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1. Introduction 

Alonso (1978) and Bikker (1982) independently introducé the Three 

Component (3-C) model (for references, see Nijkamp and Reggiani (1988)). 

This is a model to explain and predict flows between origins and 

destinations. It generalizes many existing models, such as the gravity 

model. This generality is attained through so-called "systemic 

variables". Unfortunately, the interpretation of these variables, and 

hence that of the 3-C model, have remained somewhat elusive (see e.g. 

Hua (1980) and Fotheringham and Dignan (1984)). In this paper, we derive 

two interpretations, by relating the 3-C model to economie and 

statistical theory respectively. 

An economie interpretation of the 3-C model is provided (in seetion 3) 

by relating it to an extended version of the Armington demand model. All 

systemic variables are interpreted, in terms of prices and shadow 

prices. Since prices can be measured, and systemic variables cannot, the 

economie model has additional empirical content. 

A statistical interpretation is provided (in seetion 5) by interpreting 

the systemic variables as (fixed or random) parameters. In its full 

generality, the 3-C model is either equally general or less general than 

a gravity model with dummy variables corresponding to the marginal 

totals. In empirical applications, additional identifying restrictions 

are imposed on the 3-C model. However, these identification restrictions 

critically depend on the arbitrary specification of one of the 

components of the 3-C model, and have little theoretical basis. 

2. The 3-C model 

In this seetion we briefly summarize the 3-C model, and illustrate it 

with two examples. The description we select is the one preferred by Hua 

(1980) and Bikker (1982). 



The 3-C model derives its name from its three components, which are 

models explaining respectively (1) total outflows M* (=SjM-^) from 

region i, (2) total inflows M.= % (=S£M^p from region j, and (3) the 

allocation of these totals to specific values of M ^ . We assume that 

M^->0 and M^, M.= >0 for all i and j. Maintaining the Alonso (1978) 

notation, the allocation component is: 

Mij " (Mi/°i) (Mj/Cj> cij i-l.--.I ; J-1.-..J (1) 

In this component, marginal totals H- and M- are taken to be given, and 

t.11 is a function of exogenous variables. I is usually taken to be, but 

need not equal J. C- and D* are unknown "systemic" variables. The IJ 

equations (1) are overidentified. Since M^ and MJ are considered to be 

given, the consistency requirements E^M^-M^ and S^M^^-M^ are implicit: 

Sj ( M ^ ) (Mj/Cj) t i j - K± 1-1,..,I (2) 

Si (MjL/Di)' (Mj/Cj) t±. - Mj j-l,..,J (3) 

The I+J equations (2) and (3) are not independent. Since 2J_MJ_-S^M^ holds 

by assumption, they provide only I+J-l Independent restrictions. These 

restrictions limit the number of possible values which can be jointly 

taken by M^, M.= , tj. , C. and D^, even without considering any M ^ . Since 

M^, M.= and t^ are exogenous here, (2) and (3) endogenize Ĉ  and D^ (up 

to a constant ). 

Equations (1) to (3) apply if both M^ and M^ are exogenous. The last two 

components of the 3-C model allow us to endogenize these, by means of 

the marginal outflow and marginal inflow components: 

(4) 

(5) 

In this paper, we do not use specific values for i and j, and there is no need for the more 

informative notation M. and M .. 
* i. -J 
The idea is analogous to the economie one of equilibrium (supply equals demand) determining prices 

up to a numeraire. 

M i = v l D l « i i= - 1 , . • , I 

M j WjC/j j - l , . -,J 
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V- and W. are functions of exogenous variables measured at i and j 

respectively, and a- and /3.= are unknown parameters. Equations (4) and 

(5) consist of I+J equations, introducing I+J additional unknowns M^ and 

M^ . Equations (4) and (5) are overidentified. The consistency 

requirement S^M^S-M^ is implicit: 

Si Vi Di a i = Sj Wj C/j (6) 

Restriction (6) does not appear to have been made explicit before. It 

can be used as the I+J-th independent equation needed to endogenize D^ 

ard C= uniquely. However, identification of the systemic variables can 

also be attained by imposing an additional restriction in equation (1) 

(see section 5). Equation (6) then consists of a restriction which must 

hold between V., W. , a- and /L , and can be interpreted as endogenizing 

one of these. 

Equations (1) to (6) define the 3-C model. lts name derives from the 

three building blocks (1), (4) and (5) . The other three equations are 

restrictions imposing internal consistency. Note that M* and M- can be 

exogenous in the full 3-C model. This occurs if c*£=/9j=0. It also occurs 

in the unlikely case that D^=C=1 for all i and j is consistent with M^, 

M.= and t±- in (2) and (3) (see Anderson (1979)). 

For concreteness, consider two examples: the gravity model and the RAS 

biproportional adjustment method. 

The gravity model 

The gravity model takes the form: 

M.. = V-W-t-- (7) 

ij i j ij K J 

This model is introduced in the social sciences by Carey (1858) and 

Reilly (1929), and acquired its own place in this field through the so-

called Social Physics School (e.g. Stewart (1948) and Zipf (1946)). For 

a review, see Hua and Porell (1979). 
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The gravity model is a special case of the 3-C model. If we set â =/3̂ =l 

for all i and j in (4) and (5), the gravity model results, for any V^, 

W. and t M . Observe that we use restriction (6) to identify C* and D-

uniquely. 

The RAS method 

The RAS biproportional adjustment method (named after R.A. Stone, see 

Weber and Sen (1985), Günlük-Senesen and Bates (1986)) is a way of 

adjusting individual cells to given marginal totals on the basis of 

previous knowledge. The RAS method has usually been considered as a 

descriptive technique. An attempt to provide a theoretical basis for the 

RAS method has been provided by Evans (1973), who relates it to the 

gravity model. The existence of a relationship between the RAS method 

and the 3-C model is implicit in Fisch (1981) and Nijkamp and Poot 

(1987), but does not appear to have been formalized. 

Suppose that our previous knowledge consists of cell values M ^ at time 
1 1 period 0 and marginal totals M^ and M.= at time period 1, and that we 

1 ^ 
wish to estimate M^- . The RAS method uses as starting values 

Mjj1 - Mi:j
0 (MiVi0) (MJVMJ0) / (MVM0) (8) 

where M=S- ̂M- .= . These initial values can be thought of as derived from 

the 3-C model. Since the marginal totals M^ and M^ are given, equations 

(4) and (5) are irrelevant, and the 3-C model consists only of equation 

(1). Let C,=Ï>*=M in (1), i.e. let 
J -1-

M ^ = M ^ / M ty (9) 

If t.. is constant over time, M^-M/M^M^ is constant over time, and (8) 
1 1 directly produces optimal values: M ^ =M^^ . Constancy of t^ holds in 

a regional context if, as is commonly assumed, t..= is a function 

(constant over time) of the distance between i and j. 
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A 1 However, tj* is rarely constant over time, and starting values M ^ 
1 1 do not usually add up to the given totals M^ and MJ . Therefore these 

starting values are modified, by two sets of n proportionality factors 

(one only varying over i and the other only over j). These 

proportionality factors are computed iteratively from restrictions (2) 

and (3), and can be demonstrated to converge to an internally consistent 

solution. 

This RAS modification of the starting values can thus also be derived 

from the first component of the 3-C model, but now allowing for 

consistency requirements (2) and (3). In particular, C= and D- in (1) 

should be allowed to take values different from those implicit in (9) . 

If tjj varies multiplicatively along i and j dimensions over time, the 

RAS adjustment method produces optimal values for M^.. 

Fisch (1981) appears to misinterpret the relationship between the 

various quantities considered by the RAS method and the 3-C model. He 

sees the proportionality factors as combinations of the systemic 

variables, as well as of V- and W-. In f act, V- and W^ need not be 

specified to determine Ĉ  and D- from (1) (up to a constant). 

3. An extended Armington model 

In this section, we introducé an extended version of the Armington 

demand model. 

The Armington demand model (Armington (1969)) is a special case of what 

Hua (1980) refers to as an economie-base demand-pull model. It 

represents a stylized economy, in which each country i produces one 

good, and each country a different one. lts general form is: 

Mij - P i ^ o y P j 1 - * ) ^ do) 

where 
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- cr>0 is an unknown parameter, quantifying the ease of substitution 

between exporters i, assumed to be constant over j. 

- p^ is the price of good i exported from country i. 

- P̂  (P̂  «-Ŝ t̂ jp̂  ) is the shadow price of welfare of country j. If 

the underlying cardinal welfare function is taken to be linearly 

homogeneous, it equals both the average and the marginal cost of a unit 

of welfare. 

- t-- = t** (8j_* ,D*.j) , where S is the contribution to the welfare of 

country j based on an additional unit of good imported from country i, 

and D_- 4 is the distance between countries i and i , and serves to 

multiply the export price p£ into the import price relevant for importer 

j-

In the origal Armington demand model, total imports M- and prices p^ are 

exogenous. Let us extend the original model with two additional 

equations, endogenizing both imports and prices. 

Suppose that import demand can be modelled as a two stage decision 

function, consisting of a first stage which decides on the total import 

budget, and a second stage which decides on the allocation of this 

budget (cf. section 3.2.2). In that case, the effect of import price 

levels p^ on total imports M^ can be summarized into one value P-: 

where Q- is the quantity of imports. In particular, suppose that (11) 

takes the form: 

M j - V j P / j ' (12) 

where W.= denotes functions of exogenous variables, and y9̂  ' are 

parameters. @i'<l denotes a downward sloping quantity demand curve. 

Let us also endogenize prices, by introducing a supply equation, say: 

M± - Q i P i - Qi(pi)pi (13) 
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where Qj_ is the quantity of exports. For concreteness, suppose that (13) 

takes the form: 

Mi ~ Vi'PiQi' ( 1 4 ) 

where V*' denotes functions of exogenous variables measured at i, and a^ 

are parameters. a^'>l denotes an upward sloping quantity supply curve. 

For (12) and (14) to be consistent with optimization theory, they must 

be linearly homogeneous in prices. The right hand sides should therefore 

incorporate other prices. This can be done by interpreting prices as 

relative prices or by incorporating other prices into the exogenous 

variables or the parameters. For instance, a CES transformation curve 

describing combinations of products for the domestic market and products 

for the export market that can be produced with a given amount of 

resources results in (14) with prices interpreted as relative prices (in 

the same way as equation (10) was derived)). In particular, the balance 

of payment constraint strongly suggests that the export price level 

should appear in the import demand equation, and that the import price 

level should appear in the export supply equation. 

By not distinguishing in oui notation between potential demand (supply) 

and observed demand (supply), we implicitly assume market clearance. 

When all supply and demand equations are linearly homogeneous, this 

generally determines prices up to a numeraire. When we have completely 

specified supply and demand equations, and assume equilibrium, p- need 

therefore not be measured for the model to be estimable. 

4. The economie foundation 

Let us now relate the 3-C model to the extended Armington model. This 

relationship is such that there is a one-to-one correspondence between 

inputs to and outputs from the two models. 
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If we equate: 

aL to ̂ '/("i'-d-cr)) (15) 

j8j to ̂ '/(1-a) (16) 

Vi t o Vi'^1""!' (17) 

it can be demonstrated that we have a a one-to-one relationship between 

the 3-C model and the extended Armington model, in which: 

Cj equals P*1"*7 and (18) 

D± equals V1'pi
ai'"(1"a). (19) 

The only difference between the Armington model and the 3-C model is 

that p^ can, but D^ cannot be measured independently of the model. The 

economie model therefore has more empirical content than the 3-C model. 

Let us consider this relationship in more detail. First consider the 

parameters and the exogenous variables, then consider the systemic 

variables. Let us first consider the parameters: a^ = a^'/(a^'-(1-a)) 

and ̂  = /SjVd-a). 

If we have an upward sloping quantity supply curve (a^'>l), a* must be 

non-negative (since a>0). Little can be said about fii. Note that changes 

in a^' in the Armington model affect not only a^, but also V- (see 

section 5 for more discussion). 

We have seen that â =̂ 3̂ =l reduces the 3-C model to a gravity model. The 

extended Armington model allows an interpretation of this special case: 

QTJ=1 means that either <*.;'=» or that CT—1, and /?-=l means that j3±'=l-o. 

The simplest case which results in the gravity model is CT=1 and /3.= '=0. 

/3.J'=0 implies that total import values are independent of prices. CT=1 

implies that import value shares are also independent of prices. Thus 

all values are independent of prices. There is no value substitution of 

any form. This formalizes the critique of Poot (1986) and Bikker (1987), 
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who prefer the 3-C model to the gravity model because it allows for 

substition. 

The second case which results in the gravity model is â '=<» and /3-'=l-o-. 

P*'=*l-a means that no import value substitution occurs: total import 

value is perfectly accomodating. a^'=« means that supply is infinitely 

elastic. Prices do not introducé a value substitution between various 

importers. Total export value is also perfectly accomodating. Again, 

prices do not induce substitution between value flows. 

Let us next consider the interpretation of the exogenous variables. W-

and t^ in the 3-C model directly corresponds to W.= and t^ in the 

extended Armington model, which is why we used the same notation in both 

models. V^ corresponds to V^'' 'ai'. Changes in V^' thus affect V- in a 

way that requires knowledge of a^. V^ and a^ in the 3-C model cannot be 

considered separately (see section 5 for more discussion). 

Let us finally consider the interpretation of the systemic variables. 

Although endogenous, they are unmeasured and only a given function of 

the exogenous variables. They merely serve as intermediates to describe 

the effect of exogenous variables on flows M ^ . Let us first consider 

D^, which corresponds to V^'p^i'"^ '. D^ can be thought of as 

consisting of a variable, pj, and its effects: 

(1) p^: In the 3-C model, D^ is defined by restriction (2): S^M^^=M^. 

This restriction can be interpreted economically as the equilibrium 

restriction. D^ is monotonically related to prices p^, and fulfills the 

same role: it attains equilibrium. Incorrect values of D^ result in a 

failure of equilibrium to hold. However, unlike prices, which can be 

measured and can be shown to be too high or too low, the 3-C model does 

not allow an indication of incorrect systemic variables. The way in 

which equilibrium is attained depends on the two effects of p^ : 

(2a) p^ : the demand effect of p^ on rL.= (multiplied to the remainder 

of (10)), and 

For the role of V.' in D., see section 5. 
1 1 
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(2b) p^i': the supply effect of p£ on Mj_ (multiplied to V±' in (14)) 

Note that we must be careful in interpreting the effects (2a) and (2b). 

We cannot change p^ (and D^) , keeping everything else constant, since 

both p^ and D^ are endogenous. 

Let us finally consider C* , which corresponds to P.= . Similar to the 

interpretation of Dj, we can think of C= as consisting of a variable, 

PJ, and its effects: 

(1) P.: : In the 3-C model, C, is defined by restriction (3): S^^-M-j. 

Restriction (3) can be interpreted economically as the budget 

constraint. C* is monotonically related to prices P* , and fuifHls the 

same role: it attains budget restriction. Incorrect values of C- result 

in a failure of the the restriction to hold. However, neither C= nor P-

can be measured independently of the model, and neither model therefore 

allows an indication of incorrect values. The way in which the budget 

restriction is attained depends on the two effects of P.: 

(2a) PJ : the effect of P̂  on expenditures M ^ (taking the other 

variables in (10) as given), and 

(2b) P-̂ j : the effect of P, on the budget M, (taking W, in (12) as 

given). 

We identified a one-to-one correspondence between an extended version of 

the Armington model and the 3-C model. The parameters a^ and 0-

characterize the generalization of the 3-C model over the gravity model, 

and play a critical role. In the next section, we examine this role in 

more detail. 
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5. A statistical foundation 

Up till now, we introduced the 3-C model, and discussed its 

interpretation from an economie perspective. In this section, we 

maintain the assumption that the systemic variables are not directly 

measurable. Statistical theory has developed a large body of theory 

around unmeasured variables, which are referred to as (fixed or random) 

parameters. 

The systemic variables are not directly measurable. Their effect on 

flows M^- cannot be separated from the effect of a) other systemic 

variables, b) exogenous variables and/or c) parameters. There are thus 

several ways of writing the allocation component (1) in an empirically 

equivalent way. Each leads to a different definition for the systemic 

variables, thereby affecting the allocation equations (4) and (5). 

We first consider the three identification issues a), b) and c). We next 

consider their effect on the definition of the systemic variables, and 

hence the allocation equations. 

Identification of systemic variables (a) 

The effect of the unmeasurable systemic variables are, without 

additional information, empirically indistinguishable from the effect of 

other systemic variables in the same equation. From a single observation 

from (1) , Di and • C= cannot be identified (without additional 

information). Because the same systemic variables appear in several 

observations from (1), identification is facilitated. It appears that we 

only need to impose one additional identification restriction. There are 

two main types of identification restriction (which can be combined). 

Let us briefly discuss them. 

The first type of identification restriction considers parameters fixed, 

and imposes a prior deterministic restriction on the parameters. There 

are many restrictions which can be imposed. Bikker (1982) requires the 
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geometrical average of C= , denoted by Ĉ ., to be one. This restriction 

loses the symmetry in the original formulation of the problem. In 

section 2, we noted that the symmetrie consistency requirement (6) can 

be used to identify the systemic variables uniquely. An appealing 

symmetrie alternative arises if we introducé an additional "systemic 

constant" k in allocation equation (1): 

Mij = k (Mi/°i> (Mj/Cj) ttj (20) 

This was the first "extension" of 3-C model (Anselin and Isard (1979)) 

and is also used by Bikker (1982) , Fotheringham and Dignan (1984) and 

Nijkamp and Poot (1987). We now require not just one, but two 

identifying restrictions. The direct analogue of familiar statistical 

ANalysis Of VAriance (ANOVA) restrictions requires the geometrical 

average of M^/D^ and that of M^/C- to be one. If all M ^ ' s would be 

known, and the model is perfect, these deterministic restrictions allow 

us to compute D^ and CJ- in a closed form (analogous to Bikker (1982, 

p.64)). 

The second type of identification restriction considers parameters 

random, and chooses some estimation criterion. For instance, the 

systemic variables could be considered as drawn from a distribution with 

unit mean (in equation (20)), and we could choose the maximum likelihood 

estimation criterion to estimate them. This allows us to examine the 

sensitivity of other fixed parameters in the model with respect to the 

precise value of these random parameters. 

The two types of restrictions can also be combined, as is demonstrated 

by De Vos and De Vries (1987). To illustrate their restriction, consider 

the Standard linear regression model 

Y - XyS + u (21) 

Identification of fixed /3 can arise from imposing a "fixed parameter" 

type of singularity of the error term: 
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X'u = O (22) 

Although the error terms are still random, this fixed parameter type of 

restriction allows identification of 0. Characteristic of this kind of 

restriction is that it is not possible to estimate the variance of the 

parameter estimates (the parameter estimates are not even a function of 

the error term). This principle can be applied to identify the systemic 

variables by specifying an analogous "fixed parameter" type of 

singularity in the distribution of the random systemic variables. 

Identification of systemic variables (b) 

The effect of the unmeasured systemic variables are, without additional 

information, empirically indistinguishable from the effect of exogenous 

variables. The point here is the usual difficulty with error terms (and 

dummy variables). If error terms are (in the random specification) 

correlated or (in the fixed specification) collinear with the exogenous 

variables, we cannot distinguish empirically between the error term and 

(the effect of) an exogenous variable. The definition (and 

interpretation) of the error term depends critically on the exogenous 

variables put into the model. 

For instance, the following allocation equation, which omits M^ and M^ 

from (1) (e.g. by incorporating their inverse in t^-) has the same 

empirical content as equation (1): 

M ^ - D l ' Cj' tiJ (23) 

(with restriction analogous to equations 2 and 3). Nevertheless, the 

values of D^' and C= ' are different from the original values of D^ and 

C.j . A similar effect occurs if we change t^ to t^ '=t£-j t^/t^t*^ • The 

same allocation model results, but the effects of t-* disappear from D-
•LJ x 

and C.j . Analogously, the systemic variables, but not the explanatory 

power of the model, will be affected if we incorporate elements of V^ or 
Wj i n fcij • 
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Identification of systemic variables (c) 

Unmeasured systemic variables are, without additional information, 

empirically indistinguishable from their effects. For instance, if in 

(1) we append parameters to the systemic variables, we obtain 

empirically equivalent models: 

M1:J - (Mi/D^i.) (Mj/Cj
1/^-) t ± . (24) 

for non-zero a^ and 0± . 

Impact on the allocation equation 

In resolving the Identification issues, we have to specify a way of 

writing the allocation equation. However, the particular choice made 

(arbitrarily) affects the definition of the systemic variables, and 

hence the specification of the marginal equations (1) and (2) (cf. 

section 4). Consider each identification difficulty in turn. 

In the first identification difficulty (distinguishing systemic 

variables from other systemic variables) restrictions were chosen 

arbitrarily . However, if we choose a different normalization constant, 

the functional form'of the marginal equations is changed. For instance, 

the usual assumptions of a^=a and /3̂ =/3 are not invariant under the 

choice of normalization constant. 

The resolution of the second identification difficulty (distinguishing 

systemic variables from exogenous variables) has similar impacts on the 

allocation equation. Depending on the representation of the allocation 

equation, the parameters a and /? will be a function of M^, V- and t--, 

and cannot be considered constant over time. 

The resolution of the third identification difficulty (distinguishing 

systemic variables from their effects) also has consequences for the 

allocation equation. For instance, if we arbitrarily choose to write 

* 
The idea is analogous to the economie one of choosing a reference commodity arbitrarily. 
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allocation equation in the form (24), all parameters in the marginal 

equations.equal one identically. 

These identification difficulties are not purely theoretical. Different 

presentations of the 3-C model differ in the choice of identification 

restriction(s) , the appearance of parameters a^ and f}± in the allocation 

equation, and the presence of V^ and W.= variables in t-• . They therefore 

cause different definitions of the systemic variables, see Alonso 

(1978), Bikker (1982), and Nijkamp and Poot (1987). 

3-C model 

We are now in a position to examine the whole 3-C model. Equations (1), 

(4) and (5) are a recursive simultaneous equation system. In the 

allocation equation, we find variables (Mi and MJ ) which are explained 

elsewhere in the model. There are cross equation parameter restrictions 

(arising from C= and D^). The "reduced form" equations are: 

Mij = Vi Wj »iai~l c/j" 1 ̂ j (25) 

with the following I+J+1 (dependent) constraints on the right hand side 

(cf. equations 2, 3 and 6): 

Cj = 2± V J D J 0 ! " 1 ^ (26) 

Di = 2j WjCj^'Sj <27> 
Si Vi Di a i = Sj WjCj^j (28) 

Equations (26) to (28) impose restrictions on equation (25). As 

discussed in section 2, these restrictions can be interpreted as 

endogenizing D- and C-. It is an open problem whether these restrictions 

allow us to attain all non-negative combinations of D^i" and C.^j" by 

varying a^ and jj± (for all V-, W. and tj.= ). If this is so, and if a^ and 

f}i are unknown, D^ai" and C-"j" have the same effect as dummy 

variables. The 3-C model then represents a gravity model with dummy 

variables corresponding to all marginal totals. This can be clarified by 

examining equations (4) and (5) directly. These contain I+J equations 
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with I+J parameters a^ and fj* . Even if D^ and C= were measured (and not 

equal to. one) , (4) and (5) cannot be falsified, and have no empirical 

content. 

If not all combinations of D^ai" and C-̂ j""1" can be attained, or if we 

impose additional identifying restrictions on the parameters (such as 

Qi£=a and /3J=/3) or the systemic variables, the 3-C model is less general 

than the gravity model with dummy variables corresponding to all 

marginal totals. The 3-C model has additional empirical content, 

although its interpretation remains ambiguous, in view of the arbitrary 

specification of the allocation equation. 

6. Concluding comments 

In the fuil generality of the 3-C model, the marginal inflow and outflow 

components are not falsifiable, are empirically empty. To make these 

equations estimable, additional restrictions need to be imposed. 

Unfortunately, the nature of these restrictions depends critically on 

the arbitrary specification of the allocation equation. As a result, 

they are selected arbitrarily, which may result in non-constant 

parameters. 

The economie interpretation exposes a limitation of the 3-C model. The 

functional form of the marginal equations depends on the choice of 

identifying constant in the allocation equation. The economie 

interpretation is that the marginal equations are not necessarily 

linearly homogeneous in prices. There is no internal factor (analogous 

to domestic prices) balancing the external (import) prices for the 

inflow equation. Similarly, there is no domestic market competing for 

export supply in the outflow equation. Most importantly, " there is no 

exchange rate mechanism, to achieve equilibrium between imports and 

exports. If we ignore money illusion, alternative uses of resources are 

not explicitly considered. The marginal equations are at most 

interpretable in a partial equilibrium context. 
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