the point, however, that for fixed
G and T one sti1l may have a small sample bias.

A bias correction in the PML; case cannot be made as straightforwardly as
for the PML; case. For expository reasons we assume again that Qi is a
scalar. Suppose E(Qy) and V(Q,) are obtained through simulation as discussed
before and consider ' '

1 T (Qu-E(Q¢)4arg)”

- Tog(V biglis
T t§1{ V(Qi) + byg * 109(V(Q) + bro)]

where for simplicity we assume a.q and byg to be independent (one can make
them independent!), and Var{a,q) and Var{byg) approach zero if G»=. Through
expansion of denominator and logarithm we obtain

T (04-E(Qy))” . atg . 2a,6(Qy-E(Qy)) . btg . bte
t=1 V{Q:) V(Qy) V(Q¢) V(Q:) (V(Qp))’

1
T

b b3
+ 1og{vQ,) +{ . - ..
V(Qy)  (V(Qw)

Taking the expectation of this expression one can use the independence
between agg and byg. If beg I constructed from an unbiased estimator of

1 T by |
V(Q¢), then - ¥ will not cause the problem (apart from the
T t=1 ¥(Qs)

1 T aig
existence of sufficiently high order moments) and also -~ }
T tel V(Qy)

may be
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dealt with. Beth series within the curly brackets, however, are in general
non-converging asymptotic series in G [see Sneek (1983) for a definition of
asymptotic series], so the optimal cut-off point depends on G. Although for
finite but large enough G it is possible to reduce the asymptotic bias if
T+= of the MC PML; procedure we were not able to reduce the bias compietely.
The subject, remains high for future research.

5. EMPIRICAL ANALYSIS
A. general remarks

The data used are taken from Kooiman and Kloek (1979). They contain infor-
mation on employment, unemployment and unfilied vacancies over the period
1948-1975. We used a Davidon-Fletcher-Powell optimizing algorithm with a
unimodal 1ine search routine to obtain the estimates, using apalytical first
derivatives. In case of PML; we furthermore compared the amalytical second
derivatives with the (inverse) updated Hessian from the optimizing rou-
tine, il

From our previous discussion it follows that in principle eight
variants can be distinguished. These are displayed in Diagram I. In the
actual application only I, III, VII and VIII are implemented. Yariants I
and 11 are observationally equivalent (note that N and { are not individual-
1y identified from equation (11)). Furthermore we rely on the fact that
comparison of the estimation resutts of I and V¥ provides sufficient insight
into the extra variability induced by the MC variant compared with its
analytic counterpart to make the estimation of V, VI and Vil redundant.

N N=1 N>1 N=l N>1
v
¥ Analytic Analytic Monte Carlo Monte Carle
(1) (11) (111) {1V)
Y3 Monte Carle Monte Carle Analytic Analytic
{v) (Vi) (VII) (VIII)

Dlagram I-—Alternative PML variants

HThe first derivatives for the analytical wvariants and the second
derivatives for the MC variants are presented in Appendix I. Appendix Il
derives the covariance ma.vix in a more general setting.
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Before discussing the estimation results in some detail, several points
need to be stressed. First, the computation of E(Q) and V{Q) in the MC
variants is done by using different numbers of replications of n; with G
varying from 25 to 400 and sample of T=28. Second, in generating the random
functions, in the MC PML; case, we imposed o,=0, for convenience.l?

Third, the differences in fdentifiability of the parameters between the
twoe PML cases complicate the comparison of the parameter estimates. From
PML, estimation we get an estimate of the standard error of the function
h(c) = ¥(oj+03), whereas PML; gives the standard error of both o¢; and o;.
To facilitate comparison we also need an estimate of the standard error of
h(o) under PML; estimation. For that purpose & linearization of the function

h{o) with respect to oy is used, i.e.
ah

h(o) = h{og) + — (0 - ¢p),
ac!

so that the variance of h(c) can easily be calculated as

oh ah
var(h{o)) = — var(o) —. (19)
ao' 80

The optimizing routine produces an estimate of var(o) and the first
derivatives of h with respect to o can be calculated straightforwardly.

Last, the estimations allow for the computation of the level of struc-
tural unemployment, U* {that §s the level of unemployment for which appiies
L9 = L513), This provides us with an additional check on the plausibility of
the estimates. In the disaggregate PML3; variant the following explicit form
for Ux in terms of total labour supply (denoted by u*) can be obtainedl4

¥(0)
u* = LY(N) —. (20)
LS

12The parameters o, and o, are not individually identified (see eq. 11) in
the PML, case so we imposed this "restriction”. Note that this "restriction”
does not imply restricted optimization. The only property that we use fis
that E(Qy) is estimated consistently if Go».

13This 1s the same as demanding that the number of unfilled vacancies
equals the number of unempioyed persons [compare equations (5) and (6)].

14In the following we misieadingly use the “jevel of structural unemploy-
ment® to indicate u*. .
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B. Aggregate PML Estimation

Table 1A presents the estimation results from our experiments with the
various aggregate (= disaggregate) PML; variants and aggregate PML,
variants. Let us consider the PML; case. Reported values on H-1 correspond
to the updated (inverse) Hessian matrix from the DFP algorithm; H;L is the
analytic (inverse) Hessian computed according to equation (Al7) of Appen-
dix I.

TABLE 1A
ESTIMATES FOR PMLy AND PML3 -AGGREGATE MC AND
AGGREGATE ANALYTIC VARIANTS!)

6 T sp(@)y #wl  soo. Mz} s.D. SE(L)2) s.p.  u*3)
- PMLy -
2?5 171.5 9.7 0.1330 0.0128 0.1170 0.0117 2.557 0.126
50 178.2 8.6 0.1223 0.0101 0.1215 0.0091 2.607 0.098
SEmean 1.7
100 181.3 5.2 0.1244 0.0161 0.1234 0.0056 2.628 0.059
SEmean 1.0
200 183.4 3.8 0.1262 D.0048 0.1248 0.0044 2.644 0.046
SEpean 0.8
400 184.2 2.0 ©.1268 0.0031 0.1254 0.0028 2.650 0.029
2.00%
© 185.6 0.1330 2.730 2.01%
- PML3 - o SE(03) 02 $SE(62) §  SECD)
ANALYTIC 98.1 44.9  0.0016 408.9 98.1 44.9 1.06%

. Notes: 1) The reported figures are means computed for 25 independent runs and
assocfated standard deviations.
Standard errors of the means can be computed by dividing the reported $.D.
values by ¥25. In the tabie only the standard errors of the means of { are
oxplicitly shown to facilitate interpretation of the results.

2) Estimated from K-l 1n each run,

3) Structural unemployment, u* is related to L5, In the table we took
the sample mean of LS (3600) to computs 11,
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The reported statistics are based on 25 independent runs for each situation.
G, the number of replications reguired for the computation of the random
function of the MC variant is reported in the first column; G== is the
analytical variant.

It is obvious from the table that with the number of reptications in-
creasing, the estimate of { converges to its value obtained from the
analytic variant. It is also clear that the standard error of the estimates
as computed from the Hessian is in all cases very close to the one obtained
from the analytic version. Now each estimate coincides with one realization
of a stochastic variable K similar to (18), and it seems that although K
evidently induces a bias ii does not influence the estimate of the variance
very much. From one single MC PML estimation it is not possible to obtain an
estimate of the varifance induced by the simulation, and from several
estimations for a single value of G it is not possible to estimate the extra
bias. We find it encouraging that broadiy the values H-! and Hz} are alike;
this implies that second derivatives as approximated by the optimization
routine are reasonable, at least in the one parameter case.

Theoreticaliy our estimates based on the analytic PML; method should
coincide with those of Kooiman and Kloek.15 However, we find a slight
difference for which we do not have an explanation. Their estimate of { is
181.7 (our estimate is 185.6) with standard error 5.7 (our estimate is
2.73); corresponding levels of structural unempioyment are equally close,
around 2%.

Sunmarizing, the above results of the MC variant seem promising for
applications to more compiex models for which no analytic expression of
E(Qy} is available. However, a sufficient large value of G for a given T is
required. Note for instance that in our example, a standard deviation of 2.0
for G=400 in the simulation has to be combined with the standard error 2.65
as estimated from the Hessfan. So to require a minimum of 400 replications
does not seem overdone,

In Table 1B we present some results for the bias corrected MC PML,
estimation procedure. It is very obvious that at a sample size of T«=28 the
bias is reduced considerably for all reported values of G; in all cases the
averages of the parameter estimates are within one standard error of the

15First, recall that we used the same data. Second, it can easily be
verified that our analytic PML; method is essentially the same as the
method applied by Kociman and Kloek who minimise the sum of squared
residuals in (11) with a disturbance term added.
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analytical PML; estimate, f.e. the bias is essentially removed. In Table IA
on the other hand even for G=400 we report a bias that is statistically
different from zero. We ailso experimented with a larger number of runs.
Using 200 independent runs for G=25 we find a smaller value of {, i.c.
187.93 with associated value SD(E) = 12.4 and thus with standard error
0.875.

To illustrate the importance of the bias correction graphically Figure I
is presented. On the left side one finds the estimation results for the
ordinary MC PML, estimations based on the 25 independent runs. On the right
hand side one finds the bias corrected results. Note that we graphed 1.96
times standard errors and furthermore we subtracted the standard errors from
the heights of the bars for estimation. We see that the bias correction is
at the cost of only a siight fncrease in the variation due to the Monte
Carlo part.

TABLE 1B
ESTIMATES FOR PML; -AGGREGATE MC WITH BIAS
CORRECTIOND)
G C sp(f) H-1 $.D. s.E.2) s.p.

25 188.7 12.0 0.1787 0.0342 3.150 0.287

) SE.ean 2.4
50 187.0 8.% 0.1787 0.0138 3.161 0.123

SEpean 1.9
100 185.7 5.8 0.178% 0.0136 3.160 0.120

ss.ean 1.1
200 185.7 3.1 0.1787 0.0063 3.163 0.058

S'E..an 0.8

400 185.4 2.0 0.1789 0.0045 3.165 0.039
SEmean 0.4

- 185.6 0.1330 2.730

Notes: 1) see note 1 of Table A
2) see note 2 of Table IA.

For G=25 we found 14 negative values for ¢ [see eq. (16)], for G=50 there
were only 3 negative ones and for G2100 none; we do not know whether a
negative value of ¢ indicates that G is too small, though it is tempting to
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draw this conclusion.

From the results we conclude that the bfas corrected version 1s highly
superior to the uncorrected one and that it is preferable to average several
independent estimations for a moderate value of G instead of doing one
estimation for a large value of G; the bifas 1s negligible for moderate
values of G, the standard deviation due to the simulation goes to zero
anyway through averaging and at the same time one can estimate the Jatter
standard deviation.

The results from PML; estimation are troublesome. We find negative
Qy-E(Qy) values for each t both for the analytical and the MC variant. This
1s 1inacceptable. On the one hand we note that the estimate of T is much
lower in the PML3; case {(compare 98.1 with 185.6). On the other hand, the
corresponding standard error of h(o) in the PML, case, which equals 44.9 is
substantially larger than the PML; value of 2.7 {see Table IA).
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Figure I—Monte Carlo PML estimation/Extra Monte Carlo variation

From asymptotic theory PMLy should be more efficient than PML,, though in
this case the sampie size T is only 28 and under PML; one more parameter is
estimated. Besides efficiency constderations the explanation may also come
from the fact that the model s tnadequate. We have estimated the aggregate
model, under PML; we essentfally have estimated the disaggregate model as
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well (they are equivalent), but PML; does distinguish between the aggregate
and the disaggregate model. Recall that E(Q.) goes down if N gets larger;
if N=1 is imposed as a restriction, then under PML; indeed all values
(Q.-E(Qy)) could be expected to be negative. We concluded that we are
dealing with a trade-off between efficiency and robustness: PML; 1is less
efficient, but robust with respect to the existence of micro markets,
whereas PML; is more efficient but sensitive to the existence of micro
markets.,

L. Monte Carlo Evidence

To substantjate the c¢laim above we undertook a l1imited Monte Carlo study by
generating artificial data according to the aggregate model implied by
equations (1)-(4) for N=1. We tried four different pairs of pre-set values
of ¢, and o,. For each of the four sets of parameter values, the following
was done 50 times. Two vectors of 28 (= actual sample size for which
observations on E{D) and E(S) are avajlable) independent N(O,1) variables
were drawn. These were the values of nyy and nz¢. D, S; and Q¢ were genera-
ted by (1), (2) and (3), using the given values of the explanatory varia-
bles. Subsequently we used PML; and PML; to obtain the parameter estimates.
In Table II the results from the Monte Cario simulation are presented.
Note that we reported the standard deviations as emerging from 50 estimates
(the line entries) and the estimated standard deviations as computed from
H-1, denoted by SD(.) where the dot indicates the parameter (the column
entries). From the table it is clear that both PML; and PML; estimates are
noticeably biased downwards in all cases. From the table we conclude that
PML; performs superior to PML; as the downward bias is considerably less
{compare e.g in the first 1ine entry 26.6 and 22.0 with 28.3, respectively)
and the standard deviations of E are far less {(compare e.g. in the second
1ine entry 3.82 and 15.5). Examining a couple of sets of residuals for both
models revealed ‘random' sequences. However, SD{.) under PML, severely
underestimates the true standard deviation (compare, e.g. for 5-28.3, the
value 6.00 in the first line entry with 15.5 in the second line entry). For
PML; we see that the bias 1s upwards (compare, e.g. for E-28.3, the value
20.30 1n the first line entry with 3.82 in the second 1ine entry). Test
statfstics based on H-1 therefore are likely to yield incorrect significance
levels; under PML; parameter values would be severely underestimated, under
PML; they would be overestimated. The standard deviations for E were
usually smalier than th... of 0, and 0,, because of positive correlation
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between 8; and 0,. Note that under PML; usually none of the estimated
parameters would appear to be statistically different from zero.

TABLE Il
ESTIMATES FOR { UNDER PMLy AND PMlg3
(ARTIFICIAL DATA FOR DIFFERENT PAIRS OF 0, and 03)

|
- PML,y - PML3

-
|
(61. 03) ¢ ¢ SOy | o gz 4 SD(0y)  SD(oz) SD(L)
|
{ 20, 20) 28.3 22.0 6.00 | 18.6 18.5 26.6 20.6 19.6 20.30
s.D. 15.5 2.955 | 3.86 4.10 3.82 4.53 4.51 .34
S.E. 2.19 0.418 | 0.54¢ 0.579 0.540 0.641 0.638 472
!
( 50,100) 111.8 89.5%5 3.27 { 8.0 88.3 103.5 112.3 g99.5 72.6
s.D. 32.9 0.649 | 22.1 19.5%5 16.3 1.6 33.7 .0
S.E. 4,65 0.091 [ 3.124 z2.754 2.307 7.305 4,765 .557
|
(100, 50) 111.8 94.3 3.17 | 91.7 40.4 103.9 106.4 194.4 .3
$.D. 37.4 0.520 | 21.%9 25.8 19.5 44.3 239.6 .1
S.E. 5.29 0.074 i 3.104 3.651 2.753 6.259 33.889 L.423
I
(100,100) 141.8 122.1 2.96 | 95.3 87.7 133.2 160.8 163.3 90.8
s.D. 44.2 0.419 | 24.8 27.1 19.4 62.0 706.7 16.9
S.E. §.29 0O . 385

.05¢9 | 3.508 3.828 2.749 B.765 9.997

Note: Means and standard deviations obtained from 50 independent runs. Standard

errors of the means are computed by dividing the $.D. by V%o.

Interpreting the results of this {1imited) Monte Carlo study we conclude
that PML; is more efficient than PML,, but evidently less robust with
respect to the existence of micro markets. Additionally we conclude that the
aggregate model is not an adequate model for our data because PML; performs
reasonably well on the simulated data sets (for which the true model s
indeed as the ‘aggregate' variant). This fimplies a warning towards an
uncritical application of the aggregate discrete switching model in
*disequilibrium® macroeconometrics as in Quandt and Rosen (1987).

D. Disaggregate PMLy Estimation

To complete this section we present the analytic disaggregate PML; es-
timates. These are reported in Table III. Now the results are more in
agreement with the previous estimates. The parameter estimate of {¥N roughiy
corresponds to the estimated value of { in the PML, variants. Furthermore,
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TABLE 111
RESULTS FOR THE ANALYTIC DISAGGREGATE PML3 VARIANT

- - - -

7 g3 N C"N T
parameter estimates 17.606 0.000 109.540 184.3 1.99%
(S.E. betwsen brackets) (12.4) (158.0) (25.5)

Note: u® 1s computed for L5«3600.

note that none of the parameters appears to be statistically different from
zero, similar perhaps to the MC results in Table Il; fortunately the
function EVN is estimated somewhat better. We did not carry through the MC
PML; estimation, as we regard the MC PML; variant has proved its sig-
nificance.

6. EXTENSION AND EMPIRICAL RESULTS

In this section, we suggest an extension to the aggregate PML; model
implied by equations (1)-(4) for N=1 by allowing for the introduction of
heteroskedasticity in the variance of the disturbances.l® We argue that the
conStraint imposed by the basic model stating that the variability of the
variables D and S is independent of the magnitude of a market is likely to
be violated in practice. A relatively large market, i.e. E(D) and E{S) are
relatively large, is expected to have relatively large deviations around the
respective expectations. Therefore we propose the following alternative
specification:

D = E(D) + oE(D)n;, (21)

S = E(S) + oE(S)n,, (22)

161gnoring heteroskedasticity of disturbances 4n econometric models
does not in general prevent consistent point estimation, but it typically
entails inefficient point estimators. However, we note in this respect that
to obtain consistency in the MC PML variant a bias correction is necessary.
Furthermore we note that the type of heteroskedasticity considered here
shoutld be distinguished from the heteroskedasticity aspect of PML; estimation.
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Q = Min(D, 5), (23)

where we have imposed the restriction 0,=0,26.17 Note that the variances of
the disturbances are not fixed as in the basic model, but propertional to
E(D) and E(S), respectively.

Estimation of the heteroskedastic model demands a slight adaptation of
the PML procedure, but it remains essentially the same as for the basic
model. For example, the expression for E{Qy) now becomes:

E(Qg) = Le-8(-X¢) + Lim(Xe) - of((LY) + (LD) Do(Xy), (24)
Zy

where X, = *

V(L) + (L))

We find the estimate of o to be equal to 0.034 with a standard error of
4,8902E-04. The corresponding estimate of the level of structural unemploy-
ment is equal to 1.9%, which is almost the same as found for the basic
mode1.18 In Figure Il the patterns of the estimated disturbances of the
basic and heteroskedastic model are portrayed. As usual, of course, a
comparison of the degree of fit between the heteroskedastic model and the
basic model might be blurred due to serjal correlation in the disturbances,
which is evidently the case here. In this respect we know from Gourferoux et
al. (1985) (p. 317) that for the usual rationing model (also our model},
consistency of parameter estimates is guaranteed but efficiency is not.l®
However, we find it encouraging that broadly the heteroskedastic wmodel
produces a lower value of the sum of squared residuals over the sample as
can be seen from Figure II.

171t 1s worthwhile mentioning that in this case the number of para-
meters under PML; equals that under PMLy. Furthermore note that o here is a
scalar and not a vector as in Section 2.

18]t can be shown that the expression for the level of structural
unempioyment 1s: u* = AP(0), with A=)/(2)o?. Note that, contrary to the basic
model, u* does not relate to the level of LS; u*, however is defined in
terms of LS so that in absolute terms dependency of LS 15 maintained.

19The authors also provide a score test to detect first order serial
corretation.
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It is exactly for the seria) correlation that we decided not to carry
through the PML3 variants. The serial correlation probiem asks for a
distinct approach based on a consistent PML procedure taking into account
correlation over time of the endogenous variable in rationing modeis at a
disaggregate leve). In another paper we hope to present some new results on
this.20

20 =
_ O basic sode!
+ hotoroscotastic ande?

-20 =
"33 1 L) L) L ] b ¥ + ] L] 1 L] ] L] 1 ] 1 L] LI | T 1 L ¥ LAM
1203 4 % & PR 9 DI I2 3314851617 IR IS 2021 22 23 24 25 2627 28
-te (t=1948,1975)

FIGURE 11—The basic model and the heteroskedastic model (PML;)

7. CONCLUSIONS

The results of this paper lend support to the following conclusions. First,
the parameter estimates are not robust with respect to the introduction of
micro markets. Our Monte Carlo experiments for PML; and PML3 clearly show
that micro markets exist. Second, the Monte Carlo PML estimation variants of
the model yield parameter estimates that converge to the apalytic PML

20 In a paper by Hajivassiliou (1989) 1t s found that a large part of
the residual serial correlation can be explained by allowing for macro-
economic shocks in the micro level rationing model.
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variant when a sufficiently large number of replications is used, but a bias
correction as indicated in Section 4 1{s highly recommended. Last, the
heteroskedastic model is theoretically and empirically more appealing.

It 1s also obvious that PML; is the more robust estimation method, since
it 1s observationally equivalent for both the aggregate and the disaggrega-
te model. The penalty however is the extra loss in efficiency.

L&S proved the almost sure uniform convergence of the approximate
pseudo-1ikelihood function, Yy towards E{Q-E(Q))*, when G and T simultane-
ously go to infinity. From our experiments with the MC PML; variants we
concluded that G should be “sufficiently®” large to decrease the simutation
error to acceptable levels. As & result, this can put a targe claim on
computer time. Moreover, consistency ts not approved with finite G. Introdu-
cing a bias correction in the pseudo-likelihood function established consis-
tency for finite G. Consequently, a significant reduction on the computatio-
nal burden can be reached, since relatively lower values for G are suffi-
cient to obtain convergence to the analytical parameter estimates.

A useful extension of the present paper's environment includes allowing
for systems with disturbances that are serially correlated. In another paper
we will try to cope with this problem by developing a PML based method which
takes into account correlations in time of the endogenous variable in
rationing models at a disaggregate level.
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APPENDIX 1
COMPUTATION OF DERIVATIVES

We use E, E2, V to abbreviate E(Q), E(Q2) and V(Q), respectively.

- PML3y ANALYTIC AGGREGATE MODEL -
Let { = ¥(o1+02) and f=f({,0,,0;) be differentiable, then

af _ of L 3f 8L

0, 805 8L 80y

where 3f/0cy on the 1eft hand side means the 'total' derivative with respect
to o4 and on the right side it is strictiy the partial derivative with
respect to oy. From this chain rule one obtains for i=1,3

13
| P fALS-LOW(Z/0) (278 ) -9(Z/R) [1+(2° 187) 1Y (04 /7)), (A1)
9
8E2 .
Y {0(Ls-L9%) + (01-02) W(Z/R)(-2/8?) -
i
C(L+LS)IO(Z/R)I0T + (Z2/8%)D}(04/C) - 204T(Z/T) + 204. (A2)

From V(Q) = E{Q?) - (E(Q))? it follows that

ov 9E2 ok
= - 26(Q) .
80,4 a0 804

Computation of the derivatives of the PML functions in the text is straight-
forward using

oy oy 9oF oy av
= + _——, : (A3)
30y 9E 904y 9V @0

where ¢=§(E,V) for PML3; and w;w(E) for PML,.
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- PMLy ANALYTIC DISAGGREGATE MODEL -

Now tet ¢ =V(N)¥(o}+03), then
3E 8  V(N)o;  BE Noj

80, 8L V(oj+o}) 8¢ L

ot oF ¥
oN oy N

N
Letting now denote E2= T E(Qiy) we get
J=1

stz (L5 Ld+ ) et oz oz
= +°2-01)°(-)(—-) - —_— ll'(-) - V(=) —.
aL N NOg g

Because {={(0,,0;,N) one has, using the chain rule,

9E2 9E2  9E2 8¢

= +

301 301 o 301

8E2 9E2  BE2 ]
= + s
oN oN oy ©oN

(A4)

(A5)

(A6}

(A7)

(A8)

where as before the symbols on the left and right hand side should be

interpreted appropriately. It is straightforward to obtain

('strict’) partial derivatives of E2:

oE, 2

—_ = = 2018(~) + 03,
801

8E, Z

—_— = 20,%(-),

90, 4

e, (- 1’y 2 (L)
= (=) ~ — + —_ (Ld+|-‘)'l’( -).
N N? C Nt ON? C

the

(A9)

(A10)

(All)

The derivatives in (A9), {A10) and (All) have to be substituted into the
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right hand side of (A7) and (A8). The derivatives of V are fipalily obtained
using

N N
V(Qy) = T E(Qyy) - I E(Qsy)°.
J=1 J=1
~ PMLy, MONTE CARLO AGGREGATE MODEL -

1 G
In this case E(Qy) is replaced by Qy = - } Qiq, where
G g=1

d
Qpg = Min fLi + 01 Nytgs Li + 0; ﬂ2tg]- Because only the function

¢ = V(oy+03) is identified we took o,=0,=L/¥2, i.e.
d s
Qgg = Min {Ly + (C/V2) mygg, Ly + (B/V2) mpegls (A12)

One ctearly has

dQ: g4 (1/¥2)ny g 1 E(D) + (C/V?)ﬂ1£g < E(S) (T/V2)ngeq, (A13)
dg (1/¥2)nz4g elsewhere (A14)

{note that the derivatives are discontinuous).

Defining 8y = 1 if the condition in (Al13) 1s satisfied and Stg = 0
elsewhere, one obtains

AL SO Yenzeql (A15
LT e ——— -— o+ s

& &2 ool tg{Ni1tg ~ Nz2tg)HMatg )
dy T dg

— =23 {(0-0) —, (A16)
d¢ t=1 dt :

d
=23 (=) (A17)

d*q,

Note that in (Al7) the identity —_— 0 is used. In Table IA the inverse of
dg

the Hessian matrix using (Al7) is compared with the one obtafined from the

DFP algorithm.
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- PML3 MONTE CARLO AGGREGATE MODEL -

1 6
In this case E(Q;) is replaced by §y = -~ Qg and V(Qi) is replaced by
G 9=1

1 G
Var(Qy)=— { L -Q{g - G(Qy) % Qpq is defined as in (A12) but without the
G-1 g=1

restriction oy = o, = {/¥2. We therefore have

Qg A
= = Nlitg

doy ! d s
if Lt + 0 Nitg < Lt + 02 N2tge
thg

d
%2 J (A18)

—_ =0
doy d s
if Lt + 0y nltg > Lt + 03 n2tg'

® Nzt
dOz g

A1l derivatives are now obtained through simple substitution.

- PML3 MONTE CARLO AGGREGATE MODEL -

A1l derivatives can now easily be obtained from the previous case using

6 = 62 = L/V2
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APPENDIX 11

- COMPUTATION OF COVARIANCE MATRIX
FOR PML, AND PML3

The asymptotic covariance matrix of © is J-11J-1 [Gourieroux et al. (1984)],
where _
9*y(x,8) ap(x,8) W(X.e}

Jiy = ExEl- ————] and 1y = EE{
17T ae,08, U aey ey

, (1)
where x is a vector of exogenous variables; 8 is a vector of parameters.

-PML, -
The pseudo function according to PML, is given by:

1T
¥(x,8) = ¥(y - f(x,8))'I(y - f(x,8)) = pys t21¢t(xf9). (2)

where } is the diagonal covariance matrix of the endogeneous variable y;
f(.,.) represents the expectation of y as a function of x and 0., Note that
for expository reasons we tock y and f to be vectors instead of matrices,
i.e., for each t we are dealing with a scalar. From standard differentiation
rules one has

azy(x,0)  of'  af

= ——3-1 , (3)
38,20, 88; 88y
ay(x,0) dy(x,8) af af
3] } oo B3Ny - )y - £)'3 —1} =
a8, 00, 00, 98,
of' of
. ! , (4)
88y 26y

ay(x,0) 89(x,8) 1 T d9y(x,8) 3y;(x,8)
Ex{ } g - . (5)
30 38, T t=1 28 88,
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-PHLy-

The results presented here are from private correspondence with Bernard
Salanié. The pseudo function according to PML; is given by:

¥(x,8) = %(y - f(x,0))* g-1(x,8) (¥ - f(x,8)) + ¥ togdet(g(x,8)), (6)

where g is the diagonal covariance matrix of y as a function of x and 8.
From L&S we know that:

92y{x,8) of' of 89 dg

} = gl — + % Tr(g-l— g-1 —), (7)
80,00, 28, 80, 96, 28,
' ef' of 9g 9g

Ef } = gl — + % Tr(g-l— g-1 —). (8)

331 391 891 39} 391 833
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