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Batch-arrival queues are common in practice, but analytical tools
for practical analysis are hardly known. The purpose of this paper
is to present several computational methods that are easy to apply
and give sufficlently accurate results.

1. INTRODUCTION

Queuing systems with batch arrivals rather than single srrivals have many ap-
plications in practice. A typical example is the analysis of message packe-
tization in data communication systems, cf. Manfield and Tran-Gia [1]. Unlike
single-arrival queueing systems for which many algorithms are available (cf.
Tijms [2]), practically useful computational tools for batch-arrival models
seem hardly kmown. In this paper, we present some algorithmic appreoaches that
are generally applicable and sufficiently simple for practical use. We discuss
both exact methods based om the concept of phase-type distributions and appro-
Ximations based on interpolation of soelutions for simpler models. In section 2
we consider the GI¥/G/1 queue. Noting that any probability distribution can be
arbitrarily closely approximated by a mixture of Erlangian distributions, we
give a tractable exact method for computing the waiting-time probabilities
when the service-time density is a mixture of Erlangians. Also, we present a
simple approximation for the mean waiting time and the delay probability in
the gemeral GI®/G/1 queue. These approximations use the service time only
through its first two moments but use the actual interarrival-time distribu-
tion. The latter is important because the characteristics of the input process
have a much larger effect on the performance measures than the characteristics
of the service process. Section 3 considers the finite capacity GI*/G/1L/N
queue and gives a simple approximation method for the computation of the

minimal buffer size for which the rejection probability of a customer is below :
a prespecified level.

2. THE ¢I*/G/1 QUEUE

In subsection 2.1 we present an exact algorithm for the computation of the
waiting-time probabilities when the service time is a mixture of Erlangians.
This algorithm is based on the embedded Markov-chain method and exploits the
fact that the state probabilities have a geometric tail. In subsection 2.2 we
give approximations for the mean waiting time and the delay probability., Thesze
approzimations use interpolation and easily computed exact results for the
single-arrival GI/C;/1 queue with Coxian-2 service.

2.1. The GI*/E, /1 Queue

A fundamental and very useful result is that any probability distribution of a
pogitive random variable can be arbitrarily closely approximated by a mixture
of Erlangian distributions with density

: r i Xl 1 L -Bx
(2-1) b(x) = El YrFEnHre - F =0,
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where q,20 and 2,q,~1. It 1is important that in this representation each
Erlangian distribution has the same scale parameter.

Consider now the GI*/G/l queue in which the service time of each customer has
(2.1) as density. Batches of customers arrive according to a renewal process
with a general interarrival-time demsity a(x). The batch size has a general
discrete probability distribution {e;, izl). Denoting by the generic variables
S, A and B the sgervice time of a customer, the interarrival time between bat-
ches and the batch size, we assume that the traffic intensity p=E(B)E(S)/E(A)
is less than 1. Service is in order of arrival for customers belonging to dif-
ferent batches, while customers from a same batch are served according to
their (random) positions in the batch. Deneting by W, the delay in queue of
the n*? served customer, we define

a
1
(2.2) W (x) = lim - Z P{W =x}, x = 0,
1 e k=1 k

as the long-run fraction of customers having a delay in queue of no more than

x. The ordinary limit lim _ P(W <x) exists only if the batch size is aperiodic
(i.e. there is no integer dz2 with X« ,=l). In general, the ordinary limict
need not exist (e.g. take a constant batch size of 2, then the customers
second in the batch have always to wait, while the other ones have a positive
probability of mno delay). In the sequel we use the following result from
renewal theory. The long-run fraction of customers taking the j*" position in
their batch is given by

1 =]
N, = == = ., 3=1,2,...

3T EY oy “k

By (2.1), we have the useful representation that, with probability q,, the
service time of a customer is the sum of i independent phases each having an
exponential distribution with the same mean 1/u. Following Bux [3], we consid-
er the embedded Markov chain (X,} with X, defined as the number of uncompleted
service phases present just before the arrival of the n*® bateh. This Markov
chain is aperiodic and positive recurrent and hence has a limiting distribu-
tion {m;,j=0). The steady-state probabilities =; are the unique solution to
the linear equations,

(2.3

o

(2.4) a'j - ]'_E Pijﬂ'i:

§=0,1,.

together with the normalization equation Z;a;~1, where the p,;’'s are the one-
step transition probabilities of the Markov chain. To find W (%), we need the
quantity =¥ defined as the long-run fraction of customersl%aving j uncom-

pleted service phases in front of them just after arrival of their batch, j=20.
Then,

o K K
(2.5) 1-W (x) = = o ¥% iﬁ%l- [1 -z «*], x 20,
9 k=0 j=0 3

using that zﬁ;; e #X (ux)* /k! is the conditional probability that a customer
having j phases in front of him must wait more than x. Clearly,

] j-k+l

# -1)#*

(2.86) ﬂj = 3 T z qmq;Tkl) .
k=0 m=1

where (q} )} is the n-fold convolution of {q;) with itself, i.e. ¢}" is the

probability that n customers represent a total of i phases. Also, define Yp as

the probability that one batch consists of a total of £ phases. Then

j=1,2,..

(2.7) 7, = 3 akqi*, £=1,2,...
k=1

The one-step transition probabilities p,; of the Markov chain (X} are
-2-



-+
(2.8) P for jzl,

Pij = TePiep-]

A=1

[-1)
=1- = | e F% (1 k! k Jtation.
and pio—l Ej#OPij’ where ay f e (1/kt) (pt) "a(t)dt, k=0, From a computation

al point of wview it 1is impoé%ant to note that the probabilities p;; for j=0
depend on i and j omnly through i-j. To solve numerically the infinite system
of linear equations (2.4), the usual way is to reduce it to a finite system by
a truncatiom integer M such that X _ . m, is sufficiently small. For the case of
nontlight traffic, the resulting system may still be very large. However, for
that case a much smaller system can be obtained by exploiting the fact the
distribution (x,} has a geometric tail. Therefore we need the mild assumption
that the batch-size distribution {op} has no extremely long tail. To be more
precise, we assume that the power series A(x)=E;_1akx3 has a convergence ra-
dius R>»1 and that A(x)=o as x+R. Then, by deep results from Markov chain
theory,

(2.9) r, ~ ard for j large enough

for constants «>0 and 0<r<l. For nonlight traffic this asymptotic expansion
turns out to apply already for relatively small values of j. Thus, by choosing
an appropriate integer N, we reduce the infinite system (2.4) to a finite one
by replacing =, by xnrl‘“ for i>N, The constant 7 c¢an be computed on
beforehand. Substituting (2.9) into (2.4) yields that r satisfies the equation

(2.10)  eda"@-n) -1,

where

(2.11) G(z) = = 7£z£ and a*(s) - f e-Sta(t)dt.
A=l 0

By (2.7), G(z)=Sp_,x [Q(z)]* with Q(z)=3[_,q;z'. Note that G(z) has a
convergence radius R/=R!/F, The equation (2.10) has a unique solution on
(1/R',1). This follows since F(l)=1, F(x)~= as x=»1/R', F'(1)<0 and F(x) is
convex on (1/R’,1) with F(x)=G(l/x)a" (s(1-x)). In fact F(x) is the generating
function of the probabilities in the right hand side of (2.8). We remark that,
by (2.6) and (2.9}, «*~aofj for j large for some comstant o;>0. Substituting
this expansion into (5.5) yields

(2.12) 1-W_(x) ~ fe-uil-T)x for x large enough

for some constant >0, in agreement with results in Van Ommeren [4]. To con-
clude this subsection, we mote that for the particular case of Poisson arriv-
als of the batches the probabilities #; can be recursively computed. Then, by
the property Poisson arrivals see time averages, 7; equals the time-average
probability of having j uncompleted service phases present. By equating the
rate of which the system enters the macrostate of having at least j phases
present to the rate at which the system enters that macrostate, we get the
recursion scheme

j-1
(2.13) g, = X w,Ah- T v, j=1.,2,...
Joogm0 b gyt
starting with n,=1-p, where X is the average arrival rate of batches. For the
M2 /G/1 queue with general service times, explicit expressions can be given for
the average waiting time per customer (E(Wq)) and the fraction of customers
that is delayed (ﬂﬁ),

E(B) (1-p)

E(S)
ECB) 1), I, - 1- E(B) ’

2(1-p)

2. pE(S) |
(2.14) E(Wq) = %(1+cs) i, + {

where c2=02(8)/E?(S) denotes the squared coefficient of variation of the ser-
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vice, time S of a customer. Also, for the M*/G/l queue the coefficients ¢ and §
of the asymptotic expamsion 1-W_(x)~pe ?* for x large can be rather easily
computed. Moreover, using this résult, the result (2.14) and explicit results
for the second moment of W_(x) and the derivative of W (x) at x=0, the wait-
ing-time distribution function 1-W_(%x) may be approximatad by a sum of three
exponential functions for all x=0, see Van Ommeren [4,5]. In many practical
situations this approximation exists and gives very accurate results. An al-
ternative approximation te 1-W_(x) for larger wvalues of x is provided by
approximating the higher percentiles of the waiting time by a linear intexpo-
lation of the asymptotic waiting-time percentiles for the special cases of de-
terministic and exponential serxvices. The interpolation is based on the
squared coefficient of wvariation of the service time. In the more general con-
text of the multi-server MX/G/c queue this useful approach is discussed in
Eikebocom and Tijms [6]. This reference gives the details of the computation
of the coefficients ¢ and ¢ of the asymptotic expansion 1-W_ (x)~ge ¢* for x
- large for the particular cases of ME /M/¢c queue and the M% /D/c ‘queue.

2.2. Approximations To The Average Delay And The Delay Probability

Before we can state the approximations, we need some preparatory results. A
very useful probability distribution in queueing analysis is the Coxian-2 (C,)
distribution. A positive random variable U is said to be C,-distributed when U
can be represented as

Ul-t-'U2 with probability b

(2.15) U= {

' Ul with prebability 1-b,
where U; and U, are two independent expomentials with respective means 1/p,
and 1/p,. Equivalently, a probability density of a positive random variable is
a C,-density when its Laplace transform is the ratio of a polynomial of at
most degree 1 to a polynomial of degree 2. A C,-distributed random variable U
has always a squared coefficient of variation cZzk%. It is often convenient to
fit a C,-distribution to a positive random variable by matching its first two
or its first three moments. Let X be a positive random variable with cizk% and
m; =E(X!) denoting the i'" moment of X. If a three-moment fit to X by a C,-
distribution exists, the three parameters of this fit are given by

5
#1

where a,=l/m; +m,a,/m, and a,=(6m, -3m, /m, )/[(3mZ/2m, )-m; ], see Van der Heij-
den [7]. An infinite number of two-moment fits to X by a C,-distribution are

always possible. A particularly useful two-moment fit is the ome with the
parameters

2
(2.16) By o = Hart fal-4a)), b (pym -1),

: 2
2 (1 cx-}i) b= 2 (um -1)
(2.17) by oo o= (1t . b= =2 (pm 1),
L2 oomy c§+l # L1

This C,-distribution has the same first three moments a4s a gamma distribution.
For the single-arrival GI/C,/l queue the waiting-time distribution allows for
a tractable analytical solutien. Denote by E(qu) and le the mean delay in

queue and the probsbility of wait of a customer. Then, by general results in
Cohen [8],

g.48
1 1 1°2
(2.18) E(qu) =-— tat ' HWl =1 - )

B1#s 1 2 K1#2

where 0<f,<min(g,,u;)<#, are the two real roots of the equation
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&%
2 -Xt
(2.19) X -(u1+#2)X+n1u2-{p1#2-(1-b)ulx} g e " a(t)dt = 0.

Here b, p, and p, are the parameters of the Coxian-2 service. We now return to
the batch-arrival GI*/G/1 queue with a general distribution for the service
time § of a customer. Denote by E(W_ ) and I, the long-run average delay per
customer and the long-run fraction of customers that are delayed. The delay
experienced by a customer consists of two independent components. The first
component 1s the delay until the first member of his batch is served and the
second component is the delay due to the service times of the members of his
batech served before him, By (2.3), the average wvalue of the second component
equals %{E(BZ)/E(B)-1)}E(S). To find the average value of the first component,
take the whole batch as a "super-customer" and consider the resulting single-
arrival GI/G,/l queue in which the interarrival times are the same as the
times between the arrivals of a batch and the service time is the total time T
. to serve a whole batch. Denote by B(W ;) and I, the mean delay and the delay
probability for the latter queueing system. Then (c¢f. also Burke [9]),

2 (1-T)
- E(B) | I
(2.20) BV ) = B ) + Mgy - DEGS), Iy = 1o —

It remains to compute (approximately) E(qu) and II,, . Therefore we use inter-
polation and the easily computed exact results (2.18) for the GI/C;/l queue.
The first three moments of the total time T needed to serve all customers from
one bhatch are given by

3

E(T) = E(B)ry, E(TY) = E(B)7,+E(B)rS, B(T") = E(B)7,#3E(BO)7,r +E(B)7>.

where r; is the i*? moment of the service time S of a customer, Fy=r,-7% and
Fy=ry-3r,7,+272 . In particular, cZ=-cZ+cZ/E(B). It is interesting to note

that T has a G,-distribution when the service time S of a customer has a C,-
distribution and the batch size B has a geometric distribution (this result
follows by considering E(e *T)). To compute approximately E(W L) and L., , we
suggest to proceed as follows. For the case of cZ2k%, fit a Cz—gistribution to
T by using the three-moment £fit (2.16) or the two-moment fit (2.17) and next
compute E(qu) and II,, from (2.18). For the case of c2<}, we use (2.18) to
compute the mean delay and the delay probability for several GI/C,/1 queues
each having as interarrival times the times between the arrivals of batches
and each having the same mean service time E(T). Next we apply extrapolation
based on the squared coefficient of wvariation of the service time to pget
approximations to E(W_,) and II,,. Denoting by P; the value of the performance
measure in the GI/Cz/% queue with squared coefficient of variation ¢? for the
sexrvice time and supposing that P; is known for n different values of ¢}, the
value of the performance measure P for the GI/G/]l dqueue with squared
coefficlent of variation c?=cZ for the service time can be approximated by

n n cz-cli

2
(2.2D) P(¢™) = iflPi kEl ;'E:i'
k=i “i "k

The above approximations have the feature that the actual interarrival time
distribution is used and thus should in general perform much better than the
approximations in Krdmer and Langenbach-Belz [10] wusing only the first two

moments. In general it is hazardous to use the interarriwval time only through
its first two moments, see also Tijms {2]. In table 2.1 we give some numerical
results for several Dx/Ek/l queues, where the batch size is constant or
geometrically distributed with mean 2 and the mean service time of a customer
is normalized as 1. The approximate results use the two-moment £it (2.17) when
cZzh and use (2.21) with n=3 and c¢}=1/2, 3/4, 1 when c2<}s.
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Table 2.1. Numerical results for the D¥/E, /1 queue.

E(Wq) I, E(W&) IL, E(W&) I,
conatant - k=3, cZ=1/6 k=2, ci=1/4 k=1, ¢Z=1/2

p=0.5 exai 6,511 0.51%1 0.535 0.524 0.657 0.558
app | 0.479 0.517 0.519 0.528 0.657 0.558

p=0.8 exa | 0.870 0.689 1.137 0.723 2.014 0.774
app | 0.836 0.725 1.125 0.739 2.014 0.774

geometric k=3, cZ=2/3 k=2, cZ=3/4 k=1, c2=1

p=0.5 exa |1.287 0.575 1.337 0,582 1.510 0,602
app |1.263 0.575 1,321 0.583 1.510 0.602

p=0.8 exa §3.162 0,786 3.460 0.795 4,385 0.814
Capp |3.122 0.792 3.434 0.799 4.385 0.814

3, MINIMAL BUFFER SIZE FOR THE GI*/G/1/N QUEUE

This section considers the GI%X/G/L/N queueing system with a finite buffer hav-
ing only capacity for N customers (including any customer in service). If an
arriving batch contains more customers than the remaining capacity of the
buffer, the batch is rejected in its whole. The goal is to find the minimal
buffer size such that the long-run fraction of customers that are rejected is
below a prespecified level. An exact analysis for this design problem is pos-
sible when the service time of a customer has a pure Erlangian digtribution.
Then the analysis of section 2.1 can be modified to obtain the limiting dis-
tribution of the number of customers in the buffer. Only for pure Erlangian
service the number of uncompleted service phases present determines unambigu-
cusly the number of customers present. The exact results for the GI*/E /1/N
queue can be used to approximate the minimal buffer size for the GI®/G/1/N
queue. As in section 2.2, this is done by interpolation with respect to the
squared coefficient of variation of the service time. To be specific, define
for the GI*/G/1/N queue with a generally distributed service time § of a cus-
tomer, v(8) as the smallest value of N such that the long-run fraction of
customers that are rejected does not exceed a prespecified level 4., Here 8 is
typically a very emall number. Denote by vy (8) the minimal buffer size for the
same queueing system except that the service time of a customer has now an
Erlang-k distribution with the same mean E(S) as before. Suppose that the
exact value of v, (8) has been calculated for several walues of k (say, keK).
Then, v(#) can be approximated by the first Integer larger or equal to

cg-l/k
(3.1) vapp(ﬁ) - i§K v, (8 E%? (17571/£J

provided cZ is not too large. The usefulness of this approximation approach
has been demonstrated in Tijms [2] for a variety of finite-buffer queueing
models, Next we show how to calculate v, (8). This will be done only for the
case of 'Poisson arrivals of batches, see Nobel [11]. for the general case.
Consider the M*/E_ /1/N queue. Define (m;,j=0} as the limiting distribution of
the number of uncompleted service phases present just prior to the arrival of
a batch. Then, the limiting probability of having 1 customers present just
before the arrival of a batch is given by

L ir
(3.2) T, = z T, i=0,1,...,N.
J=(i-1)r+l
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Thus, using that the long-run fraction of customers belonging to a batch of
size i equals i, /E(B) (cf. [9]), it follows that the long-xrun fraction of
customers that are rejected is given by

K 1 N-k
(3.3} "Trej {(N) = kio ‘n'k(l - W izl iai‘).

Obviously, v (B) is the smallest N with =, ,(N)<g. To find the n;'s, we invoke
the property that Poisson arrivals see time averages. That is, the limiting
probability #; is equal to the limiting probability of having j uncompleted
phases present at an arbitrary time. By equating the rate at which the system
leaves the macrostate of having at least j uncompleted phases present to the
rate at which the system enters that state, we get

j-1 [(e-i)/r)
(3.4) pr, = 2 ﬂiA =

I =0 ke=(j-1)/r
where A is the average arrival rate of batches and p is the average service
rate of a phase {i.e. r/p is the mean service time of a customer). The proba-
bilities x; can be recursively computed from (3.4) together with PRE SO I
In table 3.1 we give some numerical results for the MY/E,,/l/N quéue, where
the batch size is constant or geometrically distributed with E(B)=2. For
several values of B8, we give both the exact and approximate wvalues of v{(8),
where the approximate value is obtained by extrapolation of the exact results
for E; and E, services. Also, we include in table 3.1 the exact wvalues of
vy (B) for exponential service to show that in general v, () cannot be used as
first-order approximation to w{(B), cf. alsoc [l]. Note from the results in
table 3.1 that »{(8) is 1linear in 1In(8) for B2 sufficiently small, or
equivalently, “ra‘(N)”7e-9K for constants v,§>0 when N is sufficiently large.
This empirical inding is wuseful for computational purposes since the
computational burden grows quickly when 8 gets very small,

@ j=1.2,...Nr,

k’

Table 3.1. Minimal buffer size v(8) for the M!*/E,,/1/N queue

constant geometric
-2 -3 -4 -5 -6 -2 -3 -4 -5 -6
B 10 10 10 10 10 10 10 10 10 190
p~0.5 exal 38 12 16 20 24 15 22 28 35 42
app| 9 14 17 20 24 15 23 29 35 43
exp| 10 15 20 25 31 le 24 32 40 48
p=0.8 exa| 17 28 39 50 sl 26 43 61 78 96
app| 17 29 39 50 61 26 44 62 79 97
exp| 22 37 33 69 84 31 52 74 96 118
p=0.9 exaj 26 48 72 95 118 39 74 109 144 180
app | 27 50 72 9% 120 40 74 109 l4ée 180
exp | 35 67 100 133 166 48 92 137 181 226
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