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1. INTRODÜGTION 

Buffer overflow is an important problem in communication and 

production systems. This paper considers the practical situation of a 

small overflow probability and gives an easily computed asymptotic 

expansion of this probability. The finite-capacity Mx/G/1 queue is a 

useful model to analyse the behaviour of buffers in computer 

communication systems with batch arrivals. In section 2 we derive the 

overflow probability by relating the finite-capacity queue to the 

infinite-capacity queue through simple arguments from regenerative 

processes. Under mild assumptions on the batch-size and service-time 

distributions we give in section 3 an asymptotically exponential 

expansion for the overflow probability. Also, some numerical results 

are given showing the practical usefulness of the asymptotic 

expansion. In the final section 4 we extend the results to the case 

with periodic opportunities for service and random interruptions in 

service. This paper is related to earlier work of Bruneel (1983), 

Heines (1979), Tijms (1986) and Woodside and Ho (1987). The first two 

references consider the infinite buffer case and the latter two 

references deal with the case of a finite buffer but with single 

arrivals. 

2. THE REGENERATIVE ANALYSIS 

Suppose that at a single-server channel batches of packets arrive 

according to a Poi'sson process with rate A. The batch size has a 

general probability distribution {/3. , j=l,2,..} with finite mean {}. 

The buffer has pnly capacity for K packets including the one in 

service. A batch 'whose size exceeds the remaining capacity in the 

buffer is partially lost due to overflow of the excess. The channel 

can handle only one packet at a time and the service time of the 

packets are independent random variables having a common probability 

distribution function F(x) with finite mean /*. Letting p-Â S/x, it 

is assumed that the offered load p is less than 1. 

Using simple probabilistic arguments, we derive in this section a 

formula for the long-run fraction of packets that overflow. To do so, 

denote by X the number of packets left behind at the nth service 
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completion of a packet. In the model the overflow probability is more 

easily obtained by analysing the embedded Markov chain {Xn} rather 

than the continuous-time process describing the number of packets 

present at an arbitrary time. For the finite-capacity model let 

{q.(K), j=0,...,K-l} be the limiting distribution of the embedded 

Markov chain {X^}. Note the interpretation 

q, (K) - the long-run fraction of service completions at which j 

packets are left behind. 

Similarly, define {q.C0»), j-O, 1,...} as the equilibrium distribution 

of the Markov chain {Xn} for the infinite-capacity model. Further, 

for the finite-capacity model, let 

7rloss(K) - the long-run fraction of packets that are lost. 

The main result of this section is the following theorem. 

Theorem 1. For any finite buffer size K, 

ySqn(°°) - (l-fi)<rK 

*loss<K> - — ~ ' <D 
/Öqn(«) + p<rv 

where 
K-l 1-p 
• £ q. (») and qn(°°) 
j-O J p 

To prove this result, we first establish several lemmas. To do so, we 

need the following notation. Let us say that a cycle starts each time 

an arriving batch finds the system empty. For the finite-capacity 

model, define 

N>(K) - the number of service completions during one cycle at 

which j packets are left behind (j=0, 1,..., K-l), 

and 

N(K) - the number of packets served during one cycle. 



- 3 -

Similarly, we define N. (<») and N(») for the infinite-capacity model. 

Noting that only the batch size in excess of the remaining buffer 

capacity overflows and that accepted packets are served one at a 

time, the following lemma is a consequence of the lack of memory of 

the Poisson arrival process. 

Lemma 2 For any finite K, 

E[N.(K)] -E[N.(=°)] for j»0,l,...,K-l. 

Next we prove 

Lemma 3 For any finite K, 

K-l 

q (K) = q (=o)/2 q («) for j-0,1 K-l. 
J J n-0 

Proof. By the theory of regenerative processes (cf. Ross (1983)) 

E[N.(K)] E[N (co)] 
q.(K) J and q.(«o) - J . 
J E[N(K)] J E[N(»)] 

By Lemma 1, we next see that q, (K)/q.(K-l) = q. («)/q. _x («) for 

l<j<K-l. Hence, putting CTK = q0 («)/q0 (K) , we have qA (K)=qd (*°)/CTK for 

l<j<K-l. Since S^J qd (K) - l,it follows that aK - Ŝ lJ q. («). 

This ends the proof. 

Lemma 4 For the infinite capacity model, 

Proof The long-run fraction of time the server is providing service 

equals p as can be intuitively seen by assuming a cost at rate 1 when 

the server is busy and then noting that the long-run average cost 

rate equals the average arrival rate of packets times the average 

service time of a packet, cf. also Ross (1983). Next, by the property 

Poisson arrivals see time averages, it follows that the fraction of 

batches finding upon arrival the system empty equals 1-p. Hence the. 

fraction of packets served as first one from their batch equals 
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(l-p)/£. Also, this fraction equals 1/E[N(«)]. By q0(«) - 1/E[N(»)] 

we now get the desired result. 

We are now in a position to prove Theorem 1. 

Proof of Theorem 1 By the theory of regenerative processes, we have 

for the finite-capacity model 

E[number of packets lost during one cycle] 

E[number of packets arriving during one cycle] 

Obviously, the numerator of this ratio equals the the denominator 

minus E[N(K)]. Using q0(K) - 1/E[N(K)] and Lemma 3, we find 

E[N(K)] 
qo(°°) 

By this relation and Wald's equation we have that the expected total 

service time during one cycle equals <7Kju/q0 (») . Hence 

E[length of one cycle] - — + 
A q0(») 

Next, by applying Wald's equation again, 

1 V Efnumber of packets arriving during one cycle = A/3 [— + ] . 
A q0(») 

and so we get T 1 O S S ( K ) - 1- [aK/q0 (°°) ] [/8+P̂ k/q0 («) ]
_ 1 yielding the 

desired result. 

To conclude this section, we give a recursion scheme for the 

equilibrium probabilities qj(»). Therefore we use the following up-

and downcrossings argument. The long-run fraction of services at 

whose completions n packets are left behind must be equal to the 

long-run fraction of services having the property that just prior to 

their beginning no more than n packets are waiting in queue and just 

prior to their completion more than n packets are in the system. 
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Hence, denoting by {a^} the probability distribution of the number of 

packets to arrive during the service time of one packet, we find for 

n-0,1,... the recursion equation 

oo n « n °o 
q^O) = qn(-)S 0. + qn(»)S j8,S a. + S q. («)S a. (2) 
n U j=n+l J U j-1 Jh-n+l-j n k=l k h=n+l-k n 

This recursion scheme involves no subtractions and is therefore 

numerically stable. In general the compound Poisson probabilities â  

are not easy to compute except for the following two cases. For the. 

special case of a constant service time D, the â 's can be recur-

sively computed from 

-AD A D j 

a. - e , a 2 k& a for j>l, 
0 J j k=l J 

see section 1.6 in Tijms (1986). A simple recursion scheme for the 

â 's can also be given when the service time S has a Coxian-2 

distribution, that is, S equals S1 with probability 1-b and equals 

Sx+S2 with probability b, where Sx and S2 are independent expo-

nentials with respective means l//ix and l/fiz. The'n, denoting by 

aj2' the probability of j packet arrivals during a remaining service 

time distributed as S2, we have for j-1,2,... the recursion equations 

(2) A ^ (2) A J l*ih (2) 
a 2 Vl-k and ai S \ ai-k + a ' 
J A+^2 k-1

 K J K J X+^± k-1
 k J K A+/i J 

where ag2) - /*2/(A+/J2) and a0 - /^(A+j^)"
1 {l-b+tyi2/(A+^2)}. 

In the next section it will be seen that for practical purposes 

the overflow probability floss(K) can be much more easily calculated 

from an asymptotically exponential expansion than from (1) in 

conjunction with the recursion scheme (2). 
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3.THE ASYMPTOTIC EXPANSION 

By Theorem 1, an asymptotically exponential expansion for the 

overflow probability ^-LOSS(^) °f t n e finite-capacity model is 

obtained when the tail probabilities q̂  («) for the infinite-capacity 

model exhibit a geometrie behaviour for j large enough. These tail 

probabilities will decrease geometrically fast only when the batch-

size and service-time distributions have no extremely long tails. 

Therefore we make the following assumption. 

Assumption 

(a) The convergence radius R of the power series £(z) - 2̂ -i 'P&zi *'s 

larger than 1 and the integral j£estdF(t) is finite for some s>0. 

(b) lims^A J^e
stdF(t) - • where A - sup{sJXJe,tdF(t)<-}. 

(c) A number R0e(l,R] exists such that lim j8(x) — 1+A/A. 

This assumption is satisfied in cases of practical interest, e.g. 

when the batch-size distribution has finite support and the service-

time distribution is of the phase-type. It is pointed out that 

assumption (b) excludes densities of the form ce_0!t/t2 . 

Under the above assumption there is a unique number z0e(l,R0) 

such that 

J eAt(,3( Z o)-l} d F ( t ) (3. 

0 

To prove this, define the generating function A(z) = ̂ =oanzI1' 

|z|< 1, for the probability distribution {aj } of the number of 

packets to arrive during the service time of one packet. Using that 

n (At)k 

a = ƒ dF(t) S e fT for n=0,l,.. 
n 0 k=0 k! n 

with {/?„*} denoting the k-fold convolution of {/3n} with itself, we 

obtain 
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A ( Z ) = J e
A t { ^ Z > - 1 } d F ( t ) . (4) 

O 

By the above assumption the right side of (4) is analytic for 

|z|< R0 . Thus, by Taylor's theorem, the power serves representation 

A(z) =, ̂ „o^z11 can be extended to the domain |z|< R0 . Consequently, 

A"(x)>0 for all xe(0,R0) and so A(x) is strictly convex on (0,R0). 

Therefore the graph of A(x) can intersect the line y=x in at most two 

points. We have A(l)=l. Moreover, by A'(l)=p and the assumption 

p < 1, the function A(x)-x is decreasing at x-1. Hence for some 

a > 0, A(x)<x for xe(l, 1+a). Next, using that limxTR A(x)>R0 by the 

representation (4) and part (e) of the above assumption, it follows 

that A(x)-x has a unique zero z0 on the interval (1,R0). As a by-

product of this proof we find that A(x)<x for 1 < x < z0 . This 

property will be needed in the proof of the following theorem. 

Theorem 5 For the infinite-capacity model, 

[/3(zQ)-l] 
q^") - qn(°°)

 zn f o r J large enough, 
J U A'(zQ)-l 

where 0<z) - s j ^ z ^ , A'(zQ) - \fi' (zQ) j~ te
A t W z0 ) - 1 }dF(t), and zQ 

is defined by (3). 

Proof. The proof is based on partial fraction expansion of the 

generating function of the q^(«)'s and requires some complex function 

analysis. The power series Q(z) = S?=0qj (°°)z
J is certainly 

convergent in the domain |z|̂ l of the complex plane. Using the 

equilibrium equations 

n+1 n+1 

«n<-> " Vk ( m ) an+ l-k+VW> S A a n + l -k ' ^ ° ' k=l k=-l 

it is a matter of simple algebra to obtain that 
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A(z) 
Q(z) = q (co) [l-/?(z)] . (5) 

A(z)-z 

Since the power series A(z) = S^o^z" and £(z) - S ^ ^ z " are 

convergent for all |z|< R0, it follows that the right side of (5) is 

analytic in the domain |z|< R0 with the possible exception of the 

zeros of the denominator A(z)-z. Since the power series Q(z) is 

convergent for all |z|^l, the right side of (5) has no pole on or 

within the circle |z|=»l although z-1 is a zero of A(z)-z. The 

dominant pole of Q(z) in the domain l<|z|< R0 determines the 

asymptotic behaviour of qj(«). We first show that A(z)-z has no zeros 

in the domain l<jz|<z0 and that the real number z0 is the only zero 

of A(z)-z on the circle |z|-z0. The zero z0 of A(z)-z has 

multiplicity 1 since A'(z0)-1^0 by the strict convexity of A(x). We 

have already proved above that A(x)<x on the interval (l,z0). Hence, 

by the power series representation of A(x), we get |A(z)|<A(|Z|)<]z| 

for all z in the domain l<|z|<z0. To prove that A(z)-z has z0 as the 

only zero on the circle |z|=z0, it suffices to verify that A(zx) is 

real when A(z1)=»z1 with IZJJ-ZQ. To do so, denote by xa en y1 the 

real part and imaginary part of fi(z1). Since \fi(zx) |=-(x1
2+y1

2)% and 

|J8(z1)|</8(|z1|)-^(z0), we have (x^+y^ )%</g(zQ) and so Xl<^(z0). 

Then, using that |ely|—1, we obtain from (4) and (3) that 

z0 = |A(Zl)|< /V
(^-1)l:dF(t) < J°°eA^(zo)-1}tdF(t) - z0 . 

0 0 

This implies that xx-^(z0). Next, by (x1
2+y1

2)% <^(z 0), we find 

yĵ -0. Hence P(z1) is a real number and so, by (4), A(zx) is a real 

number. 

By the above analysis there is a number Rx with z0<R1<R0 such 

that A(z)-z has no zeros in the domain |z|<Rx except at the point 

z—z0 . Here we use that the zero z=»z0 has a neighbourhood containing 

no other zeros of A(z)-z, since A(z)-z=(z-z0)<p(z) for some analytic 

function <p(z) with <p(z0)s>*0 by the Taylor expansion and the fact that 

the zero z0 is of order 1. Consequently, we can write (5) as 

Q(z)=H(z)/(z-z0) for some analytic function H(z) in | z |^Rx with 



H(z0)sO. Using the Taylor expansion H(z)=H(z0)+(z-z0)U(z), we next 

find that an equation of the form 

a-l Q(z) + U(z) (6) 
z-zQ 

is true for jz|^Rx, z^z0, where U(z) is some analytic function in the 

domain | z | =£Ri and the residue a._l is given by 

q0(«)[l-/3(z0)] A(zQ) 
a-l = Ü ? ( Z" Z0 ) Q(Z) • 
. 0 U A'(zQ)-l 

Note that a_x^0. Since U(z) is analytic for |z|< Rx, a Taylor series 

expansion U(z)=2?=0Uj zi is true for |z|< Rx . The power series 

2"?=0UjZ
d is convergent for z=Rx and so UjR| is bounded in j. Since 

Q(z)=S?=0qj (°°)z
J for ]z|<z0, we obtain from the series expansion of 

the right side of (6) that 

qn(co)[/3(z0)-l] A(z ) 
q.(») - — z J * + 0(R J) for all j;>0. 

J o > - 1 

IJsing-that A(z0)=z0 and R1>z0 , we finally get the desired result. 

As an immediate consequence of the Theorems 1 and 5, we have 

Theorem 6 For K large enough, 

(l-p)70z "
K 

1-"Vo 
where 

a-P) 
IrT 

00 2n 

[^'(z.)/teX,:W(z»)"lldF(t)-l]"1[^(z0)-ll . (8) 

Defining K(a) as the smallest integer K for which jrloss(K)<a, 

it follows from Theorem 6 that K(a) can be approximated by 

K<o) - ln{70d-P+^)/a}/ln(z0). (9) 
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when a is small enough. Typically in practical applications a will be 

small. It is an empirical finding that the asymptotic expansion for 

the qj(»)'s applies already for relatively small values of j provided 

that p is not very small. Thus for practical purposes we can compute 

K(a) from (9). This is confirmed by the numerical results in table 1. 

For the cases of a constant batch size and a geometrically distri-

buted batch size, we give in table 1 the asymptotic values of K(a) 

(rounded to above) for several service-time distributions and several 

values of p and a. In nearly all cases the asymptotic values (9) are 

equal to the exact values of K(a). The few cases in which they differ 

are marked by *. In each marked case the difference between the exact 

value and the approximate value is 1 except for the case marked with 

** for which the difference is 2. The of f ered load p is varied as 

0.2, 0.5, 0.8 and 0.9, while the service level a is varied as 10"1, 

10"3 and 10"5. Denoting by c|(=az(S)/E2(S)) the squared coëfficiënt 

of variation of the service time S, we vary c| as 0, h, 1, 2 and 5. 

The values c|-0, h and 1 correspond to the deterministic, Erlang-2 

and exponential distributions, while the values c|»2 and 5 

correspond to hyperexponential distributions of order 2 (the H2-

distribution is a special case of a Coxian-2 distribution). For 

purposes of sensitivity analysis, we consider for the H2-distribution 

both the normalization of balanced means (b) and the gamma 

normalization (g). For the first normalization the three parameters 

of the H2-density p1^1e"
/ilt+p2/*2

e~'i2t a r e chosen such that 

P 1/M 1=P 2/M2 whereas for the second normalization the parameters are 

chosen such that the first three moments of the distribution are the 

same as those of a gamma distribution. The numerical results in table 

1 confirm that 

K(a) « (l-c2)Kdet(a) + c|Kexp(a) (10) 

is an excellent approximation provided that c| is not too large, 

where Kdat(a) and Kex (a) denote K(a) for the particular cases of 

constant and exponential services with the same means E(S) . 

Approximations of this type were advocated in Tijms (1986) who gives 

many examples in which queue-size or waiting-time percentiles can be 

approximated as in (10). 
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Table 1. The minimal buffer sizes K(a) 

const.(^=2) geom.(0=2 

10"1 10"3 10"5 10"1 10"3 

=0 3 " 7 10 5 13 
-1/2 3 7 11 5 13 
=1 3 8 12 5 14 
=2(b) 2* 9 15 4* 14 
-2(g) 3 8 14 4* 14 
=5(b) 2* 12 22 3** 16 
=5(g) 3 11 19 4* 16 

=0 4 11 19 6 19 
=1/2 4 13 22 6 21 
=1 5 15 25 6 22 
=2(b) 5 19 33 7 25 
-2(g) 5 18 31 7 25 
"•5(b) 6 30 55 8 36 
=5(g) 6 28 49 8 34 

-0 6 26 47 9 41 
=1/2 7 31 58 9 46 
=1 8 37 68 10 51 
=2(b) 9 48 91 12 62 
=2(g) 9 48 89 12 61 
-5(b) 14 84 159 17 93 
-5(g) 14 80 150 17 93 

=0 8 46 90 11 70 
=1/2 9 56 111 12 80 
=1 10 67 133 13 90 
=2(b) 12 88 177 15 112 
=2(g) 12 88 175 15 111 
=5(b) 19 154 310 22 176 
=5(g) 19 150 301 22 173 

const. (/9=5) geom.(/3=5) 

10" 5 10" x 10" 3 10" 5 10" x 10" 3 10" 5 

22 6 15 24 13 38 64 
22 6 16 25 13 39 65 
23 6 16 26 13 39 65 
24 6 17 28 12* 39 66 
24 6 17 28 12* 39 66 
30 5* 20 36 11** 40 70 
28 6 20 34 12* 41 70 

33 9 27 45 16 57 98 
35 9 29 48 17 58 101 
38 9 30 52 17 59 103 
45 10 34 59 17 62 109 
44 10 34 58 17 62 108 
66 11 45 81 18 72 127 
61 11 43 76 18 71 124 

75 14 63 117 24 120 224 
85 14 63 117 25 125 233 
94 15 74 138 26 130 243 
116 17 86 159 27 141 263 
115 17 85 158 27 141 263 
183 21 120 226 32 174 327 
175 22 117 220 32 172 322 

139 17 113 224 30 209 415 
159 14 124 245 31 219 436 
180 20 134 266 32 229 456 
223 22 155 310 35 250 498 
222 22 155 309 35 249 498 
355 29 220 442 41 313 627 
348 29 217 436 42 311 622 
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4. OVERFLOW PROBABILITY FOR INTERRUPTED SERVICE 

In this sectlon we first discuss an extension of the previous 

results to the case of a set-up time after an idle period and next 

apply the extended results to a computer communication model with 

periodic opportunities for service and random interruptions of 

service. 

Suppose that a warming-up time W is required before the server can 

start the service of the first packet from a batch that finds upon 

arrival the system empty. The service times and the warming-up times 

are independent. Let Gw(t) denote the probability distribution 

function of the warming-up time. Defining q0(K) and ffloss(K) as 

before, an examination of the analysis of section 2 reveals that the 

main Theorem 1 remains valid provided we replace the formulae for 

"loss(K) and q0(«) by 

0q (co){l+AE(W)}-(l-p)a 

(K) - ̂  *- (11) 
)8q0(»){l+AE(W)}+p(7K 

and 

I-P 
qo(«0 • (12) 

0{1+AE(W)} 

The modification (11) is explained by noting that the expected length 

of a cycle in the finite-capacity model is now given by 

l/A+E(W)+<7K/i/q0 («o). We find (12) by the following modification of the 

proof of Lemma 3. For the infinite-capacity model the long-run 

fraction of time the server is servicing packets remains equal to 

p=\0fji. Denote by f0 and fw the long-run fractions of time that the 

system is empty respectively. a warming-up period is in progress. Then 

f0+fw=l-p. Imagine now that the system incurs a cost at rate 1 

whenever a warming up time is in progress. Then the long-run average 

cost rate equals fw and is given by the average arrival rate of 

batches finding the system empty times the average length of a 

warming-up period. Hence fw=Af0E(W) yielding that f0=-(l-p)/(l+AE(W)). 

The remaining part of the proof of (12) proceeds as in Lemma 3. 

The only other modification required in section 2 concerns the 

recursion equation (2) in which the second term q0 («OS^S^a^ should 
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be replaced by q0 (00)2^^2^a^, where the probability distribution 

{a?} is the convolution of the probability distributions {â  } and 

{Wj}. Here Wj is the probability that the total number of packets to 

arrive during a warming-up period equals j. Denoting by W(z)**S°?=0Wj z
J 

the generating function of the w.'s, we obtain similarly to (4) that 

W(z)=JeAt{^z)-1)dG(t). 
0 

Next we can easily modify the results of section 3. The equation (5) 

becomes 

A(z) 
Q(z)=q 0 (») [ l - /9 (z ) ] W(z) A ( z ) - z , 

and thus 

[ ,3(z0)- l] W(z0) 
<lAa)~ qn(°°) z n for j l a r g e . (13) 
J U A'(z0)-1 

Here we need the technical assumption that sup{s | JSestdGw (t)<«>} i-
s 

larger than A(j9(z0)-1). The decay coëfficiënt z0 is again determined 

by (3). Defining the constant 7 by 

7 w 
1+AE(W) 

with 70 given by (8), it follows from (11)-(13) that the asymptotic 

formulae (7) and (9) remain valid for the model with set-up times 

provided we replace in these formulae yQ by 7 . 

We can go a step further and make the following useful extension. 

In addition to the warming-up times, suppose that the first service 

starting a busy period has a different distribution than the other 

services. Let F1(t) denote the probability distribution of the 

exceptional f irst services and let nx denote its mean. Then the 

formulae (7) and (9) remain valid provided we replace 70 by 

7 " we 
7o w<z

0) V z o ) / z O 
l+AE(W)+A/i--A/i 
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where A (z )=fSeAt{/3< z ° } 1}<iF1 (t). This modification can be seen as 

follows. Fox the finite-capacity model the expected length of a cycle 

becomes l/A+E(W)+<rK/j/q0 («0 -M+Mi. while for the infinite-capacity model 

qo C00) becomes 1-p divided by l+AE(W)+A/ix-A/i and the term A(z) in the 

numerator of (5) should be replaced by A1(z)W(z). 

A communication system with interrupted services 

Consider a communication channel at which batches of packets 

arrive according to a Poisson process with rate A, where the batch 

size has a general distribution. The packets are temporarily stored in 

a finite buffer to await transmission. Overflow occurs for those 

packets of an arriving batch which are in excess of the remaining 

buffer capacity. The transmission time of each packet is a constant 

slot length of one time unit. The beginnings of the time slots provide 

the only opportunity to start the transmission of a packet. The 

transmission channel is subject to random service interruptions. It is 

assumed that at the beginning of each time slot the channel is 

available for transmission with a given probability f, independently 

of the state of the channel in the previous time slots. Equivalently, 

the transmission of a packet is successful with probability f, 

otherwise the transmission has to be retried in the next time slot. 

To find the long-run fraction of packets that overflow, we convert 

this model with random service interruptions into a finite-capacity 

Mx/G/1 model with set-up times. The service time of a packet is 

defined as the number of time slots from the moment the packet is 

ready for transmission until the packet is succesfully received. Hence 

the service time S of a packet has the geometrie distribution 

P{S=j}=(l-f)J-1f, j-1,2,... . 

A batch arriving when the system is empty has to wait until the next 

periodic opportunity for service. Therefore the warming-up time W is 

defined as the time from the moment that a batch arrivés when the 

system is empty until the beginning of the next time slot. Obviously, 

the probability distribution of W is given by 
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P{W<t} r f o r 0 < t < l . 
1 ~ A -e 

Then we can apply the above results using the specification of the 

probability distributions of the service time and the set-up time. Our 

unifying analysis extends results in Woodside and Ho (1987). Using the 

queueing model with exceptional first services we can also solve the 

model with periodic service opportunities and service interruptions 

when the process describing the service interruptions is an exogenous 

two-state Markov chain. Then the probability distribution of the 

exceptional first services can- be specified by using simple Markov 

chain analysis as given in Woodside and Ho (1987). Finally, the 

versatile queueing model with exceptional first services can also be 

used when the process describing the on-state and off-state for 

service is an altemating renewal process in which the on-times have a 

geometrie distribution and the off-times have a general discrete 

distribution. 
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