ET

05348

19 &€

“

.

A SIMPLICIAL ALGORITHM TO SOLVE

THE NONLINEAR COMPLEMENTARITY PROBLEM ON S™ x RT

Marjan Hoflkes

Research Memorandum 1988~49 Dec. '88

VRIWE UNIVERSITEIT
Faculteit der Economische Wetenschappen en Econometrie
AMSTERDAWM



X3



A STMPLICIAL ALGORITHM TO SOLVE

THE NONLINEAR COMPLEMENTARITY PROBLEM ON s x r™

by

Marjan Hofkes

+

december 1988

M.W. Hofkes
Department of Econome:rics
Vrije Universiteit
P.O. Box 7161
1007 MC Amsterdam
The Netherlands







A SIMPLICIAYL ALGORITHM TO SQLVE
THE NONLINEAR COMPLEMENTARITY PROBLEM ON S™ x Rm+

by

Marjan Hofkes

Abstract

In this paper a simplicial algorithm is developed to solve the nonlinear
complementarity problem on S" x Rm+. Furthermore, a condition for
convergence 1s formulated. The triangulation which underlies the
algorithm is a combination of the V-triangulation of $" and the K-

triangulation of Rm+, Therefore we will call it the VK-triangulation.
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1. Introduction

Simplicial algorithms are nowadays frequently used to.solve the zero
point problem and the nonlinear complementarity problem on the n-
dimensional unit simplex S™ = (x € Rn+l+ ] Z;%; = 1}. In economies
simplicial algorithms have become a popular tool in computing equilibria
of a pure exchange economy, as these equilibria can be formulated as
nonlinear complementarity peoints of the so-called excess demand
function.

Shortly, simplicial algorithms divide §" into a finite number of
simplices (this subdivision is called the triangulation of 5%) and
search for a simplex which yvields an approximate solution. Several
triangulations of 8" have been developed which underly these algorithms.
Van der Laan and Talman (1982) have made a first approach to generalize
these triangulations and algorithms to the product space of N unit
simplices §. Recently Doup (1987) has given a survey of possible
triangulations and algorithms on 8. This generalization makes the
algorithms suitable for the computation of WNash equilibria in
noncooperative N-person games and of equilibria in an economy with a
block diagonal supply-demand pattern.

In Dirven and T:lman (1987) a simplicial algorithm on S" x Rm+ is
developed to compute equilibria in economies with linear production,
Now, S™ represents the space of commodity prices while Rm+ represents
the space of activity variables. A subdivision of S" x Rm+ is developed
which consists of {(mtn)-dimensional cells, which are the carthesian
product of n-simplices of the V-triangulation of §" (see Doup and Talman
(1987)) and of Rm+. Because of the linearity of the problem in the
activity variables no simplicial subdivision of Rm+ is needed. However,
there are economic applications, for example when the production
exhibits 1increasing returns to scale, where the above described
subdivision will not suffice. In these cases we will need a simplicial
subdivision of §" x Rﬂ+. |

In this paper te will develop a simplicial wvariable dimension
restart algorithm which <can be used to solve the nonlinear
complementarity problem on ST x Rm+. Furthermore, a convergence
condition for this algorithm will be formulated. The trianguiation which
underlies the algorithm is a combination of the V-triangulation of gh
and the K-triangulation of Rm+. Therefore we will call it che VK-

triangulation,



A variable dimension restart algorithm is such that it generates a
sequence of adjacent simplices of wvarying dimension, starting with a
zero-dimensional simplex (the starting point which can be chosen
arbitrarily) and ending within a finite number of steps with an
approximating simpiex, i.e. a simplex which yields an approximate
solutien. This sequence of adjaceunt simplices traces a piecewise linear
path of peints from the starting point to an approximate solution. The
plecewise linear path-is traced by alternating replacement steps in the
simplicial subdivision in order to move from one simplex to an adjacent
gimplex and by linear programming pivot steps in a system of n+m+2
linear equations in order to trace a linear piece of the path in a given
gimplex,

This paper 1is organized as follows. In section 2 we will formulate
the problem, section 3 discusses the triangulation of s™ x Rm+ which
underlies the algoritﬁm. Finally, in section 4 the algorithm will be

exposed and theorems on convergence and accuracy will be given,

2. The problem

Let S be the n-dimensional unit simplex, i.e. S* = (xeR™l, | £;x,=1).
Let v be a continuous function from S x Rm+ to Rn+l-x R™®. Furthermore,
vip,y) = 2. x(p, DT with pest, yer", z(p,y) e RV,
x{p,y) € R" and v satisfies a condition equivalent to Walras' law:
(T, yHT
y € RE+.

vip,y) = Zjpy-zi(p.y) + ijj.xj(p,y) =0 for all p e st

The nonlinear complementarity problem on ST x Rm+ is now to find to

find a wvector (p*,y*) such that v(p*,y*) =< 0. Note that such a vector

(p*,y*) has the property zi(p*,y*) =0 if p*i >0 (i=1,...,n+1),
xj(p*,y*) -0 if y*j >0  (§=1,...,m), z;(p.¥y)» =0 if p* -0
(i=1,...,n+l1), xj(p*,y*) <0 if y*j =0 {(j=1,...,m). To solve the

nonlinear complementarity problem on S* x Rm+ we will develop in this
paper a variable dimension restart algorithm which operates on S x Rm+.

Since s% x Rm+ iz not a compact set, we have to formulate some
condition which guarantees convergence, As we will see in section 4, a
sufficient condition for counvergence is that xj(p,y) < -3 (where ¥ can

be arbitrarily small) if yj > yjmax for some finite yjmax, j=1,...,m,



Under this condition the algorithm is confined to a compact subset of §U
X Rm+ and convergence is assured.

The algorithm traces a piecewise linear path of points in a
_triangulation of 8" x Rm+ , starting in (p,¥), such that for some o and

B, 0 =a=x1, the following condition will be satisfied:

p; = «.py if Z2;(p,y) < 8
P = a.p; if Z;(p,y) = B
¥y = @iy 1f Xy(py) < 8
Yj -3 UE.XJ- if Xj (p,¥) =JB

v

(2.1)

Z(p,y) is the piecewise linear approximation to z(p,y) given by Z{p,y) =
ZkAk.z(pk,yk) where (p,y) 1is a peint in some t-simplex o(wl, .,wt+l)
with vertices wk = (pk,yk), k=l,...,t+l, in the triangulation of
s" x R®, and (p,y) = EkAk.(pk,yk). X(p,y) 1is the piecewise linear
approximation to x(p,y) given by X(p,y) = Z iy .x(pk,ykﬁ. Note that 8 =
max {max; Z;(p,¥y), maxJ Xj(p y)) and a = min {ming pl/gl, m1n yj/xJ
The algorlthm will terminate with a point (p Y ) such that

7 = B 1f p
Z;(p YY) s B Lf p¥
Xy (p ,Y*) =ity >

X (*, vy = g if A

Z; (p i

’F:ﬂ-:{-

(2.2)

* % % %

>(-
o o o O

In section 4 it will be shown that such a peoint (p*,y*) yields an
approximate nonlinear complementqrity point of w(p,y), which 1is the

problem we want to solve.
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3. 'The VK-triangulation of s" x R@+

In this section we will describe the triangulation which underlies the
algorithm. Since the triangulation we use is a combination of the V-
triangulation of S* and the K-triangulation of Rm+ we call it the VK-
triangulation. The K-triangulation is constructed by Freudenthal ({1942)
and the V-triangulation is introduced in Doup and Talman (1987).

Let Ty be a subset of I, .y with ]Tll = t;, Ty a subset of
Lo me1 Mgy With |To} = €5, T = T{UT, with |T| = € and let (p,y) be some
point in ST x Rm+. '

Definition 3.1

For t=ntm we define A(TIUTZ) = A(T) as
A(T{UT,) = ((p,y)e 8" x R, | p; = a.p; if 1 € Ty

Yy =¥y if j4ntl & Ty
O=a=x1l1l)

Analogously to the V-triangulation of S" we divide a nonempty set

A(T) into A(7(T1),T2) for any permutation y(Tl) = (71,...,7t1)-0f the £y
elements of Ty. Let q(y;) be defined as:
B
G{yq) = e{vy) - [ ]
1 1 v
PClvy,oooumn)) - PXUYq, -0y )
a(m,) = [ ! h . L h-1 ] h=2,...,t;

with P(K) the relative projection in 8" of p on SWK) =
{p € s ] Py = 0, je#K] (see definition 3.2 below) and e(i) the i-th unit

vector in Rn+m+l.



Definition 3.2

0

Let K be a nonempty subset of I.+1, and let K” be the set given by

KO ={igK I p; = 0}. The relative projection vector P(K) of p on ST™HK)

is given by:
0 h ek
PR) = { 2p(1+|K01)/(Bpey By + K7D h e KO

(L - Ty B\ ey i + (K0 he x0

For K = ¢ we define P(@) = p.

Note that for p in the interior of 8%, in other words for KU = o

we have that Ph(K) - Eh/(zkeK gk) for h € K and PL(K) = 0 for h & K.

1

Definition 3.3

For ti+ty, = ntm we daefine A(T(Tl):Tg) as:

t
A(Y(T),Ty) = ((p,y)e 8" x RY | (p, 1) = (2,1 +i§i @ -qlyg) +j§T vy-e(3)

2
0 =< ap, = ... € 51, vj = Q}.
In figure 3.4 the sets A(7(Tl)’T2) are lllustrated for n=m=l.
Figure 3.4 The sets A(1(Tl),T2) for n=m=1
0
1
0
A((2),%)
AC(2),(30
sl A((2,1),2)
(2. ¥)
ACQ), (31
A((L1,2},2
AC(L),{3})
((1},9)




The union of A(+y(Tq),T,) over all permutations y(Tq) is A(T(UTy).
The (t1+t2)-dimensiona1 set A(1(T1),T2) is triangulated by the
collection G(T(Tl),Tz) of (t1+t2)—simplices U(Wl,ﬂ(T)) with wvertices

wl,...,wt1+t2+l such that:

1 e SL -1 -1 .
1 w = [ v ] +i§l a(yy) m o qy;) +jeT2bj m " ¥l (n+l) e(;)

with a(wi) and bj integers and 0 = a(7t1> £ ... = a(wl) = m-1,

bj = 0 and m the gridsize of the triangulation.

{ii) = is a permutation of the elements of Tl and T,

A CITERRFLI IR

(iii) W = 4wl gay)

where q(ny) = q{vy) if m = v; € Ty
and q{m) = xﬂk-(n+l)'e(ﬂk) if m € Ty,

The wunion G(TlUTz) = G{T) of the G(w(Tl),Tz)'s over all permutation
vectors y of T, yields a triangulation of A(TyUT,) and the union of
these triangulations G(T)} of A(T) over all feasible T with t=n+m induces
the VK-triangulation of $" x Rm+ with gridsize Ll In figure 3.5 the

triangulation is illustrated for n—m=1.

Figure 3.5 The VK-triangulation for n=m=1

3
1 /,a((g,x). )

/ (R,i)

. 4

F

g((p,y),(2,1))



-7 -

Let J(Wl,ﬂ(T)) and g(ﬁl,g(T)) be two adjacent simplices in
G(T(Tl),Tg) with common facet r opposite vertex wr, l=r=t+l, then o
is obtained from ¢ by the following table where the (n+mtl)-vector a 1is

glven by a; = a(i), %-e Ty, a; = bi’ 1 €Ty, and a; = G, 1ieT:

Table 3.6 replacement of vertex wr

wt x(T) a
1 -1 -
r=1 w" 4+ m .q(ﬁl) (ﬁz,...,ﬂt,ﬁl) ca+t e(ﬂl)
l<r<t+l wl SO RREREL S P a
Ryl s o Te)
1 -1
r = t+1l w- - m .q(ﬂt) (ﬂt,ﬂl,...,ﬂt_l) a - e(ﬂt)

Lemma 3.7
Lat U(Wl,ﬂ(T)) be a simplex in G(y(Tl),Tz) and let 7 ba the facet of o
opposite vertex w', 1 =<r < t+l. Then s lies in the boundary of

A(T(Tl),Tz) if and only if one of the following cases holds:

(i) r-=1, fl'l - 'Tl, &(ﬂ'l) = m-1

{(ii) l <r < t+l, Ty = Y¥is Tp_] = Yi_1- _for gsome i, 2 =1 = £y,
a(ﬂr)'= a(ﬂr_l)

(iii}y v = t+1, e = Yo g(ﬂt) =

{(iv) r = t+1, n. & T2, &(ﬂt) = 0

Lemma 3.7 is a direct result of the definitions of A(7(Tl)’T2) and
G(q(Tl),Tz). The following three lemma’s describe the cases of lemma 3.7
in more detail. Let Sn(Tl) = Rﬁ+(T2) = {(p,y) & s™ ox Rm+ ] P; ~ g for
all i € Ty and Y5-(n+l) = 0 for all j & Ty).



Lemma 3.8‘

Let o(wl,ar(T)) be a t-simplex in G(y(Ty),Tp) with the facet r of ¢

opposite vertex wl

ST x R™ (Ty).

in the boundary of A(-y(Tl),Tz), then r lies in

Lemma 3.9

Let O'(Wl,?l'(T)) be a t-simplex in G(y(Tl),Tz) with the facet 7 of ¢
opposite vertex wE, 1 <r < t+l, in the boundary of A('}f(Tl),Tz). Then,
according to lemma 3.7(ii) there is some i such that n,.=v;, 7. 1=7;_1,
2=s1isty, and a(mn.) = a(m,._1). Now, r is a facet of the t-simplex
g, 2(T)) in 6(2(T1),Tp) with 2(T=(vy,.. '
and g(T) = (mq,..

- ’.71‘2'7]‘.’721"1’73..4'1’ e ”Ytl)
. ,ﬂr_z,ﬂ'r,'ﬂ.’r_l,ﬂ'.r_'_l, PR ,ﬂ't) .

lemma 3.10

Let a(wl,::r(T)) be a t-simplex in G('y(Tl),TQ) with the facet r of o

t+1

opposite vertex w in the boundary of A(7(T1),T2). If T = Vg, and

a(ﬂ't) =0 then r 1s the {(t-l)-simplex Q(Wl,?'l'(_T_)) in -G('y(_'I‘_l),Tz)) with
?T(Z) = (ﬂ-lt- -':ﬂt_l): Il - Tl\{'ytl} &nd ‘T(Il) = (Tl:-*' ’7t1_l)' If
me € T, and a(x.) = 0 then 7 1s the (t-1)-simplex g(w',n(I)) in
G(v(Ty),Iy)) with a(2) = (ny,...,7 1) and Ty = To\(m }.



4. The algorithm

In this section we will describe the steps of the wvariable dimension
restart algorithm on S™ % Rm+ and formulate ¢onditions on convergence
and accuracy. Let s x Rm+ be triangulated as described in secticn 3. To
find an approximate solution to the nonlinear complementarity problem
the algorithm traces, by alternating linear programming pivot steps and

replacement steps, a piecewise linear path of points satisfying (2.1).

Definition 4.1

Let T; be a subset of I .4 with [Tl] = ty, Ty a subset of T, .4\I .y
with |Tp] = t; and T=T] UTy, |T| =t =ty+ty;. A g-simplex
a(wl,...,wg+l) with g = t,t-1 is T-complete if the system of linear
equations:

z k, k
N xipk k; + s O P 4.1
2 k| R her ‘B o Al (-1

(where e 1is a (nimtl)-veector of ones), has a solution A 2 0,

k=1,...,g+k, pp, 2 0, n & T and B. Such a solution 1s called feasible and
will be denoted by (),p,8).

Definition 4.2

A T-complete (t-1)-simplex o(wl,.,.,wt) is complete if for all (p,y) in

Nondegenetracy Assumption
1 g+ly . . i o m
If g(w ,...,w® 7) is a T-complete g-simplex in S x R",, then for g=t-1

system (4.1) has a unique solution (X,u,B8) with Ak >0, k=l,...,t, and

¥

pp > 0, h & T, while for g=t at most one of the variables (Xi,p) is equal

to zero at each feasible solution.

Under the nondegeneracy assumption a T-complete t-simplex o
contains a line segment of solutioms (XA,p,8) with X 2 0 and g = 0. A
golution with one of the components of (XA,p) equal to zero is called a
basic solution. A line segment of solutions (A,pn,B8) can be traced by

making a linear programming piveot step in (4.1). If Ay is equal te zero
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at a basic solution the facet of ¢ oppesite Wk is a T-complete (t-1)-
simplex.

In order to trace the above mentiened piecewise linear path the
algorithm generates for wvarying T a sequence of adjacent T-complete t-
simplices with common T-complete facets in A(T). The algorithm starts
with the unique l-simplex 00((2,1),t0) where to is the (unique) index
such that vto(g,x) = maxy vh(g,x). ao is {to}-complete with a basic
golution equal to Al = 1, Az = 0, By = vto(p,x) - vh(g,x), hﬁta, and
A= vtn(g,y). Wow, a 1linear programming pivot step is made witch
(v(pz,yz),l) in the linear system (4.1) corresponding with 00 by
inereasing Az away from -zero where (pz,yz) = (p,¥} + m'l.q(to) iff
0 I+ and (p2,y2) = (p,¥) + m'l.gto_(n+l).e(to) if 0 e Tom+1 N a1 -

For giwven T, 7(T1) gnd T2 the T-complete t-simplices a(wl,w(T)) in
G(y(T1),Ty) form sequences of adjacent simplices with T-complete common
facets, Since each T-complete t-simplex in G(T(Tl),Tz) has at most two
T-complete facets and each facet of a t-simplex is either a facet of
another t-simplex in G(T(Tl),Tz) or is a facet in the boundary of
A(7(Tl),T2), these sequences are either loops or have two end simplices,
An end simplex is either a t-simplex with a T-complete facet r in the
boundary of A(y(Tl),Tz) (this corresponds with one of the cases of lemma
3.7) or a T-complete t-simplex having a solution (A,u,B8) with by = 0 for
some s € T. In the latter case ¢ is also Tu{s}-complete. The Tu{s}-
complete t-simplex ¢ is complete if ¢ lies im Sn(TIU{s}) 4 Rm+(T2) if
5 & In+l and if ¢ lies in Sn(Tl)_x Rm+QT2U{s}) if s € In+m+l\Ih+l‘ Note
that ¢ is always complete if |Tl = n+Hn, since then S“(Tlu{s}) x Rm+(T2)
respectively Sn(Tl) b Rm+(T2U{S}) equals S™ x R™,. If o is not complete
then o is al facet of just omne (t+l)-simplex ¢ in G((7(Tl),s),T2)
respectively in G(T(Tl),TZU{s}) as described in lemma 4.3 below. In the
former case, i.e in the case that an end simplex has a T-complete facet
r in the boundary of ﬁ(T(Tl);Tg), we have, if the T-complete facet 7
lies in Sn(Tl) X Rm+(T2) then r is a complete simplex (see lemwmma 3.8),
if the facet r does mot lie im 8™(Ty) = R",(T)) then r is either a facet
of a T-complete t-simplex in G(i(Tl),T2) as described in lemma 3.9 or -
is a T-complete (t-1)-simplex in G(v(Zy),Ty) or in G(v(Ty),I,) as

described in lemma 3.10,
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Lemma &6.3

Tet J(Wl,ﬂ(T)) be & Tu{s)-complete simplex in G(Y(Tl),Tz)- If ¢ is not
complete then ¢ is a facet of the I-complete (t+l)-simplex g(wl,w(l))
with T = Tu{s} and =(I) = {ﬂl,...,xt+1,s}. if (s} & Ine1 then g lies in
A(y(T1),Ty) with v(I1) = (yg,---57¢8)- If {8} € I ,.049\I ;41 then ¢
lies in A{v(Ty),Iy) with I, = To U {s}.

From the above discussion we can conclude that for varying T the
sequences of T-complete simplices in G(T) can be linked to form
sequences of adjacent simplices of wvarying dimension. Under the
convergence assumption as formulated below the algorithm is confined to
a compact subset of S" x Rm+ (see theorem 4.5) and consequently, a
sequence is either a loop-or a path having two end simplices. One end
simplex is the l-dimensional simplex ao((p,x),to), whereas all other end
simplices are complete simplices. The path starting in 0¥ connects the
starting peint (p,¥) with a complete simplex. This path is generated by
the algorithm. In thecrem 4.6 it is shown that a complete simplex yields
an approximate solution to the nonlinear complementarity problem on
s x R",.

In the following lemma and theorems v is a continuous function from
st x Rm+ to RP*l x B® as given in section 2, So, v{p,¥) =
z@E.NTx@EnHT with p € 8%, y € B, 2(p,y) € B!, x(p,y) € R® and
v satisfies a condition equivalent te Walras’ law, i.e, (pT,yT)T.v(p,y)
= Eipi'zi(P'Y) + ijj.xj(p,y) =0 for all p & s, y € Rm+. Furthermore,
Z(p,y) respectively X(p,y) 1is the piecewise linear approximation to

z(p,y) respectively x(p,y) with respect to the chosen VK-triangulation
of 8 x Rm+.

Lemma 4.4

For all ¢ > 0, for all x > 0, there is a 6(e¢,x) > 0 such that for each
VK-triangulation with mesh size §' < §(e,x), for all (p,y), p € st
¥y € {o,yjmax+2x], for given yjmax >0, j=1,...,m, holds that:

IpT.z¢0,3) +y5 %00, 1] < (1+25y5) . €
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Proof
Since * v is a continuous function and st x [O,ylmax+2x]
¥ ... X {O,ymmax+2x} is a compact set there is a § > 0 such that for all

max

r,s € 8™ x [0,y,™42x] x ... x [0,y,"**+2x] holds that

max; ’ri “ sif < 6 implies max; Ivi(r) - vi(s)| < €. Co;sequently, for
(®y) € o, wTh  wicn W= 555, ke, () -
EkAk(pk,yk), Ak =0, EAk = 1, we have, using "Walras'’ law“:_

leT.ze,) + yh. X, | -

1219525 (P, 3) + B373%5(P.Y) - (Z4py-21(.¥) + Zyyy.xy(p. ¥y =

|2P1 (Zehe (23 05,55 - 25,y + vy (B (x5 - x5,y <

(1+Ejyj) . €,

since ]zi(pk,yk) - z;(p,y)| < ¢ and ]xj(pk, ky | xj(p,y)| < e,

Qa
Convergence Assumption
There are finite yjmax >0, j=1,...,m such that xj(pk,yk) < -y, for some

$ >0, if ykj >y, 3=, ,m

Now, using lemma 4.4 with ¢ = ¥ we can show that under the convergence

assumption the algorithm is confined to a compact set,

Theorem 4.5
Let x > 0. Under the convergence assumption there is a mesh size 6' > 0

such that the algorithm, when operating in a triangulation of S" x Rm+

max

with mesh size §', is confined to the compact set 3" x [0,y "+x]

max

X ... x [0,y, 4 x]
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Proof

Let &' < min(6(%,x),.x). Suppose there is a t-simplex o' with wvertices
wk <= (p¥,yK), k=1,...,t+l, which is visited by the algorithm, such
that for some h, for some k, y‘kh > yhmax+x. Note that o' does not lie
in 8% x [0,ylmax+x] X ... X [O,ymmax+x]. If ¢' 1s wvisited by the
algorithm there must be some t-simplex ¢ with vertices wk - (pk,yk),
k=1,...,t+l, be visited by the algorithm with y5, € (y,"®%,y "®%42x] for
all k. But then, according to the definicion of ﬁ(v(Tl),Tz) g must lie
in some A(y(Tl),Tz) with Ty such that h+ntl € Ty and o must be T-
complete., According to the convergence assumption, xh(pk, k) < -y for
all k and consequently, Xh(p,y) - Ek)kxh(pk,yk) < -1, Furthermore, since
¢ 1is T-complete we have according te (4.1) that X (p,y) =
max(maxi Zi(p,y), maxj Xj(p,y)) and therefore Zi(p,y) < -, i=1,...,n+l
and Xj(p,y) < -¥, j=1,...,m. But then we have p.Z(p,y) + yv.X(p,y) <
-(1+ijj).¢. However, according to theorem 4.4 this cannot be the case.
In other words such a simplex ¢ cannot be visited by the algorithm.
Consequently, also ¢’ cannot be visited by the algorithm and the

algorithm is confined to S" x [O,ylmax+x] X ... X [O,ymmax+x],

. Theorem 4.6

For all ¢ > 0, for all x > 0 there is a mesh size §(e,x) > 0 suéh that
each complete simplex in S% x jo,ylmax+k] X ... X [O,yﬁmax+x} with
solution (A*,p*,ﬁ*) to (4.1) in the ﬁK-triangulation. with mesh size
smaller than §{¢,x) contains a point (p*,y*) with:

168%] < e

B - e <z, 0Ny <8+ e if p*; > 0
* *

Zi(P*,Y ) < BT+ e ifp; =0

B* - € < xj(p*,y*) < ﬁ* + e if y*j >0

x; (7)< B 4 e if y¥; = 0
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Progf

Let a*(wl,...,wt) be a complete simplex in the VK-triangulation with
mesh size smaller than §(e,x). The linear system (4.1) with respect to
o* has a solution (A*,s*,%) such that A" > 0, k=1,...,t and ¥, > 0,
h & T. Let (p*,y*) be given by (p*,y*) = EkA*kwk. Since Zkk*k =1,
(p*,y*) lies din o'. Furthermore, we have from (4.1) that
Az 05,55 = 55 1f e Ty, Zate 0N - 85 - 4N i LeTy,
zkx*k;j(pk, Ky = gF if j e Ty, Ekk*kxj(pk,yk) =" - p*j if j&T,.

T

Consequently, since (p* ,y*T).v(p*,y*) = 0 we have:

i(1+2y*j)ﬂ*l

|2y 8" - Ty v | -

*

187 - o T.z2(0%,) +'2y*j-ﬁ* -y*T-XCp*.y*)( =
6% - p*T2p™,v5| + lzy*j.ﬁ* - YT xeF, v =
[ T @A ez R 575 - 20", 5N + |5 e =k yE) - =%y <

')E:

€ + Ey*j.e - (l+2‘y*:I

since p'y = 0 Lf i @ Ty and y*; = 0 if § & Ty,
%
[z; 05,95 - 2;60%,y")] < ¢ and Ixj(pk,yk) - xj(p*,y*)l < e.

So, |ﬁ*[ < €.

Furthe?more,

l2; (07" - Y| = 120 Lz 0%,y - 205,y < e if p*, > 0
230",y - B = Ekk*k(zi(P*,y*) - 205,95 < e if p'y =0
‘xj(p*;y*) - pF| = |Eklwk(xj(p*,y*) - xj(pk,yk))| < e if y*j > 0
xj(p*,y*) - ﬂ* < Ek**k(xj(P*,y*) ) xj(pk,yk)) < ¢ iF y*j -0
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From the sabove theorem we can conclude that the point (p*,y*) in a
complete simplex o gives an approximate complementaricy point on ST x
[O,ylmax+x] X ... X [O,ymmax+x] with accuracy hbounds given by 2e¢. In
most economic applications we can indeed restrict the problem to 8" x
10,7, "% 4x] x ... x [0,y ™% +x]. Combining theorem 4.5 and 4.6 we derive
that when the algorithm operates in the VK-triangulation with mesh size
§' < min(é(e,x),6(¥,x),x) both convergence and an accuracy of 2¢ 1is

assured.

Finally, we give the steps of the algorithm in detail:

Step O

Let t0 be the (unique) index such that vtc(g,g) = maxy vh(g,z). If
(p,¥) = e(to) then ({(p,¥)) is complete and the algorithm terminates,
Otherwise set T = (to} and £t = 1. Furthermore, set Tl = t0 and T2 =@ if
eI, and Ty =@ and T, = 0 if Qe 1, NI, Set wl = (2,1,
A1) = (), o= owla(D), r=2, a =0, iel
Bh = Vol ¥) - vp(2,y) bet’ and B = v (2, 7).

nimels A1 7 L

Step_1
Perform a linear programming pivot step by bringing (z(wz),x(wg) L) in

the linear system:

k _k
z ¥ )
x{p™, + - | =
= 'k POy her B 0 1o
kr 1 _ 1

If Bg becomes zero for some s ¢ T then goto step 3. Otherwise A, becomes

zero for some r = r.

Step 2
If r=1, ny = y; and a(ry) =~ m-1 then the facet of o opposite the

vertex wl is a complete simplex and the algorithm terminates.

If 1 <r <thl, m.= 75, Fpq = 7¥i.1» 251=ty and alr) = a(r,. )
then o(wl,w(T)) and 7(T1) are adapted as given in lemma 3.9. Return to

step 1 with x = r.
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If r = t+1, Te = Teq and a(ﬂt) = 0 then set s = e Tl = Tl\{s} and & =
t-1, while a(wl,w(T)) and v(Ty) are adapted according to lemma 3.10. Go
to step 4.

1If r = t+1, T € TZ and &(ﬂt) = 0 then set s = Tes T2 = T2\[s} and t =
t-1, while a(wl,ﬂ(T)} is adapted according to lemma 3.10. Go to step 4.

In a2ll other cases O(Wl,ﬂ(T)) and a are adapted according to table 3.6

by replacing w'. Return to step 1 with x the index of the new vertex of

o.

Step 3

If s In+1’ then if Py = 0 for all 1 & T{U{s} and yj-(n+l) = 0 for all
j €Ty then ¢ is a complete simplex and the algorithm terminates.
Otherwise set T; = TqU{s} and t = t+l, while o(wl,n(T)) and 7(Ty) are

adapted according to lemma 4.3. Return to step 1 with p = t+1.

If s & In+m+l\In+l’ then if pi = 0 for all % & Tl and yj'(n+1) = 0 for
all j & Tou{s} then o is a complete simplex and the algorithm
terminates, Otherwise set T2 = Tzu{s} and t = t+l, while a(wl,ﬂ(T)) is

adapted according to lemma &4.3. Return to step 1 with r = t+1,

Step_4
Perform a linear programming pivot step by bringing (e(s),0) in the

linear system:

z(p¥, %) 0
t%l N ( K k) s e(h) P e
1 x , + - -
=1 ¥ Py heT b 0

1 hrs 1

If py, becomes zero for some h €T, h = s, then return to step 3.

Otherwise, Ar becomes zero for some r and return te step 2,
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