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ABSTRACT 

Adaptive forecasting with exogenous variables has 

developed from recursive regression (RR) to Kalman 

filters (KF). The estimation of variances within the 

K.F. is time consuming and often imprecise. An alter-

native is the use of optimally updated variance esti-

mates. Ljung & Söderström's "Recursive Prediction 

Error" method is amended somewhat and used to predict 

housing starts in the Netherlands. 
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1. INTRODUCTION 

Adaptive forecasting with exogenous information has developed from re-

cursive regression (RB.) to Kalman filters (KF) . The adaptation is 

restricted to means, estimates of variances are rarely updated. Their 

estimation within the KF is time consuming and often imprecise. Proper 

application of KF therefore requires prior knowledge about variances 

or a sample period sufficiently large to detect stable optima. More-

over, in continued forecasting the question remains when reestimation 

is due. A possible solution to these problems is to replace efficiënt 

estimation by optimal adaptation. If variance estimates are optimally 

updated their original values lose significance as time passes by. 

Optimal updating formulae for the variances are provided by Ljung and 

Söderström (1983). In this paper their recursive prediction error 

method is applied with some amendments to predict housing starts in 

the Netherlands from permits issued. This approach does not introducé 

a different model e.g. with time varying variances. Yet it may be con-

sidered a generalization of the KF and a fortiori of RR as it involves 

time varying estimates. Because of its generalization aspect we will 

call it a hyperfilter (HF). If updated variance estimates converge 

through time to some constant the HF also offers an alternative to 

numerically obtained estimates in a KF. 

In the sections 2, 3 and 4 we will subsequently discuss the RR, the KF 

and the hyperfilter. In section 5 we reveal some of the merits of the 

HF in an empirical setting. Section 6 summarizes. 

2. RECURSIVE REGRESSION 

In a regression model the relation between a dependent variable yt and 

K explanatory variables is given by 

(1) Yt - xt a + Ut 

where x* is a row vector with K explanatory variables at time t, a a 
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column vector with K coefficients and ut an error term, with 

(2) E ut = 0 

and 

(3) E u,.ur - az if t = r 

= 0 if t * r. 

If time series of x and y are available a can be estimated with least 

squares: 

(4) a = (X'X)"1 X'y 

with T-l observations X and y are a (T-l) * K matrix and a "(T-l) 

vector respectively. A forecast of y for period T with (1) needs at 

least one additional observation of each of the explanatory variables 

to give the row vector x^. The forecast is then computed as 

(5) yT - x^ a. 

With one additional value of the dependent variable this forecast can 

be evaluated from the forecasting error 

(6) eT - yT - yT 

A sharper but also more restrictive evaluation of eT is possible if an 

assumption on the statistical distribution of u,. is added e.g. 

(7) ^ - N(0,a2) 

for all t, which leads to 

(8) eT - N(0,a
2sT) 

with 
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(9) sT - 1 + x^(X'X)-
xxT. 

Before the forecasting procedure is repeated for period T+l the esti­

mate a can be updated with (4) using for X a T*K matrix and for y a 

vector of length T. To indicate that this new estimate refers to 

period T+l whereas the previous one refers to period T we will indi­

cate the two estimates by aT+1and aT respectively and write (9) as 

(10) sT - 1 + x^PTxT 

w i t h 

(11) PT = ( X ' X ) " 1 

where X is as before (T-1)*K. 

Alternatively aT+1 can be computed with Recursive least squares (RR): 

(12) aT + 1 -« a T + lt|,eT 

where 

(13) WLj, - PT xT/sT . 

The charm of RR is that all new information is contained in MTeT; the 

information on the exogenous variables in Kj, and that of the dependent 

variable in eT . Substitution of (13) , (10) and (11) into (12) gives a 

formula equivalent to (4) . The K * K updating matrix PT can also be 

computed recursively by 

V,-LH-J ir^, — ir^ _ ^ rij _ ^ Ĵ Lj, _ ^ S^, _ ^ 

with st from (10) and M,. from (13), see Harvey (1981, par.7.1). The 

forecasting procedure then consists of the following steps for each 

subsequent period: 
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1) Given all variables for t = T-l, 

we update : PT from (14) 

2) Given also x^ for t - 'T, 

we update : sT from (10) 

Mj from (13) 

and predict : yT from (5) with a ** ar 

3) Given also yt for t - T, 

we evaluate : eT from (6) 

and update : a T + 1 from (12) 

We may start the forecasting procedure from T - 1 with initial condi-

tion P0 — n I where p, is a large scalar or we may start at T = K with 

PT from (11). For T > K the two procedures coincide. 

We have concentrated upon updating at. The remaining parameter of the 

model i.c. a2 , sometimes called hyperparameter, has drawn less atten-

tion, which is not surprising as this parameter is not needed in the 

forecasting procedure. In this case o2 can be estimated by maximum 

likelihood. The log likelihood function expressed in forecasting 

errors multiplied by -2 is, see (8): 

(15) -2 log L = T log 2ira2 + S log st + CT
2 S ef/s.t . 

This function of az attains its maximum at 

(16) c\ = l/T S e2/st 

which is the ML estimator of o2 with T observations, given the 

estimate aT.Glearly 

(17) o2 = (1 - l/T)ff^ + l/T e2/sT 
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may be used as an updating formula if so desired. It converges to some 

constant o2 for T -• <*>. 

Note that substitution of yt-Xtat - et//st transforms (15) into the 

likelihood function of a=T + 1 . As aT is a ML estimator based on T-l 

observations, eT in (17) is already optimized with respect to aT. Note 

also that the Standard error of aT can be estimated by a2?r and 

computed recursively. 

3. KALMAN FILTERS 

In estimating «T+1 from (12) we assumed the underlying model (1) did 

not change from T-l to T. Such is in general not realistic in an 

economie context. As time passes by preferences and reactions change. 

That is why the state space model was introduced. In the present 

context this means the following pattern through time of the unknown 

parameter a: 

(18) at - D at,..! + £t 

with 

(19) Eet - 0 

and 

(20) Eetel - S - a2Q. 

Note that £t is a K-vector like at and hence 2 and Q are of order K*K. 

Again a more restrictive model is obtained if we add a distribution: 

(21) £t - N(0,a2Q) 

where Q is introduced to relate the variance-covariance matrix of ct 

to er2 . The two terms in the righthand side of (18) indicate determ-

inistic and stochastic changes in a respectively. Note that, if et=0 

for all t, (18) can be rewritten as at=D
fca0 ; so if we transform xt in 
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(1) by zfc = xtD
fc and adopt the initial condition a0 = a we have cast 

the deterministic component of the state space model in a recursive 

regression setting. Similarly the stochastic component can be annexed 

to the recursive regression model by taking the variance-covariance 

matrix of u as 0 with typical element wts = <7
2XtQfcsxs + Eutus instead 

of <72I. Hence the state space model is only a simple redraft of a 

rather cumbersome recursive regression model. lts advantage lies in 

its superior presentation of the underlying dynamic forces of the 

model. As we now have a regression problem with a non-scalar variance-

covariance matrix Q simple least squares as in (4) is no longer effi­

ciënt and should be replaced by generalized least squares. Consequent-

ly the updating parameter estimation formulae (12),(13) and (14) 

change too and we get the Kalman filter, introduced by Kalman (1960). 

Instead of (12),(13) and (14) we have 

(22) aT+1 = D aT + Mjej 

(23) Mj - DPT xT/sT 

(24) PT - DPT.XD' - MT.1M^.1sT + Q. 

Forecasting and forecast evaluation, however, is still performed by 

(5) and (6). For given D and Q we may start as before from T = 1 with 

P0 = pi; the alternative for T > K would now require PT - (X'QX)"
1 with 

O as the special structured matrix referred to above and is therefore 

less suitable in this context. Note that aT + 1 may differ from cL 

even if the forecasting error eT is zero due to the deterministic 

component of the Kalman filter. And if the forecasting error eT is non 

zero, the adaptation of ar differs from that of the recursive 

regression setting as disturbances st should, but disturbances ut 

should not lead to a different a. 

The problem remains what value we should adopt for D and Q. Any value 

will do, for instance with D = I and Q = 0 we are back with formulae 

(12) , (13) and (14) , but this is not what we had in mind, when we 
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introduced the Kalman filter. We are interested whether there are 

superior values of D and Q. In this paper we will concentrate on Q 

only and use a given matrix D. As no specific alternative for Q offers 

itself we may let the data decide. 

To estimate Q in an optimal sense we need a criterion. A suitable 

optimizing criterion is the likelihood function (15), where the solu-

tion (16) is now explicitly taken as a function of Q, which in itself 

may be a function of a limited number of parameters 8X ,BZ ,••• Minimi-

zation of CT| with respect to Q or to 81,8Z,••• does not lead to an 

explicit analytical formula, so one resorts to numerical optimization. 

This implies that Q is approximated by QnT in which the suffix n 

indicates what numerical procedure is used and T refers to the number 

of observations. All procedures such as DFP (Davidon, Fletcher and 

Powell), BFSG (Broyden, Fletcher, Shanno and Goldfarb), Powell, HJ 

(Hooke and Jeeves) and BHHH (Berndt, Hall, Hall and Hausman), see e.g. 

Fletcher (1980), start with some initial value of Q and form succes-

sive approximations to the maximum value of the likelihoodfunction. 

The use of numerical solutions has three important implications: 

a) The results become less precise. 

b) The computational costs rise. 

c) It evokes a tendency to restrict the problem. 

A 

a) If all procedures would end up with the same Q the suffix n would be 

of relevance only if one is interested in speed of convergence. If 

they may end up with different approximations of the same Q the suffix 

is more crucial. Such situations occur frequently in time series 

analysis when the surface of (15) is rather flat or contains multiple 

maxima. In the present context the problem of the best approximating 

estimation procedure has not been solved yet. In such circumstances 

the results lack precision. 

b) The speed of convergence also presents a problem. Each of the 

alternatives is rather costly: for three unknown parameters - &x , 9Z 

and S3 - in Q an average of 80 likelihood evaluations is not uncommon 

and each evaluation takes appreciable time: for each choice D=I and 
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Q = Q we need the procedure to calculate the ax ,...,aT consecutively 

with (22), (23) and (24) from the initial choice a0 = 0 and the start­

ing conditions T — 1 and P0 = JJ.1 . 

c) Due to the inaccuracy of the results repeating the estimation of Q 

for each t—1,2,...,T may generate erratic time paths of Qnt. Moreover 

such a procedure evokes a huge computational burden. Hence the common 

practice is to select a particular T for which the optimal QnT is 

computed and this value is maintained for all t beyond T. 

4. HYPERFILTERS 

In the recursive regression model updating of the variance was not 

needed but could be done quite easily. In the Kalman filter model, 

where updating should take part in the forecasting procedure it is too 

laborious. 

A solution to the problem was given by Ljung and Söderström (1983). 

These authors reverse the sequence in which the problem is presented. 

In the K.F. first a satisfactory QnT is sought and the question of 

updating is usually not even posed. In the Recursive Prediction Error 

method of Ljung and Söderström updating comes first. LS start with 

an arbitrary initial estimate Qt of Q at t-0 and update Qt at each 

t. This is an obvious solution as it can be shown that if an adequate 

updating formula is used Qt converges to the ML estimate. If at some 

T the value of Qt has converged the numerical problems of K.F. have 

been circumvented and Q may still be updated to capture model changes, 

which is a second improvement of H.F. over K.F. 

The forecasting procedure in the two filters is similar. In H.F. we 

only Insert an updating formula for Q and use the most recent estimate 

of Q in the remaining formulae. 

The practical implications of the hyperfilter are considerable: 

- We no longer need a separate numerical optimization routine. 

- The data are run through the hyperfilter only once. 

- A new observation requires only one iteration to process. 

The crucial question is how to adapt our estimates optimally if new 
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Information enters. Striving for maximum likelihood estimators we can 

use (17); the introduction of state space (18) changed the model with­

out violating the likelihood in terms of forecasting errors. New in-

formation contained in yT and x^ cannot reduce the first term of the 

right hand side of (17). If we assume that èj.x is already optimal 

for̂  T-l observations the updating question is reduced to finding that 

change in Q which minimizes e|/sT given the observations yT and x^. 

Assume that Q depends upon a (column)vector 8 of parameters. This vector 

contains at maximum K(K+l)/2 elements e.g. 0—(qxl,...,qKK). The func-

tion f: &j -*• e^/sT is rather complex; to minimize this function with 

respect to 8T we approximate it by a Taylor expansion up to a qua-

dratic term in our previous estimate 8T_1: 

(25) f(*,) - f(öT.1) + ^(8r-êT.1) + (0r-êT_1)"S>7(dT-eT.1) 

where 

A 

pT = Sf/SS evaluated at 8J_1 (gradiënt) 

and 

BT - S2£/888d' evaluated at 8T_X (Hessian). 

The optimum of (25) with respect to 8 is obtained if 

(26) $7 - 8T_X - —BT /3T . 

Hence if we add some reluctancy to deviate from our previous estimate 

the optimal value of 8r may be taken as 

(27) 0T - 8T_! - T B " 1 ^ 

with 7 = l/T. 

Add the simplification B - /3/3' + rl and we are left with the single 

but still impressive problem of finding 0T . This is a technical matter 
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which is dealt with in the Appendix. 
A 

With /3T known we can compute 6T from (27) and rearrange its elements 

into QT . If the time series is long enough and the model remains 

valid QT will converge to some Q. It is interesting to compare this 

Q with 0 to evalualate the recursive regression model and with Q^ 

to evaluate the Kalman filter estimate with T observations and numeri-

cal procedure n. If QT is not too different from QnT it can be con-

sidered to be the limit value and be used in a Standard Kalman setting 

from T onwards. In this sense the hyper filter procedure embodies the 

Kalman filter. It does not enclose the KF in the sense that all esti-

mates QnT for any or some n are nested in the hyperfilter. For small 

T the values of QT and QnT usually differ and the former provides 

another numerical procedure to estimate Q. Of course it remains wise 
A A 

to use QT even if it coincides with C^j to be prepared for changes 

that may occur in the model as time passes by. 

5. HOÜSING STARTS IN THE NETHERLANDS 

The hyperfilter model was applied to forecast housing starts in the 

Netherlands. Construction in the Netherlands requires a permit, which 

expires after three months. So with adequate administrations and law 

abiding constructors construction in quarter t only starts if a permit 

is issued in that or the previous quarter. This suggests the relation 

(28) Bt = e*otVt +-altVt_1 + ^ 

where Bt is the amount of construction started (in millions of 1969 

guilders) and Vt is the amount of permits issued (in millions of 1969 

guilders). 

If permits that are not used or that relate to construction which is 

discontinued are removed from the observations we should have alt = 1-

«ot-i- Errors may occur if administrators or constructors deviate from 

the rules. Some care must be observed with respect to these errors in 

this context as argued by Hendry and Richard (1982) . The issue may be 

clarified: if Vt equals a constant c from period t=0 onwards ideally 

construction starts Bt should be equal to that constant too from t—1 
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onwards as both Vt and Bt refer to the same amount of construction. 

Hence one would expect some restriction of the kind Stut - 0 . We, 

however, adopt the view that (small) errors may occur in the equality 

between StVt and EtBt due to statistical errors and the like. This 

justifies our assumption 

(29) ^ - N(0,a2) 

for all t. 

The coëfficiënt ait is the fraction of the total amount licensed in 

quarter t-i which results in housing starts in quarter t. This frac­

tion depends upon the distribution of issuing dates of permits over 

the period and the reactions of constructors. If both remain constant 

over time ait is a constant too. We will take this as our initial as­

sumption. 

The Data 

Time series for Vt and Bt for the period 1971.1-1985.4 are portrayed 

in Figure 1. 

Figure 1. Permit Issued and Construct ion Starts Dwellings, The 

Netherlands 1971.1-1985.4 

45B8 
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Figure 1 shows the relative smoothness of the series Bt in the first 

five years compared with Vt and also compared with Bfc in later years. 

These later years reflect a slightly downward trend for both series. 

Remarkable is the peak in housing starts in 1979.2 and the peaks in 

permits issued in 1978.4 and 1980.4, not foliowed by a similar peak in 

construction starts. Remarkable also are the diverging developments 

since 1982.4. Explanations are partly available. Political pressure 

put Vt up at the end of 1978 (but also in 1977.4) to attain plan 

levels irrespective of their effect on Bt , and 1979.1 was apart from 

1963.1 the most severe winter period of this century. The Central 

Bureau of Statistics (C.B.S.) changed its measurement system of Vfc at 

the end of 1984 and claimed to have thus recovered a number of permits 

never announced. The reasons for the odd behaviour of recent data have 

not been clarified yet. Changes in measurement methods may be partly 

responsible. 

A plot of the two series Vt and Bfc for dwellings shows 1980.4 as a 

clear outlier. 

Preliminary calculations 

As indicated above we first assume both aot and alt to be constant 

through time but do not require •alt to be equal to 1 - aot. This leads 

to the regression results of Table 1. 

Table 1. The relation between housing starts (Bt) and permits issued 

(Vt), 1971.2 - 1985.4 

vt V t - i Dl D2 D3 DA R2 A 
CT L i k . 

.670 .314 .65 .2530 - 4 0 9 . 
( . 0 7 ) ( . 0 7 ) 

.75 .24 58 .05 80 .28 5 .34 - 1 4 2 . 6 6 .76 .2468 - 4 0 6 . 
( . 0 9 ) ( -09 ) (74) (55) (55) (.65) 

Standard errors are within brackets 
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On the average 70% of the total amount licensed starts in the same 

quarter. The remainder follows the next quarter. The Standard error 

(S.E.) of the regression o will be used as a criterion below. As the 

mean of the series for 'housing starts' is 2.81 the regression equa­

tions of Table 1 generate forecasting errors of about 9% (measured by 

the coëfficiënt of variation). The errors in the first equation show 

plan effects (in 77.4 stronger than in 78.4), a winter effect in both 

79.1 and 79.2, the C.B.S. effect in 80.4 but also in 81.2, and recent 

uncertainties resulting in outliers in 82.4 •(+) and 85.4 (-). The 

second equation with additive seasonal dummies shows that seasonal 

effects in Vfc and Bt are positively correlated so that the immediate 

effect at is correspondingly higher. It is tempting to interpret the 

negative dummy D4 as the plan effect but in dynamic regressions such 

conlusions are too quickly made. The plan effect is too cursory to be 

grasped which is reflected in the residuals of the second equation. 

The negative dummy is merely an artefact arising from the failure to 

incorporate the lag pattern in the seasonals. Below this artefact is 

avoided by incorporating the seasonal effect in the coëfficiënt at. 

Filter models 

In our filter models we must specify measurement equation (1) and state 

space equation (18), in the Appendix indicated as equations (A2) and 

(Al) . In the preliminary calculations above the measurement equation 

was specified by (28) . We specify the state space equation (18) now as 

(30) ôf = [at at.x at_2 at.3] 

and distinguish between a non seasonal model with 

(31) D - D<15 = 

1 0 0 0 

0 1 0 0 

0 0 0 0 

0 0 0 0 
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and a seasonal model with 

(32) D - D<2) 

0 0 0 1 

1 0 0 0 

0 1 0 0 

0 0 1 0 

Seasonality in at expresses the idea that housing starts reacts re-

strained to excessive issuing of permits e.g. at the end of the year. 

The variance-covariance matrix (20) is now specified as 

(33) Q - diag [0,0,0,0] 

with some scalar value 8. Thus we have the following modelspecifica-

tions: 

Code 

Deterministic a 

1) R.R. with constant a RRC D<15 

2) R.R. with seasonal a RRS D<2> 

Stochastic a 

3) K.F. with seasonal at KF Dj 2 3 

4) H.F. with seasonal at HF D<2) 

The models with 8=0 lead to deterministic a, which are estimated by 

R.R. Models with stochastic a can be handled with either KF or HF. 

With K.F. there is only one estimate for the whole sample period; with 



- 15 -

H.F. there is an estimate of 8 for each quarter of the sample period. 

Note that in (25) 9 is a vector containing more elements. We have 

studied cases with more elements but report only our scalar results 

here. 

Results 

RR 

Figure 2 shows how ax gradually obtains its value of Table 1 if the 

sample is extended. Also the coefficients for the first, third and 

fourth quarter of the RRS model are drawn; the second quarter alpha 

shows roughly the same pattern. These a's circulate around the average 

value of .75 from Table 1. Note the jump in all a-series from 1979.1 

to 1980.3. Note also the absence of any negative effect in the fourth 

quarter as in D4 above. The reaction pattern does not differ very much 

among the seasons, although Bt seems to react a little bit slower in 

the first and a little bit quicker in the third quarter. 

Figure 2. Recursive estimates of alpha. 



- 16 -

On the whole RRS performs somewhat better than RRC. Table 2 shows that 

the Standard deviation of its prediction error S.E. (ut) in the final 

quarter 1985.4 is .2481 versus .2530 for RRC and the likelihood values 

are -408.69 and -409.20 respectively. In view of the two additional 

degrees of freedom used up in the seasonal model the difference is not 

significant. 

Table 2. Housing starts 1971.1 - 1985.4 

Model RRC RRS KF HF 

S.E.(u1985 4 ) .2530 . 2481 .2337 .2530 

f) 
P1985 . 4 

0 0 .011 .000 

Loglik -409.20 -408.69 -407.42 *). 

* ) not defined 

This dispute is of little relevance as the assumption of a constant 

variance er2 over time that underlies both specif ications is clearly 

violated. This is shown in figure 3, where the updated variance 

according to (16) or (17) is pictured. 

Fisure 3. Measurement Variances 

0.12 r 

b 
> 

0.08-

0.06-

0.04-

0.02 

1971.2 1975.4 1980.2 19844 
1973.3 1978.1 19823 
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The K.F is more flexible; it captures part of the increase in the 

residual variance in adapting the modelcoefficients ofc, see figure 4. 

Allowing these coefficients to vary with variance measured at .011 

rather than zero spreads the uncertainty over two sources and reduces 

the S.E of the measurement error to .2337, less than 8.5% of the 

average level of the series. Accordingly the fluctuations of the KF 

a's in Figure 4 are wilder than those of RR. The shift in 1979.1 both 

in these coefficients and in the residual variance are alike in both 

models. Again we conclude that KF is a little superior but its likeli-

hood is not significant to justify 8 to differ frora zero. There are 

more drawbacks for the KF. lts optimal value of .011 can only be 

calculated afterwards and it is not clear how many observations we 

must select to obtain an appropriate value. 

Figure 4. Recursive estimaCes of alphas 

Fig. 4a : Recursive eslimates of alphal Fig. 4b : Recursive estimates of alpha2 
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How does the HF perform in this little race? First we observe that it 

cannot be compared with the other models by likelihood values as HF 

does not use the same likelihood function. It is too complicated to be 

of value here and moreover it is not clear how both likelihood 

functions must be compared. As both KF and HF only differ with respect 

to it is appropriate to cast a comparison in terms of 6. 

The 6t for the HF are given in Table 3. 

Table 3B 

Estimated ratio's of variance of model parameters to measurement 

variance (Values of Bt). 1971.1 - 1985.4 

Quarter 
year I II III IV 

1971 .010 .010 .010 
1972 .010 .010 .000 .008 
1973 .000 .000 .000 .000 
1974 .015 .011 .000 .008 
1975 .020 .000 .000 .004 
1976 .000 .002 .000 .000 
1977 .000 .000 .000 .000 
1978 .000 .007 .011 .009 
1979 .000 .000 .000 .000 
1980 .000 .000 .000 .000 
1981 .000 .000 .000 .000 
1982 .000 .000 .006 .005 
1983 .005 .000 .000 .000 
1984 .000 .000 .000 .000 
1985 .000 .000 .000 .000 

It is remarkable that 9t hardly deviates from zero, which brings us 

back to the RR model. We do not need to mention either the time path 

of the a's or that of az of the HF model. Apart from its initializa-

tion which takes about 8 quarters the results are those of RR, see 

e.g. fig.3. The value of g\ in the final quarter can even hardly be 

distinguished from the minimal level .2530 of RRC, see table 2. Does 

this repudiate HF? We have seen that all differences are insignificant 

and & in KF can only be computed af terwards. There is another 
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advantage in using HF. The 8t that differ from 0 (the end of 1978 and 

the end of 1982) provide another source of Information. Reactions of 

Bt to Vt in those periods were different which was not caused by 

measurement errors. In spite of the increased inaccuracy with which 

the reactions are measured by the CBS according to fig.3 these changes 

in the reaction patterns could be detected with the hyperfilter. This 

information could not be provided with the KF. 

6. Conclusions 

Our hyperfilter - a variant of Ljung and Söderström's recursive pre-

diction error method - appears to be a satisfactory alternative to a 

Kalman Filter estimation with numerically determined variances". It 

avoids the use of information which is not available at time t, it is 

computationally more efficiënt and the fluctuations in the estimates 

provide information about the constancy of the variances. In our 

example of forecasting starts from permits issued in the Netherlands, 

RR appeared to be a sufficiently flexible approach; non-zero values of 
A 

6t during the sample period were of a transient nature. Hence 

assuming non-zero 6 is clearly unnecessary in this application. 
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Appendix 

I. The model and the updating procedure 

Our model is, see (18),(21) , (1) and (7) : 

(Al) at - D 04..! + <=t €t - N(0,a
2Q) 

(A2) yt = x̂  at + ̂  u,. ~ N(0,a2) 

The forecasting procedure of the Kalman filter consists of updat­

ing, predicting and evaluating as follows: 

(A3) Pt - D Pt.j. D' - M,..! M't_i st + Qt.x 

(A4) st - 1 + x't Pt xt 

(A5) Mt - D Pt xt/st 

(A6) yt - x't at 

(A7) et - yt - yt 

(A8) Ót+1 = Dafc + Mt et 

Equations (A3) - (A8) coincide with respectively (24), (10), (23) , 

(5) , (6) and (22) . With all Information known in period t-1 equation 

(A3) can be elaborated. Equations (A4)-(A6) require knowledge of the 

exogenous values for period t, i.c. xt . If the dependent variable is 

also known for period t equations (A7) and (A8) can be handled. Pt is 

called the standardized variance matrix of at (az = 1) and Mt the Kal­

man gain. 
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I I . The optimal g rad i ën t fit . 

The optimal p r e d i c t i o n occurs i f f t ( ) = e £ / s t i-s minimized. This i s 

ob ta ined , see (27) , i f 

(A9) 9t ^ 8t.x - 7 B ; V t 

with 7 =» l / t and 

(AIO) /3fc - 6£b/S8 - e t / s t [2 (5et/S8) - e t / s t (Sst/S8)] 

Bt i n (A9) i s approximated as 

(All) Bfc = 0lfit + T I 

where r is chosen such that Bt is positive definite, see Goldfeld, 

Quandt and Trotter (1966). Formula (AIO) is computed recursively: et 

and st follow from (A7) and (A4) respectively and the gradients 5et/S8 

and Sst/88 ave. derived below. 

A. We first compute Sst/88. This is facilitated by the following 

definitions: 

(A12) jr<i)t = 57t/Sei 

(A13) a(i)t = Sst/S8i 

(A14) M D t - Si^/59, 

where 8L is the ith component of 8 and ?r(i)t , cr(i)t and ^(i)t
 a r e 

resp. a K * K matrix, a scalar and a K * 1 vector. Differentiating 

(A3),(A4) and (A5) gives in terms of these new definitions 

(A15) 7r(i)t = D n(i)t.1 D' + S%.1/58t - <r(i)t_ xMt. xM't. 1 -

- st_1/i(i)t_1M
,
t_i - s t. 1M t. 1M(i)' t 
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(A16) o-(i)t - x't 7r(i)t xt 

(A17) A*(i)t = D ff(i)t xt/st " Mt ff(i)t/st 

Given all variables for period t-1 the value for ?r(i)t follows from 

(A15) and that of a(i)t from (Al6). 

B. Now we turn to Set/88. 

From A(7) and (A6) we have 

(A18) Set/S8 - - x't (8at/88) 

From (A8) we have 

(A19) Sat+l/S8 = D (8at/S8) + M,. (Set/88) + (51^/50) et 

which after substitution of (A18) simplifies into 

(A20) 5at+1/5S = [D - V^ x't] (Sat/S8) + (8X^/88) et 

Given all variables for period t-1 the value of 8at/88 follows from 

(A20) and 8et/88 from (A18). Our procedure differs from that of Ljung 

and Soederstroem in two respects. First LS use 8st/88 in elaborating 

7r(i)t like we did in (A15) and (A17) , but they ignore this term in 

(AIO). Secondly they use instead of (All) Bt = l/t [0t'y8t + (t-1) 

Bt_]J. Our procedure (All) defeated that of LS in speed of convergence 

at least in our application. 


