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Batch-arrival queues are common in practice, but analytical tools 
for practical analysis are hardly known. The purpose of this paper 
is to present several computational methods that are easy to apply 
and give sufficiently accurate results. 

1. INTRODUCTION 

Queuing systems with batch arrivals rather than single arrivals have many ap-
plications in practice. A typical example is the analysis of message packe-
tization in data communication systems, cf. Manfield and Tran-Gia [1]. Unlike 
single-arrival queueing systems for which many algorithms are available (cf. 
Tijms [2]), practically useful computational tools for batch-arrival models 
seem hardly known. In this paper, we present some algorithmic approaches that 
are generally applicable and sufficiently simple for practical use. We discuss 
both exact methods based on the concept of phase-type distributions and appro-
ximations based on interpolation of solutions for simpler models. In section 2 
we consider the GIX/G/1 queue. Noting that any probability distribution can be 
arbitrarily closely approximated by a mixture of Erlangian distributions, we 
give a tractable exact method for computing the waiting-time probabilities 
when the service-time density is a mixture of Erlangians. Also, we present a 
simple approximation for the mean waiting time and the delay probability in 
the general GIX/G/1 queue. These approximations use the service time only 
through its first two moments but use the actual interarrival-time distribu
tion. The latter is important because the characteristics of the input process 
have a much larger effect on the performance measures than the characteristics 
of the service process. Section 3 considers the finite capacity GIX/G/1/N 
queue and gives a simple approximation method for the computation of the 
minimal buffer size for which the rejection probability of a customer is below 
a prespecified level. 

2. THE GIX/G/1 QUEUE 

In subsection 2.1 we present an exact algorithm for the computation of the 
waiting-time probabilities when the service time is a mixture of Erlangians. 
This algorithm is based on the embedded Markov-chain method and exploits the 
fact that the state probabilities have a geometrie tail. In subsection 2.2 we 
give approximations for the mean waiting time and the delay probability. These 
approximations use interpolation and easily computed exact results for the 
single-arrival GI/C2/1 queue with Coxian-2 service. 

2.1. The GlVEj r/l Queue 

A fundamental and very useful result is that any probability distribution of a 
positive random variable can be arbitrarily closely approximated by a mixture 
of Erlangian distributions with density 

r . i-1 
(2.1) b(x) = E q V * e"MX, x > 0 , 

1-1 x ^"-L;-
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where q^O and Ej^-1. It Is important that In this representation each 
Erlangian distribution has the same scale parameter. 
Consider now the GIX/G/1 queue in which the service time of each customer has 
(2.1) as density. Batches of customers arrive according to a renewal process 
with a general interarrival-time density a(x). The batch size has a general 
discrete probability distribution (ai , i>l}. Denoting by the generic variables 
S, A and B the service time of a customer, the interarrival time between bat
ches and the batch size, we assume that the traffic intensity p-E(B)E(S)/E(A) 
is less than 1. Service is in order of arrival for customers belonging to dif
ferent batches, while customers from a same batch are served according to 
their (random) positions in the batch. Denoting by Wn the delay in queue of 
the nfch served customer, we define 

1 n 

(2.2) W (x) - lim - 2 P(W.<x}, x > 0 , q n . , K ^ n-*» k-1 

as the long-run fraction of customers having a delay in queue of no more than 
x. The ordinary limit l i m ^ ^ p ^ ^ } exists only if the batch size is aperiodic 
(i.e. there is no integer d>2 with Z^a^-l). In general, the ordinary limit 
need not exist (e.g. take a constant batch size of 2, then the customers 
second in the batch have always to wait, while the other ones have a positive 
probability of no delay). In the sequel we use the following result from 
renewal theory. The long-run fraction of customers taking the jfch position in 
their batch is given by 

( 2 - 3 ) "j -ËTB7kfj «V J"1 '2  

By (2.1), we have the useful representation that, with probability qA , the 
service time of a customer is the sum of i independent phases each having an 
exponential distribution with the same mean 1/M- Following Bux [3], we consid
er the embedded Markov chain {X,,} with X„ def ined as the number of uncompleted 
service phases present just bef ore the arrival of the ntJl batch. This Markov 
chain is aperiodic and positive recurrent and hence has a limiting distribu
tion {7t\j,j>0}. The steady-state probabilities ni are the unique solution to 
the linear equations, 

00 

(2.4) TT. - S p..7T. , j-0,1, . . . 

together with the normalization equation Ŝ n-j-l, where the p^'s are the one-
step transition probabilities of the Markov chain. To find W (x), we need the 
quantity TT* defined as the long-run fraction of customers having j uncom
pleted service phases in front of them just after arrival of their batch, j>0. 
Then, 

(2.5) 1-W (x) - S e"MX % 2 _ 
q k-a K! 

k 
1 - E TT 

j-o JJ 
x 2: 0, 

using that Sjĵ i e"*1* (/xx)k/k! is the conditional probability that a customer 
having j phases in front of him must wait more than x. Glearly, 

. j j-k+1 . -.. 
(2.6) TT - S n S fjaJV ' j-l.2,... 

J k=0
 k m-1 m 2'k 

where (q"* } is the n-fold convolution of {qj } with itself, i.e. q"* is the 
probability that n customers represent a total of i phases. Also, define 7^ as 
the probability that one batch consists of a total of 2 phases. Then 

00 

(2.7) y2 - 2 a kqj\ i-1,2 
k-1 

The one-step transition probabilities pjj of the Markov chain [X^) are 
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(2.8) p - S 7„a , for j>l, 
^ J ^ _ ; j _ •* -1- * J 

and p.n=l-S. nP--, where a.- J e (l/k!)(/it) a(t)dt, k>0. From a computation-

al point of view it is important to note that the probabilities pij for j#0 
depend on i and j only through i-j. To solve numerically the infinite system 
of linear equations (2.4), the usual way is to reduce it to a finite system by 
a truncation integer M such that S1>Mwi is sufficiently small. For the case of 
nonlight traffic, the resulting system may still be very large. However, for 
that case a much smaller system can be obtained by exploiting the fact the 
distribution {•n^ } has a geometrie tail. Therefore we need the mild assumption 
that the batch-size distribution (ak} has no extremely long tail. To be more 
precise, we assume that the power series A(x)=2^==1akx

k has a convergence ra
dius R>1 and that A(x)-*» as x-+R. Then, by deep results from Markov chain 
theory, 

(2.9) iTj - ar^ for j large enough 

for constants a>0 and 0<r<l. For nonlight traffic this asymptotic expansion 
turns out to apply already for relatively small values of j. Thus, by choosing 
an appropriate integer N, we reduce the infinite system (2.4) to a finite one 
by replacing nt by «rNr

x~N for i>N. The constant r can be computed on 
beforehand. Substituting (2.9) into (2.4) yields that r satisfies the equation 

(2.10) G(i)a*0i(l-r)) - 1, 

where 
co co 

(2.11) G(z) - 2 7-z and a*(s) - ƒ e"Sta(t)dt. 
£-1 0 

By (2.7), G(z)=2£L1ak[Q(z)]
k with Q(z)=S^_1qiz

i . Note that G(z) has a 
convergence radius R'=-R1/r. The equation (2.10) has a unique solution on 
(l/R',1). This follows since F(l)-1, F(x)-*« as x-KL/R' , F' (1)<0 and F(x) is 
convex on (l/R',1) with F(x)=G(l/x)a*(/i(l-x)). In fact F(x) is the generating 
function of the probabilities in the right hand side of (2.8)'. We remark that, 
by (2.6) and (2.9), 7r*-a0r

J for j large for some constant a0>0. Substituting 
this expansion into (2.5) yields 

(2.12) 1-W (x) - 5e'li(-l"r)x for x large enough 

for some constant 5>0, in agreement with results in Van Ommeren [4]. To con-
clude this subsection, we note that for the particular case of Poisson arriv-
als of the batches the probabilities n^ can be recursively computed. Then, by 
the property Poisson arrivals see time averages, n^ equals the time-average 
probability of having j uncompleted service phases present. By equating the 
rate of which the system enters the macrostate of having at least j phases 
present to the rate at which the system enters that macrostate, we get the 
recursion scheme 

j-l 
(2.13) /XTT - S *,\- S 7,, j-l, 2 

J i-O i>j-i 
starting with 7r0=l-p, where X is the average arrival rate of batches. For the 
Mx/G/1 queue with general service times, explicit expressions can be given for 
the average waiting time per customer (E(W )) and the fraction of customers 
that is delayed (1^), 

, , 1 M F m v , : n 2 pE(S) E(S) E(B 2 ) g-p) 
(2.14) E(Wq) = H(l+cs) -j^- + 2(ÏT77 l f ( B r h "» = " Ë ( B T ' 

where c\=o2 (S)/E2(S) denotes the squared coëfficiënt of variation of the ser-
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vice. time S of a customer. Also, for the Mx/G/1 queue the coefficients <p and 8 
of the asymptotic expansion 1-W (x)~<pe"8x for x large can be rather easily 
computed. Moreover, using this result, the result (2.14) and explicit results 
for the second moment of W (x) and the derivative of W (x) at x=0, the wait-
ing-time distribution function 1-W (x) may be approximated by a sum of three 
exponential functions for all x>0, see Van Ommeren [4,5]. In many practical 
situations this approximation exists and gives very accurate results. An al-
ternative approximation to 1-W (x) for larger values of x is provided by 
approximating the higher percentiles of the waiting time by a linear interpo-
lation of the asymptotic waiting-time percentiles for the special cases of de-
terministic and exponential services. The interpolation is based on the 
squared coëfficiënt of variation of the service time. In the more general con
text of the multi-server Mx/G/c queue this useful approach is discussed in 
Eikebooom and Tijms [6] . This reference gives the details of the computation 
of the coefficients cp and 6 of the asymptotic expansion 1-W (x)~<pe""Sx for x 
large for the particular cases of Mx/M/c queue and the Mx/D/c queue. 

2.2. Approximations To The Average Delay And The Delay Probability 

Before we can state the approximations, we need some preparatory results. A 
very useful probability distribution in queueing analysis is the Coxian-2 (G2) 
distribution. A positive random variable U is said to be C2-distributed when U 
can be represented as 

/-IL.+U with probability b 
(2.15) U = \ 

MI. with probability 1-b, 

where JJ1 and U2 are two independent exponentials with respective means l/n1 

and l/yu2 • Equivalently, a probability density of a positive random variable is 
a C2-density when its Laplace transform is the ratio of a polynomial of at 
most degree 1 to a polynomial of degree 2. A G2-distributed random variable U 
has always a squared coëfficiënt of variation cg>^. It is often convenient to 
fit a C2-distribution to a positive random variable by matching its first two 
or its first three moments. Let X be a positive random variable with c^>h and 
mi=E(X

1) denoting the ith moment of X. If a three-moment fit to X by a C2-
distribution exists, the three parameters of this fit are given by 

(2.16) Mlj2 = h^j-ya^a^, b - -^ Oya^l) , 

where a-L =1/11̂ +hm2 a2/n^ and a2 = (6m1-3m2/m1)/[ (3m|/2m1)-m3 ] , see Van der Heij
den [7]. An infinite number of two-moment fits to X by a C2-distribution are 
always possible. A particularly useful two-moment fit is the one with the 
parameters 

^2 b = ^ OVVl). 

This C2-distribution has the same first three moments as a gamma distribution. 
For the single-arrival GI/C2/1 queue the waiting-time distribution allows for 
a tractable analytical solution. Denote by E(W ) and IL^ the mean delay in 
queue and the probability of wait of a customer. Then, by general results in 
Cohen [8], 

( W 11 V2 
(2.18) E(W ,) ^—— + 4- + 4-, ILn = 1 - -^-^ , 

where O<01<min(/i1 ,nz)—^2 a r e *-he two r e a l roo t s of the equat ion 
_4_ 

(2.17) % 2 
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(2.19) x^-(M1+M2)x+/i1M2-{M1M2-(l-b)M1x} ƒ e a(t)dt = 0. 

Here b, pl and /J2 are the parameters of the Coxian-2 service. We now return to 
the batch-arrival GIX/G/1 queue with a general distribution for the service 
time S of a customer. Denote by E(W ) and 1^ the long-run average delay per 
customer and the long-run fraction of customers that are delayed. The delay 
experienced by a customer consists of two independent components. The first 
component is the delay until the first member of his batch is served and the 
second component is the delay due to the service times of the members of his 
batch served before him. By (2.3), the average value of the second component 
equals H{E(B2)/E(B)-1}E(S) . To find the average value of the first component, 
take the whole batch as a "super-customer" and consider the resulting single-
arrival GI/GX/1 queue in which the interarrival times are the same as the 
times between the arrivals of a batch and the service time is the total time T 
to serve a whole batch. Denote by E(W,) and ÏÏV1 the mean delay and the delay 
probability for the latter queueing system. Then (cf. also Burke [9]), 

F CR ) wl 

(2.20) E(Wq) - E(Wql) + M ^ T " ̂ E<S) • *w * X" ̂ ( Ë T • 

It remains to compute (approximately) E(W .) and IIW1. Therefore we use inter-
polation and the easily computed exact results (2.18) for the GI/C2/1 queue. 
The first three moments of the total time T needed to serve all customers from 
one batch are given by 

E(T) - E(B)r1, E(T
2) - E(B)r2+E(B

2)r\, E(T3) - E C B ^ + S E C B ^ ^ + E C B 3 ) » ^ . 

where Tt is the ith moment of the service time S of a customer, i*2—T2-T
2 an<^ 

^3=r3"3rxr2+2rf. In particular, c|-c|+c|/E(B). It is interesting to note 
that T has a C2 -distribution when the service time S of a customer has a C2 -
distribution and the batch size B has a geometrie distribution (this result 
follows by considering E(e"sT)). To compute approximately E(W 1) and E W 1, we 
suggest to proceed as follows. For the case of c|>^, fit a C2-distribution to 
T by using the three-moment fit (2.16) or the two-moment fit (2.17) and next 
compute E(W,) and ÜW1 from (2.18). For the case of c%<H, we use (2.18) to 
compute the mean delay and the delay probability for several GI/C2/1 queues 
each having as interarrival times the times between the arrivals of batches 
and each having the same mean service time E(T). Next we apply extrapolation 
based on the squared coëfficiënt of variation of the service time to get 
approximations to- E(W x) and J[^1 . Denoting by P̂^ the value of the performance 
measure in the GI/C2/1 queue with squared coëfficiënt of variation c? for the 
service time and supposing that PA is known for n different values of cf, the 
value of the performance measure P for the GI/G/1 queue with squared 
coëfficiënt of variation c2=c| for the service time can be approximated by 

2 2 . 
n n c -c 

(2.21) P(c ) - S P , k S l -^-^ . 
1=1 k*i V C k 

The above approximations have the feature that the actual interarrival time 
distribution is used and thus should in general perform much better than the 
approximations in Kramer and Langenbach-Belz [10] using only the first two 
moments. In general it is hazardous to use the interarrival time only through 
its first two moments, see also Tijms [2]. In table 2.1 we give some numerical 
results for several Dx/Ej./1 queues, where the batch size is constant or 
geometrically distributed with mean 2 and the mean service time of a customer 
is normalized as 1. The approximate results use the two-moment fit (2.17) when 
c2>h and use (2.21) with n=3 and cf=l/2, 3/4, 1 when cf,<4. 
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Table 2.1. Numerical results for the TF/E^./! queue. 

E(Wq) Uw E(Wq) Dw E(Wq) 

fc-1, 

n» 

constant -k=3, 4-1/6 k-2, cf-1/4 

E(Wq) 

fc-1, cf-1/2 

p=0.5 exa 0.511 0.511 0.535 0.524 0.657 0.558 
app 0.479 0.517 0.519 0.528 0.657 0.558 

p=0.8 exa 0.870 0.689 1.137 0.723 2.014 0.774 
app 0.836 0.725 1.125 0.739 2.014 0.774 

geometrie k=3, c|=2/3 k=2, C2=3/4 k=l, of-1 

p=0.5 exa 1.287 0.575 1.337 0.582 1.510 0.60.2 
app 1.263 0.575 1.321 0.583 1.510 0.602 

p=0.8 exa 3.162 0.786 3.460 0.795 4.385 0.814 
app 3.122 0.792 3.434 0.799 4.385 0.814 

MINIMAL BUFFER SIZE FOR THE GIX/G/l/N QUEUE 

This section considers the GIX/G/l/N queueing system with a finite buffer hav-
ing only capacity for N customers (including any customer in service). If an 
arriving batch contains more customers than the remaining capacity of the 
buffer, the batch is rejected in its whole. The goal is to find the minimal 
buffer size such that the long-run fraction of customers that are rejected is 
below a prespecified level. An exact analysis for this design problem is pos-
sible when the service time of a customer has a pure Erlangian distribution. 
Then the analysis of section 2.1 can be modified to obtain the limiting dis
tribution of the number of customers in the buffer. Only for pure Erlangian 
service the number of uncompleted service phases present determines unambigu-
ously the number of customers present. The exact results for the GIx/Ek/l/N 
queue can be used to approximate the minimal buffer size for the GIX/G/l/N 
queue. As in section 2.2, this is done by interpolation with respect to the 
squared coëfficiënt of variation of the service time. To be specific, de fine 
for the GIX/G/l/N queue with a generally distributed service time S of a cus
tomer, v(/3) as the smallest value of N such that the long-run fraction of 
customers that are rejected does not exceed a prespecified level /3. Here /3 is 
typically a very small number. Denote by i/k (/?) the minimal buffer size for the 
same queueing system except that the service time of a customer has now an 
Erlang-k distribution with the same mean E(S) as bef ore. Suppose that the 
exact value of i/k ($) has been calculated for several values of k (say, keK) . 
Then, i/(fi) can be approximated by the first integer larger or equal to 

(3.1) *?V i G K i keK vl/i-l/ky 

provided c| is not too large. The usefulness of this approximation approach 
has been demonstrated in Tijms [2] for a variety of finite-buffer queueing 
models. Next we show how to calculate i/k (y9) . This will be done only for the 
case of Poisson arrivals of batches, see Nobel [11]. for the general case. 
Gonsider the Mx/Er/1/N queue. Define {TT̂  ,j>0} as the limiting distribution of 
the number of uncompleted service phases present just prior to the arrival of 
a batch. Then, the limiting probability of having i customers present just 
before the arrival of a batch is given by 

(3.2) TT. 
1 

ir 
i-0,1, 

j-(i-l)r+l 
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Thus, using that the long-run fraction of customers belonging to a batch of 
size i equals ±aL/E(B) (cf. [9]), it follows that the long-run fraction of 
customers that are rejected is given by 

(3.3) n . (N) rej v 

N 
S 

N-k 
2 T V ( 1 " WTsx 2 ia.) 

k=0 k E ( B ) i-1 X 

Obviously, vT (/3) is the smallest N with frej (N)</3. To find the n^ ' s, we invoke 
the property that Poisson arrivals see time averages. That is, the limiting 
probability ni is equal to the limiting probability of having j uncompleted 
phases present at an arbitrary time. By equating the rate at which the system 
leaves the macrostate of having at least j uncompleted phases present to the 
rate at which the system enters that state, we get 

(3.4) 
j-1 [(Nr-i)/r] 

pn. — 'S ic.\ E a, , 
3 i=0 x k>(j-i)/r 

j-l,2,...Nr, 

where A is the average arrival rate of batches and \i is the average service 
rate of a phase (i.e. r/p is the mean service time of a customer). The proba-
bilities ni can be recursively computed from (3.4) together with S^Q7Tj=l. 
In tab Ie 3.1 we give some numerical results for the Mx/E10/1/N queue, where 
the batch size is constant or geometrically distributed with E(B)=2. For 
several values of p , we give both the exact and approximate values of y(/3) , 
where the approximate value is obtained by extrapolation of the exact results 
for Ex and E2 services. Also, we include in table 3.1 the exact values of 
vx (/3) for exponential service to show that in general vY (/3) cannot be used as 
first-order approximation to Ï/(/3), cf. also [1] . Note from the results in 
table 3.1 that i/(/3) is linear in ln(/3) for f sufficiently small, or 
equivalently, 7rrei(N)~7e~

flN for constants 7,0>O when N is sufficiently large. 
This empirical finding is useful for computational purposes since the 
computational burden grows quickly when @ gets very small. 

Table 3.1. Minimal buffer size i/(j3) for the Mx/E10/1/N queue 

constant geometrie 

2 3 4 5 6 2 .; 3 -4 -5 -6 
P 10 10 10 10 10 10 10 10 10 10 

0=0.5 exa 8 12 16 20 24 15 22 28 35 42 
app 9 14 17 20 24 15 23 '29 35 43 
exp 10 15 20 25 31 16 24 32 40 48 

p=0.8 exa 17 28 39 50 61 26 43 61 78 96 
app 17 29 39 50 61 26 44 62 79 97 
exp 22 37 53 69 84 31 52 74 96 118 

p=0.9 exa 26 48 72 95 118 39 74 109 144 180 
app 27 50 72 96 120 40 74 109 146 180 
exp 35 67 100 133 166 48 92 137 181 226 
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