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1. INTRODUCTION

Buffer overflow is an important problem in communication and
production systems. This paper considers the practical situation of a
small overflow probability and gives an easily computed asymptotic
expansion of this probability. The finite-capacity M*/G/1 queue is a
useful model to analyse the behaviour of buffers in computer
communication systems with batch arrivals., In section 2 we derive the
overflow probability by relating the finite-capacity queue to the
infinite-capacity queue through simple arguments from regenerative
processes., Under mild assumptions on the batch-size and service-time
distributions we give in section 3 an asymptotically exponential
expansion for the overflow probability. Also, some numerical results
are given showing the practical wusefulness of the asymptotic
expansion. In the final section 4 we extend the results to the case
with perlodic opportunities for service and random interruptions in
service. This paper is related to earlier work of Bruneel (1983),
Heines (1979), Tijms (1986) and Woodside and Ho (1987). The first two
references consider the infinite buffer case and the latter two
references deal with'theﬁcase of a finite buffer but with single

arrivals.
2. THE REGENERATIVE ANALYSIS

Suppose that at a single-server channel batches of packets arrive
according to a Poisson process with rate A. The batch size has a
general probability distribution {ﬂj, j=1,2,..) with finite mean §.
The buffer has only capacity for K packets inecluding the one in
service. A batch Whose size exceeds the remaining capacity in the
buffer is partially lost due to overflow of the excess, The channel
can handle only one packet at a time and the service time of the
packets are Independent random variables having a common probability
distribution funetion F(x) with finite mean p. Letting p=ASm, it
is assumed that the offered load p is less than 1.

Using simple probabilistic arguments, we derive in this section a
formula for the long-run fraction of packets that overflow. To do so,

denote by X  the number of packets left behind at the ntt service
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completion of a packet, In the model the overflow probability is more
easily obtained by analysing the embedded Markov chain (X } rather
than the continuous-time process describing the number of packets
present at an arbitrary time. For the finite-capacity model let
{qj(K), j=0,...,K-1} be the limiting distribution of the embedded
Markov chain {X }. Note the interpretation

q; (K) = the long-run fraction of service completions at which j
packets are left behind.

Similarly, define {qj(w), 3j=0, 1,...) as the equilibrium distribution
of the Markov chain (X} for the infinite-capacity model. Further,
for the finite-capacity model, let

Ty 055 (K) = the long-run fraction of packets that are lost.
The main result of this section is the following theorem.

Theorem 1. For any finite buffer size K,

Bay(®) - (1-p)
71 pag(K) = — =, (1)
BYg(=) + poy

where
K-1 1-p
o, =2 q.(=) and q,(®) = —
K 0
3=0 3 8
To prove this result, we first establish several lemmas. To do so, we
need the following notatiom. Let us say that a cycle starts each time
an arriving batch finds the system empty. For the finite-capacity

model, define

N, (K) = the number of service completions during ome cycle at
which j packets are left behind (j=0, 1,..., K-1),
and

N(K) = the number of packets served during one ecycle.
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Similarly, we define Nj(m) and N(«) for the infinite-capacity model,.
Noting that only the batch size in excess of the remaining buffer
capacity overflows and that accepted packets are served one at a
time, the following lemma is a consequence of the lack of memory of
the Poisson arrival process.
Lemma 2 For any finite K,

E[N, (K)] = E[Nj(w)] for j=0,1,...,K-1.
Next we prove

Lemma 3 For any finite K,

. K-1
q.(K) = q,(«)/Z q_(=) for j=0,1,...,K-1,
] 37 e ©

Proof. By the theory of regenerative processes (ef. Ross (1983))

E(N, (X)) ' E[N, (=) ]
qy0) = —I—  and’ q (@) = ——
- E[N(R)] ] E[N()]

By Lemma 1, we mnext see that qj(K)/qj(K-l) - qj(m)/qj_l(w) for
1<j=<K-1. Hence, putting o, = q4(=)/q,(K), we have q; (K)=q; (=) /oy for
1<j=<Kk-1. Since Z{.1 q,(K) = 1,it follows that oy = =3 q,(=).

This ends the proof.

Lemma 4 For the infinite capacity model,
1-

Proof The leng-run fraction of time the server is providing service
equals p as can be intuitively seen by assuming a cost at rate 1 when
the server is busy and then noting that the long-run average cost
rate equals the average arrival rate of packets times the average
service time of a packet, cf. also Ress (1983). Next, by the property
Poisson arrivals see time averages, it follows that the fraction of
batches finding upon arrival the system empty equals 1l-p. Hence the

fraction of packets served as first one from their batch equals
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(1-p)/B. Also, this fraction equals 1/E{N(x)]. By qu(=) = 1/E{N(=)}

we now get the desired result.

We are now in a position to prove Theorem 1,

Proof of Theorem 1 By the theory of regenerative processes, we have

for the finite-capacity moﬁel

E{number of packets lost during one cycle]

wloss (K) =

E[number of packets arriving during one cyclel

Obviously, the numerator of this ratio equals the the denominator
minus E[N(K)]. Using q;(K) = 1/E[N(K)] and Lemma 3, we find
K

BN - )

By this relation and Wald’'s equation we have that the expected total
service time during one cycle equals o, p/q,(~). Hence
1 g

1
E{length of one cycle] = — + LS
A gy(=)

Next, by applying Wald’s equation again,

1 T
E[number of packets arriving during one cycle = Ap [~ + S

2 qu(=)

].

and so we get = __ (K) = 1-[o,/qp(=)] [ﬁ+pak/qo(m)]'1 yielding the

desired result,

To conclude this section, we give a recursion scheme for the
equilibrium probabilities q;(«). Therefore we use the following up-
and downcrossings argument. The long-run fraction of services at
whose completions n packets are left behind must be equal to the
long-run fraction of services having the property that just prior to
their beginning no more than n packets are waiting in queue and just

prior to their completion more than n packets are in the system.
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Hence, denoting by {a;) the probability distribution of the number of

packets to arrive during the service time of one packet, we find for

n=0,1l,... the recursion equation
@ n =) o @
(@) = q, (=)= B; + qy(=)T 8.2 + 2 q (=)3 (2)
*n 0 et 3 0 jm Fertlog P kel ¥ hemlok D

This recursion scheme involves no subtractions and is therefore
numerically stable. In general the compound Poisson probabilities ay
are not easy to compute except for the following two cases, For the-
speclal case of a constant service time D, the a;’'s can be recur-

sively computed from

\D AD j
a,~e ,a =-—3ZkBa, for jzi,
0 37 T e Kk

see section 1.6 in Tijms (1986). A simple recursion scheme for the
a;’s can also be given when the service time S has a Coxian-2
distribution, that is, S equals 5; with probability 1l-b and equals
5,+S, with probability b, where §; and S, are independent expo-

nentials with respective means 1/p, and 1/p,. Then, denoting by
a;z; the probability of j packet arrivals during a remalning service
time distributed as $,, we have for j=1,2,... the recursion equations
A 3 A ] p.b
a§2)- —_ Z ﬂka§?i and aj = —— I ﬂkgj-k + 1 a(z) )
A+p2 k=1 A+p1 k1 A+pl ]

vhere a$2’ = u,/(Atu,) and ag = py (Atpy )"0 {1-btbp, /Oty ) }.
In the next section it will be seen that for practical purposes

the overflow probability « (K) can be much more easily calculated

loss

from an asymptotically exponential expansion than frem (1) im

conjunction with the recursion scheme (2).



3.THE ASYMPTOTIC EXPANSION

By Theorem 1, an asymptotically exponential expansion for the
overflow probability =, _ (K) of the finite-capacity model is
obtained when the taill probabilities q;(«) for the infinite-capacity
model exhibit a geometric behaviour for j large enough. These tail
probabilities will decrease geometrically fast only when the batch-
size and service-time distributions have no extremely long tails,

Therefore we make the following assumption.

Assumption

(a) The convergence radius R of the power series f(z) = E?-1 ﬁjzd is
larger than 1 and the integral [je®"dF(t) is finite for some £>0.
(b) lims_,Ja f:e‘tdF(t) = o where A = sup{slfgeStdF(t)<w].

(¢) A number Rye(1,R] exists such that limx*nnﬁ(x) - 1440

This assumption is satisfied in cases of practical interest, e.g.
vhen the batch-size distribution has finite supporﬁ and the service-
time distribution is of the phase-type. It is pointed out that
assumption (b) excludes densities of the fornm ce *t /t2

Under the above assumption there is a unique number 2z &(1,R;)
such that

.(J; elt{ﬁ(zo)‘l}d]?(t) - zo . (3)

To prove this, define the generating function A(z) = X_,a 2",
lz[< 1, for the probability distribution {ayj} of the pumber of

packets to arrive during the service time of one packet. Using that

K
o n_ (At) "

a =[ dF(t) Te At T gk for n=0,1, ..
0 k=0 kt O

with {ﬂﬁ*} denoting the k-fold comvolution of {B,) with itself, we
obtain



agz) = [ *EPE Dapeey (&)
0

By the above assumption the right side of (4) 1is analytic for

lz|< Ry. Thus, by Taylor's theorem, the power serves representation

A(z) = Z;_,4,z" can be extended to the domain |z{< R,. Consequently,
A"(x)>0 for all xe(0,R;) and so A(x) is strictly convex on (0O,R;).
Therefore the graph of A(x) can intersect the line y=x in at most two
points, We have A(l)=l. Moreover, by A’(l)=p and the assumption
p <1, the function A(x)-x 1is decreasing at =x=1, ‘Hence for some
a >0, A(x)<x for xe(l, l+a). Next, using that 131.111::Hzn A(x)>R; by the
representation (4) and part (c) of the above assumption, it follows
that A(x)-x has a unique zero z; on the interval (1,R;). As a by-
product of this proof we find that A(x)<x for 1< x < z,. This
property will be needed in the proof of the following theorem.

Theorem 5 For the infinite-capacity model,
[8(zg)-1]
—_—z
A'(zo)-l

qj(w) ~ qo(&) O-j for j large enough,

where 8(z) = Z;_lﬁjzj, A'(zo) - Aﬂ'(zo) fg taAt{ﬂ(zo)-l}dF(t), and z
is defined by (3).

0

Proof. The proof is based on partial fraction expansion of the
generating function of the qy(w)’s and requires some complex function
analysis. The power series Q(z) = Z}.;q;(®)2? 1is certainly

convergent in the domain |[z|sl of the complex plane. Using the

equilibrium equations

n+l n+l
q (=) =% q(w)a_ , +q,(«) Z ga . , nx0,
n oy B oLk 00 T Pkonel -k

it 1s a matter of simple algebra to obtain that



A(z)

Q(z) = qq(=) {1-8(z)] (5)

A(z)-z

Since the power series A(z) = 3P 54,2 and g(z) = X _ B,2" are
convergent for all |z|< Ry, it follows that the right side of (5) is
analytic in the domain |z|< R, with the possible exception of the
zeros of the denominator A(z)-z. Since the power series Q(z) is
couvergent for all [zlsl, the right side of (5) has no pole om or
within the circle |z|=1 although z=l1 is a zero of A(z)-z. The
dominant pole of Q{(z) in the domain 1<lz]< R; determines the
asymptotic behaviour of qj(w). We first show that A(z)-z has no zeros
in the domain l<|z|<z, and that the real number z, is the only zero .
of A{z)-z on the circle ]z]-zo. The 2zero z, of A(z)-z has
multiplicity 1 since A'(z;)-1+#0 by the strict convexity of A(x). We
have already proved above that A(x)<x on the interval (1,z,). Hence,
by the power series represeﬁtation of A(x), we get lA(z)]ﬁA(]z])<]z|
for all z in the domain I<|z|<z,. To prove that A(z)-z has z, as the
only zero on the cirele |z|=z0, it suffices to wverify that A(z,) is
real when A(z;)=z, with |z,]=z;. To do so, denote by %, en y, the
real part and imaginary part of B(z;). Since |f(z,)!=(x,2+y,2)¥ and
|8(z,) |<8(|z, |)=B(2;), we have (x,2+y,2)%%8(z,) and so x,=8(z,).
Then, using that |e!¥|=1, we obtain from (4) and (3) that

2o = |aGz) |= [ DRy 5 f 2P DIEp(ey o g
0 0

This implies that =x,=8(z,). Next, by (x12+y12)* < B(zy), we find
y,~0. Hence g(z,) is a real number and so, by (4), A(z,) is a real
number,

By the above analysis there is a number R; with z,<R,<R; such
that A(z)-z has no zeros in the domain [z[sR1 except at the peoint
Z=Z, . Here we use that the zero z=z;, has a neighbourhood containing
no other zeros of A(z)-z, since A(z)-z=(z-z;)p(z) for some analytic
function ¢(z) with ¢(z4)=0 by the Taylor expansion and the fact that
the zero z; is of order 1. Consequently, we can write (5) as

Q(z)=H(z)/(2-z,) for some analytic function H(z) in |z|sR, with
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H(zy)=0. Using the Taylor expansion H{(z)=H(Z,)+(z-2,)U(z), we next
find that an equation ¢f the form

a
azy = —L

+ U(z) (6)
z-Z,

is true for lz]sRl, 2%z, , where U(z) is some analytic function in the

domain |z|=R, and the residue a_, is given by

qu(=) [1-8(zy) ] Alzy)

A'(zo)-l

a4~ %5gb(z-zo) Q(z) =
Note that a_,»0. Since U(z) is analytic for Izls R;, a Taylor series
expansion U(z)_zf;_uujzj is true for |z[s R,. The power series
zg,ouhzj is convergent for z=R, and so ujR% is bounded in j., Since
Q(z)-rz::j",oqj(w)zj for |z|<z,, we obtain from the series expansion of
the right side of (6) that

4y (=) [B(z,)-1] Alzp)

qj(w) - z
A’(ZO)-l

oIt + oy for an g20.

Using that A(z,)=z, and R,>z,, we finally get the desired result.
As an immediate consequence of the Theorems 1 and 5, we have

Theorem & For K large enough,

K
(l'p)7ozo
T oss K~ K ° (7N
1-p1020
where
1-p) ® _ . . Zq
o= (87 (zg)fee” TP Z) Marey 117 p(z) 1] )
Defining K{a) as the smallest integer K for which xloss(K)sa,

it follows from Theorem & that K{«) can be approximated by

R{a) = In{y, (1-p+pa)/a}/In(z,). 9
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when o is small enough. Typically in practical applications e« will be
small. It is an empirical finding that the asymptotic expansion for
the q;(»)’s applies already for relatively small values of j provided
that p is not very small. Thus for practical purposes we can compute
K{a) from (9). This 1s confirmed by the numerical results in table 1,
For the cases of a constant batch size and a geometrically distri-
buted batch size, we give in table 1 the asymptotic wvalues of K(a)
{rounded to above) for several service-time distributions and several
values of p and «¢. In nearly all cases the asymptotic values (9) are
equal to the exact values of K{a). The few cases in which they differ
are marked by ¥. In each marked case the difference between the exact
value and the approximate value is 1 except for the case marked with

*%* for which the difference is 2, The ocffered load p is varied as

0.2, 0.5, 0.8 and 0.9, while the service level « is varied as 107}, ~

10"® and 107°. Denoting by cZ (=02 (S)/E%(8)) the squared coefficient
of varlation of the service time S, we vary cg as 0, %, 1, 2 and 5.
The wvalues cg-o, ¥ and 1 correspond to the deterministic, Erlang-2
and exponential distributions, while- the values c§=2 and 5
correspond to hyperexponential distributions of order 2 (the H,-
distribution is a special case of a Coxian-2 distribution). For
purposes of sensitivity analysis, we consider for the H,-distribution
both the normalization of balanced means (b) and the gamma
normalization (g). For the first normalization the three parameters
of the H,-demsity p g e “1%+p,u,e"#2® are chosen such that
Py /By =P, /4, whereas for the second normalization the parameters are
chosen such that the first three moments of the distribution are the
same as those of a gamma distribution. The numerical results in table

1 confirm that

K(a) = (1-c2)K

qet (0) ch

axp (@) (10)

is an excellent approximation provided that cZ is not too large,

where Kuat(a) and K () denote K(a) for the particular cases of

exp
constant and exponential services with the same means E(S).
Approximations of this type were advocated in Tijms (1986) who gives
many examples in which queue-size or waiting-time percentiles can be

approximated as in (10).
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Table 1. The minimal buffer sizes K(a)
const. (f=2)

10°! 1073 1073

geom, (f=2)

10°% 1073 10°°

const, (B=5)

107! 1072 1073

geom. (f=5)

1071 10°% 1073

p=0Q.2

p-0.5

p=0.8

p=0.9

c2=0
=172

=2(b)
=2 (g
=5(b)
=5(g)

cZ=0
-1/2
=] ]
=2(b)
‘2(SH
=5(b}
=5(g)

cZ=0
=1/2
-]
=2(b)
=~2(g)
=5(b)
=3(g)

c2=0
-1/2 .
D
=2 (b)
=2(g)]
=5(b)

=3(g)

[+ N W S I R

wmwi;‘_awuw

R 00O 00~ ~d

el

13
15
1%
18
30
28

26
31
37
48
48
84
80

46
36
67
88
88
154
150

10
11
12
15
14
22
19

19
22
25
33
31
55
49

47
58
68
91
89

159

150

90
111
133
177
175
310
301

0000~ = O h O\

10
12
12
17
17

11
12
13
15
15
22
22

13
13
14
14
14
16
16

19
21
22
25
25
36
34

41
&6
51
62
61
93
93

70
80
20
112
111
176
173

22
22
23
24
24
30
28

33
35
38
45
44
66
61

75
85
94
116
115
183
175

139
159
180
223
222
355
348

L= R e L s R L A =)

10
10
11
11

14
14
15
17
17
21
22

17
14
20
22
22
29
29

15
le
16
17
17
20
20

27
29
30
34
34
45
43

63
63
74
86
85
120
117

113
124
134
155
155
220
217

24
25
26
28
28
36
34

45
48
52
59
58
81
76

117
117
138
159
158
226
220

224
245
266
310
309
442
436

13
13
13
12#
12%
1%
12%

16
17
17
17
17
18
18

24
25
26
27
27
32
32

30
31
32
35
35
41
42

ig
39
39
39
39
40
41

57

58°

59
62
62
72
71

120

-125

130
141
141
174
172

209
219
229
250
249
313
11

64
65
65
66
66
70
70

98
101
103
109
108
127
124

224
233
243
263
263
327
322

415
436
456
498
498
627
622
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4, OVERFLOW PROBABILITY FOR INTERRUPTED SERVICE

In this section we first discuss an extension of the previous
results to the case of a set-up time after an idle period and next
apply the extended results to a computer communication model with
periodic opportunities for service and random Interruptions of
service.

Suppose that a warming-up time W is required before the server can
start the service of the first packet from a batch that finds upon
arrival the system empty. The service times and the warming-up times
are independent., Let G _(t) denote the probability distribution

loss(x) as
before, an examination of the analysis of section 2 reveals that the

function of the warming-up time. Defining qo(XK) and =

main Theorem 1 remains wvalid provided we replace the formulae fof

Ty oes (K) and g4 (=) by

By (=) (LHAE(W) ) - (L-p)ay

s (K) = < {11)
loss B (=) LLAE(W) 4oy,
and
1-p
qp (@)= ———— . (12)
BLL+AE(W))

The modification (11) is explained by noting that the expected length
of a cycle in the finite-capacity model is now given by
L/AE(W)+o, p/qy (). We find (12) by the following modification of the
proof of Lemma 3. For the infinite-capacity model the 1leng-run
fraction of time the server is servicing packets remains equal to
p=App. Denote by £, and £, the long-run fractions of time that the
system is empty respectively a warming-up period is in progress. Then
f,+f,~1-p. Imagine now that the system incurs a cost at rate 1
vhenever a warming up time is in progress. Then the long-run average
cost rate equals f and is given by the average arrival rate of
batches finding the system empty times the average 1length of a
warming-up period. Hence f =Af;E(W) ylelding that fy=(l-p)/(1+XE(W)).
The remaining part of the proof of (12) proceeds as in Lemma 3.

The only other modification required in section 2 concerns the

recursion equation (2) in which the second term g, (¢=-t>)2.1 B;3, 8 should
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be replaced by qu(=)Z;8,;5,a,, where the probability distribution
{a]} is the convolution of the probability distributions (a;} and
{w;). Here w; is the probability that the total number of packets to
arrive during a warming-up period equals j. Denoting by W(z)-lz:;:owjzJ
the generating function of the w,'s, we obtain similarly to (4) that

at{g(z)-1}

W(z)-g e d6_(t).

Next we can easily modify the results of section 3. The equation (5)

becomes
Az}
Q(2)=q, (=) [1-8(z)] W(z) O
and thus
[ﬁ(zu)'ll W(z,) -3
qj(w)~ qo(m) N for j large. (13)

A’ (2g)-1

Here we need the technical assumption that sup{s|[3e®*dG_ (t)<=} is
larger than A(8(2,)-1). The decay coefficient z; is again determined
by (3). Defining the constant vy, by

_ TOW(ZO)

Tw

1+AE(W)
with v, given by (8), it follows from (11)-(13) that the asymptotic
formulae (7) and (9) remain valid for the model with set-up times
provided we replace in these formulae v, by ~,.

We can go a step further and make the followlng useful extension.
In addition to the warming-up times, suppose that the first service
starting a busy period has a different distribution than the other
services., Let F,(t) denote the probability distribution of the
exceptional first services and let pu, denote its mean. Then the

formulae (7) and (9) remain valid provided we replace vy, by

Yo W(zy) A,(z4)/2,

Y, = '
we LAE(W) +Ap, - dp
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where Al(zo),jgelbfﬂ‘zo"l}dFl(t). This modification can be seen as
follows. For the finite-capacity model the expected length of a cycle
becomes L1/A+E(W)+oy p/q, (=) -p+p, , while for the infinite-capacity model
qo (@) becomes l-p divided by 1+AE(W)+ip,-Ap and the term A(z) in the
numerator of (5) should be replaced by A, (z)W(z).

A communication system with interrupted services

Consider a communication chammel at which batches of packets
arrive according to a Poisson process with rate A, where the batch
size has a general distribution. The packets are temporarily stored in
a finite buffer to await transmission, Overflow occurs for those
packets of an arriving batech which are in excess of the remaining
buffer capacity. The transmission time of each packet is a constant’
slot length of one time unit. The beginnings of the time slots provide
the only opportunity to start the transmission of a packet. The
transmission channel is subject to random service interruptions. It is
assumed that at the beginning of each time slot the chammel is
available for transmission with a given probability f, independently
"of the state of the channel in the previous time slots, Equivalently,
the transmission of a packet 1s successful with probability £,
otherwise the transmission has to be retried in the next time slot,

To find the long-run fraction of packets that overflow, we coﬁvert
this model with random service interruptions into a finite-capacity
M¥/G/1 model with set-up times. The service time of a packet is
defined as the number of time slots from the moment the packet is
ready for transmission until the packet is succesfully received. Hence

the service time S of a packet has the geometric distribution
P(S=j)=(1-£)3"1F, j=1,2,...

A bateh arriving when the system is empty has to wait until the next
periodic opportunity for service. Therefore the warming-up time W is
defined as the time from the moment that a batch arrives when the
system is empty until the beginning of the next time slot. Obviously,
the probability distribution of W is given by |
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e Ye BIOTIE

P(Wst) = = for Ostsl .
l-e

Then we can apply the above results using the specification of the
probability distributions of the service time and the set-up time. Our
unifying analysis extends results in Woodslide and Ho (1987). Using the
queueiné medel with exceptional first services we can also solve the
model with periodic service opportunities and service interruptions
when the process describing the service interruptions is an exogenous
two-state Markov chain. Then the probability distributien of the
exceptional first services can- be specified by using simple Markov
chain analysis as given in Woodside and Ho (1987). Finally, the
versatile gqueueing model with exceptiocnal first services can also be,
used when the process describing the on-state and off-state for
service is an alternating renewal process in which the on-times have a
geometric distribution and the off-times have a general discrete

distribution.
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