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convergence is formulated. The triangulation which underlies the 
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1. Introduction 

Simplicial algorithms are nowadays frequently used to solve the zero 

point problem and the nonlinear complementarity problem on the n-

dimensional unit simplex S n = {x € Rn
 + J S^x^ = 1}. In economics 

simplicial algorithms have become a popular tooi in computing equilibria 

of a pure exchange economy, as these equilibria can be formulated as 

nonlinear complementarity points of the so-called excess demand 

function. 

Shortly, simplicial algorithms divide S n into a finite number of 

simplices (this subdivision is called the triangulation of S1]) and 

search for a simplex which yields an approximate solution. Several 

triangulations of S n have been developed which underly these algorithms. 

Van der Laan and Talman (1982) have made a first approach to generalize 

these triangulations and algorithms to the product space of N unit 

simplices S. Recently Doup (1987) has given a survey of possible 

triangulations and algorithms on S. This generalization makes the 

algorithms suitable for the computation of Nash equilibria in 

noncooperative N-pers;on games and of equilibria in an economy with a 

block diagonal supply-demand pattern. 

In Dirven and Ttlman (1987) a simplicial algorithm on S n x R m
+ is 

developed to compute equilibria in economies with linear production. 

Now, S n represents the space of commodity prices while Rm, represents 

the space of activity variables. A subdivision of S n x R m
+ is developed 

which consists of (m+n)-dimensional cells, which are the carthesian 

product of n-simplices of the V-triangulation of S n (see Doup and Talman 

(1987)) and of Rm
+. Because of the linearity of the problem in the 

activity variables no simplicial subdivision of Rm, is needed. However, 

there are economie applications, for example when the production 

exhibits increasing returns to scale, where the above described 

subdivision will not suffice. In these cases we will need a simplicial 

subdivision of S n x Ra
+. 

In this paper re will develop a simplicial variable dimension 

restart algorithm which can be used to solve the nonlinear 

complementarity problem on S n x Rm,. Furthermore, a convergence 

condition for this algorithm will be formulated. The triangulation which 

underlies the algorithm is a combination of the V-triangulation of S n 

and the K-triangulation of Rm
+. Therefore we will call it the VK-

triangulation. 
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A variable dimension restart algorithm is such that it generates a 

sequence of adjacent simplices of varying dimension, starting with a 

zero-dimensional simplex (the starting point which can be chosen 

arbitrarily) and ending within a finite number of steps with an 

approximating simplex, i.e. a simplex which yields an approximate 

solution. This sequence of adjacent simplices traces a piecewise linear 

path of points from the starting point to an approximate solution. The 

piecewise linear path is traced by alternating replacement steps in the 

simplicial subdivision in order to move from one simplex to an adjacent 

simplex and by linear programming pivot steps in a system of n+m+2 

linear equations in order to tracé a linear piece of the path in a given 

simplex. 

This paper is organized as follows. In section 2 we will formulate 

the problem, section 3 discusses the triangulation of Sn x Rm
+ which 

underlies the algorithm. Finally, in section 4 the algorithm will be 

exposed and theorems on convergence and accuracy will be given. 

2. The problem 

Let Sn be the n-dimensional unit simplex, i.e. Sn = {xeRn + | 2.x^=l}. 

Let v be a continuous function from Sn x Rm
+ to R

n x Rm. Furthermore, 

v(p,y) = (z(p,y)T,x(p,y)T)T with p e Sn, y e Rm
+, z(p,y) € Rn+1, 

x(p,y) £ Rm and v satisfies a condition equivalent to Walras' law: 

(pT,yT)T.v(p,y) = Sipi.zi(p,y) + 2 ^ .x- (p,y) = 0 for all p e Sn, 

y e R\. 

The nonlinear conplementarity problem on Sn x Rm
+ is now to find to 

find a vector (p ,y ) such that v(p ,y ) < 0. Note that such a vector 
-k ~k -k "k "k 

(p ,y ) has the property ẑ (p .y ) ™ 0 if p ^ > 0 (i=»l, . . . ,n+l) , 

Xj(p'V,y*) = 0 if y*j > 0 (j=l,...,m), Zi(p*,y*) < 0 if p*. = 0 

(i-1,...,n+l), Xj(p*,y*) < 0 if y*= = 0 (j=l,...,m). To solve the 

nonlinear complementarity problem on Sn x Rm, we will develop in this 
m 
+ • 

paper a variable dimension restart algorithm which operates on Sn x R1 

Since Sn x Rm
+ is not a compact set, we have to f ormulate s-ome 

condition which guarantees convergence. As we will see in section 4, a 

sufficiënt condition for convergence is that x.= (p,y) < -t/> (where ip can 

be arbitrarily small) if y, > y^max for some finite y-max, j=l,...,m. 
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Under this condition the algorithm is confined to a compact subset of Sn 

x Rm
+ and convergence is assured. 

The algorithm traces a piecewise linear path of points in a 

triangulation of Sn x Rm
+ , starting in (E,y.). such that for some a and 

P, 0 < a < 1, the following condition will be satisfied: 

Pi = o.Ei if Zj.Cp.y) < p 

Pi - a - E i i f z i ^ p > y ) = £ 
Y j = «.2j if XjCp.y) < j3 

y j > «.ïj if Xj(p,y) - 0 

(2.1) 

Z(p,y) is the piecewise linear approximation to z(p,y) given by Z(p,y) = 

Sĵ Â .zCp ,y ) where (p,y) is a point in some t-simplex a(w , . . . ,wt+ ) 

with vertices w - (p ,y ), k=l,...,t+l, in the triangulation of 

Sn x Rm
+ and (p,y) = SkAk. (p

k,yk) . X(p,y) is the piecewise linear 

approximation to x(p,y) given by X(p,y) = S^A^.xCp ,y ) . Note that fi = 

max {maxĵ  Z^Cp.y), maxj X-(p,y)} and a = min (mini pi/Ei , min- y./y-}. 

The algorithm will terminate with a point (p ,y ) such that: 

Zi<P*,y*) = P if P*i > o . 

Z^p*^*) < /3 if p \ = 0 
* * * (2-2) 

XJ(P ,y ) - 0 if y :- > 0 
XjCp*^*) < p if y*j = 0 ' 

In section 4 it will be shown that such a point (p",y") yields an 

approximate nonlinear complementarity point of v(p,y), which is the 

problem we want to solve. 
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3. 'The VK-triangulation of Sn x Rm
+ 

In this section we will describe the triangulation which underlies the 

algorithm. Since the triangulation we use is a combination of the V-

triangulation of Sn and the K-triangulation of Rm
+ we call it the VK-

triangulation. The K-triangulation is constructed by Freudenthal (1942) 

and the V-triangulation is introduced in Doup and Talman (1987). 

Let T-^ be a 

In+m+l\Irn-l w i t h lT2i 

subset of In+]_ with |T-J = t-̂ , T2 a subset of 

t2, T = T-jy^ with |T| = t and let (n.,y.) be some 

n ,m point in S" x R"'+ 

Definition 3.1 

For t<n+m we define A(T-[_UT2) = A(T) as 

A(TXUT2) = {(p,y)e S
n x Rm

+| P i - «.£•_ if i <£ T± 

p^ > a.E-L if i e T-j_ 

ŷ  - a.y. if j+n+1 £ T2 

yj > O.ÏJ if j+n+1 e T2 

0 < a < 1 } 

Analogously to the V-triangulation of Sn we divide a nonempty set 

A(T) into A(7(T1),T2) for any permutation 7(T-j_) = (71,...,7tl) of the t-|_ 

elements of Ti . Let q(.y^) be defined as: 

q(7]_) = e(-Yj) 

q(7h) 
' P((7i 7 hO - P({71,...,7h.1))" 

h-2, 

-n ••ti/' with P(K) the relative projection in S11 of g. on SL'(K) = 

{p € Sn | p. = 0 , j£K} (see definit ion 3.2 below) and e(i) the i-th unit 
,n+m+l 

vector in R 
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Definltion 3.2 

Let K be a nonempty subset of In+i, and let K be the set given by 

K° - {i e K | p_i = 0} . The relative proiection vector P(K) of p_ on S
n(K) 

is given by: 

r o 
Ph(K) 

h € K 

Eh<l+|K°|)/(2keK E k + |K°|) h e K\K° 

l (1 " 2 k G K E k)\(2 k e K E k + |K°|) h e K° 

For K = 0 we define P(0) = p_. 

Note that for p_ in the interior of Sn, in other words for K = 0, 

we have that Ph(K) = Eh/(
skeK &k) f o r h e K a n d Ph ( K ) = ° f o r h « K. 

Definition 3.3 

For t-j+tg < n+m we define A(7(T]_) ,T2) as: 

AiyiT^ ,T2) = {<p,y)e S n x Rm
+|(p,y) = (E>ï) + S 1 aj-q^j) + S ^.eCj 

i=l x iGT0
 J jei'2 

0 < atl < . . . < ax < 1, v, > 0} 

In figure 3.4 the sets A(7(T-j_) ,T2) are illustrated for n=m=l. 

Figure 3.4 The sets A(7(T1),T2) for n=m=l 

'0^ 

rV 

CA((2),0) 

(E,.2) 

A ( ( l , 2 ) ^ 

L((l),0) 

A((2),{3}) 

A((),{3}) 

A((l),{3}) 

Ra 
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The union of A(7(T1),T2) over all permutations 7(T^) is A(T-j_uT2) . 

The (t^+t2)-dimensional set A(-y.(Ti) ,Ï2) is triangulated by the 

collection G(7(T-j_) ,T2) of (ti-M^) -simplices <?(w ,7r(T)) with vertices 

w1, . . . ,wtl+t2+1 such that: 

(i) wL -
E 

L y. J 

- i - i + S a(7i) m q(7i) + S bj m ï j . ( n + 1 ) e(j) 
•J 2 

with a(7-) and b- integers and 0 < a(7t ) < ... < a(7i) < m-1, 

b^ > 0 and m the gridsize of the triangulation. 

(ii) 7r is a permutation of the elements of Ti and T2 

w - (n1, . . . ,wtl+t2) . 

(iii) w k + 1 - wk + m"1 q(7rk) 

where q(?rk) = q(7i) if ?rk = -y± e T-]_ 

and q(7rk) - ï^. (n+i) .e(»rk) if ^ e T2. 

The union G(T1UT2) - G(T) of the G(7(T-L) ,T2) ' s over all permutation 

vectors 7 of T^ yields a triangulation of A'CT-iUT̂ ) and the union of 

these triangulations G(T) of A(T) over all feasible T with t<n+m induces 

the VK-triangulation of Sn x Rm
+ with gridsize m . In figure 3.5 the 

triangulation is illustrated for n=m=l. 

Figure 3.5 The VK-triangulation for n=m=l 

a((E,ï),3) 

V((E,ï),(2,D) 
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Let cr(w ,7r(T)) and a(w ,TT(T)) be two adjacent simplices in 

G(7(T-i),T2) with common facet r opposite vertex wr, 1 < r < t+1, then g_ 

is obtained from o by the following table where the (n+m+1)-vector a is 

given by a- = a(i) , i e T-̂ , a^ = b^, i e T£ and a^ = 0, i ï T : 

Table 3.6 replacement of vertex wr 

w 1 2E(T) a 

r = 1 w + m" .q(7r-i) (1*2' • • • ' 7 r t , ? r l ' ) a + e(7r-i) 

K r < t + 1 w 1 (TT-^, . . . , 5 r r _ 2 , 7 r r , 
a 

r = t + 1 w - m . q ( ? r t ) ( 7 r t , 7 r 1 , . . . ,*•£_!_) a - e ( 7 r t ) 

Lemma 3.7 

Let a(w ,7r(T)) be a simplex in G(7(T-j_),T2) and let r be the facet of o 

opposite vertex w , 1 < r < t+1. Then r lies in the boundary of 

A(7(T1_),T2) if and only if one of the following cases holds: 

(i) r=l, TT-L = 7 1, a (*••!_) = m-1 

nr - Ti' (ii) 1 < r < t+1 

a(7rr)-= aCTTj.^) 

(iii) r =» t+1, 7rt = 7tl, a(7rt) - 0 

r-l _ 7i-l' for some 2 < i < t, 

(iv) r = t+1, ?rt e T2, a(wt) - 0 

Lemma 3.7 is a direct result of the definitions of A(7(T-,) ,T~) and 

G(7(T^),T2). The following three lemma's describe the cases of lemma 3.7 

in more detail. Let Sn(T1) x R
m
+(T2) = t(p,y) e S

n x R m
+ | p £ = 0 for 

all i <£ T-j_ and y- _/n+1) = 0 for all j € T2) . 
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Lemma 3.8 

Let er(w ,7r(T)) be a t-simplex in .G(7(T-̂ ) ,T2) with the facet r of a 

opposite vertex w in the boundary of A(7(T-^),T2), then r lies in 

Sn(T1) x R
m
+(T2). 

Lemma 3.9 

Let c(w ,7r(T)) be a t-simplex in G(7(T-]_) ,T2) with the facet r of o 

opposite vertex wr, 1 < r < t+1, in the boundary of A(7(T^),T2). Then, 

according to lemma 3.7(ii) there is some i such that 7r -7-, Tr.i=7i.i, 

2 < i < t-j_, and a(7rr) = &{-KX_-^) . Now, r is a facet of the t-simplex 

2(w1,7r(T)) in G(a(T1),T2) with a(T1) = (71, • . - n±.2 ^i'^L-l'^i+1' t̂i> 

and TT ('T) = (TT ] _ , - • • , T r . 2 >nr>nT„i>''xr+i> • • • »T t ) • 

Lemma 3 .10 

Let tr(w ,7r(T)) be a t-simplex in G<7(T1),T2) with the facet r of o 

opposite vertex w in the boundary of k(i(JX.-y) ,1<y) • If flV = 7tl and 

a(7rt) = 0 then r is the (t-1)-simplex 2;(w1,?r(T)) in •G(7(T1) ,T2)) with 

T(1) = (7r1,...,7rt.1), I-L = T1\{7tl} and 7(ï1) - (7l, . . . ,7^^) • If 

jrt e T2 and a(7rt) = 0 then r is the (t-1)-simplex CT(W , TT(T)) in 

G(7(T1),T2)) with TT(T) = (TT1 7rt.1) and T2 = T2\{vrt} . 
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4. The algorithm 

In this section we will describe the steps of the variable dimension 

restart algorithm on S n x R m
+ and formulate conditions on convergence 

and accuracy. Let S n x R m
+ be triangulated as described in section 3. To 

find an approximate solution to the nonlinear complementarity problem 

the algorithm traces, by alternating linear programming pivot steps and 

replacement steps, a piecewise linear path of points satisfying (2.1). 

Definition 4.1 

Let T-j_ be a subset of In+i with 

with |T2| - t2 

,wS+1 

equations: 

|TX| T 2 a subset of I n + m + 1\I n + 1 

cr(w , . 

and T = T-L U T2, |TJ - t « t1+t2. A g-simplex 

) with g = t,t-l is T-complete if the system of linear 

g+1 
E A, 
k=l l 

f Z(P
k,yk) 

x(pk,yk) 
h£T n 

- -\ •< 

r o ] 
e(h) e 

- 0 S B 0 
0 0 

. 1 . 

(4.1) 

(where e is a (n+m+1)-vector of ones), has a solution A^ > 0, 

k=l, . . . ,g+1, /i^ > 0, h € T and ft. Such a solution is called feasible and 

will be denoted by (A,ju,j8). 

Definition 4.2 

A T-complete (t-1)-simplex CT(W ,...,w ) is complete if for all (p,y) in 

a: P i = 0 if i « T X and y j . ( n + 1 ) = 0 if j € T2. 

Nondegeneracy Assumption 

If CT(W ,...,ws+ ) is a T-complete g-simplex in S n x Rm
+, then for g=t-l 

system (4.1) has a unique solution (X,/J,,/3) with A^ > 0, k=l,...,t, and 

/î  > 0, h §Ê T, while for g=t at most one of the variables (A,^) is equal 

to zero at each feasible solution. 

Under the nondegeneracy assumption a T-complete t-simplex a 

contains a line segment of solutions (\,jj,,0) with A > 0 and p > 0. A 

solution with one of the components of (X,pi) equal to zero is called a 

basic solution. A line segment of solutions (X,fj.,p) can be traced by 

making a linear programming pivot step in (4.1). If Â . is equal to zero 
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at a basic solution the facet of o opposite w is a T-complete (t-1)-

simplex. 

In order to tracé the above mentioned piecewise linear path the 

algorithm generates for varying T a sequence of adjacent T-complete t-

simplices with common T-complete facets in A(T). The algorithm starts 

. ) where t 

.0 . ,fc0, 
with the unique 1-simplex er ((p_,y_),t ) where t is the (unique) index 

such that vfc (p.,y_) — max̂  v̂  (p_,y). a is {t }-complete with a basic 

solution equal to A-̂  - 1, A£ = 0, /ẑ  = vt0(D.,y.) - v^p^y.) , h?*t
0, and 

/? = vt£)(p_,y). Now, a linear programming pivot step is made with 
2 2 0 

(v(p >y ).1) ïn t n e linear system (4.1) corresponding with o by 
2 2 - 1 0 

increasing A2 away from zero where (p ,y ) = (p_,y_) + m .q(t ) if 

t° e In+1 and (p
2,y2) = (E,yJ + m"

1.^. ( n + 1 ) . e(t°) if t° e In+m+1\In+1 • 

For given T-,, 7(T-j) and Ï£ the T-complete t-simplices a(w ,7r(T)) in 

G(7(T-i),T2) form sequences of adjacent simplices with T-complete common 

facets. Since each T-complete t-simplex in G(7(TT),T2) has at most two 

T-complete facets and each facet of a t-simplex is either a facet of 

another t-simplex in G(7(T-̂ ),T2) or is a facet in the boundary of 

A(7(Ti),T2), these sequences are either loops or have two end simplices. 

An end simplex is either a t-simplex with a T-complete facet T in the 

boundary of A(7(T->),T2) (this corresponds with one of the cases of lemma 

3.7) or a T-complete t-simplex having a solution (A,yu,/3) with n = 0 for 

some s € T. In the latter case o is also Tu{s} -complete. The Tu{s}-

complet'e t-simplex o is complete if o lies in Sn(TnU{s}) x Rm+(T2) if 
s e I n + 1 and if o lies in Sn(T1).x R

m
+(T2U{s}) if s e

 I
n+m+l\

In+l• M o t e 

that <T is always complete if |ï| = n+m, since then Sn(T-|_U{s}) x Rm+(T2) 

respectively Sn(T-[_) x Rm+(T2U{s}) equals S
n x Rm+. If o is not complete 

then a is a facet of just one (t+1)-simplex g_ in G( (7(T]_) , s) ,Tn) 

respectively in G(7(T-]_) ,T2U{s}) as described in lemma 4.3 below. In the 

former case, i.e in the case that an end simplex has a T-complete facet 

T in the boundary of A(7(TT),To), we have, if the T-complete facet r 

lies in Sn(T-r) x Rm,(T2) then r is a complete simplex (see lemma 3.8), 

if the facet r does not lie in Sn(T1) x R
m
+(T2) then r is either a facet 

of a T-complete t-simplex in G(̂ (T]_) ,^2) as described in lemma 3.9 or r 

is a T-complete (t-1)-simplex in G(7(T1),T2) or in G(7(T-]_) ,T2) as 

described in lemma 3.10. 
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Lemma 4.3 

Let ai^^iT)) be a Tu{s} -complete simplex in G(7(T-]_),T2). If o is not 

complete then o is a facet of the T-complete (t+1)-simplex CT(W ,TT(T)) 

with T = TU{s} and TT(T) = {JT̂  jrt+1,s}. If {s} e I n + 1 then a lies in 

A'(7(ïi).T2) with 7(ïi) - (7i,..-,7tl,s). If (s) 6 In+ffl+1\In+1 then a 

lies in A(7(T1) ,T2) with T_2 » T2 U {s}. 

From the above discussion we can conclude that for varying T the 

sequences of T-complete simplices in G(T) can be linked to form 

sequences of adjacent simplices of varying dimension. Under the 

convergence assumption as formulated below the algorithm is confined to 

a compact subset of Sn x Rm, (see theorem 4.5) and consequently, a 

sequence is either a loop or a path having two end simplices. One end 

simplex is the 1-dimensional simplex o ((p_,2),t ), whereas all other end 

simplices are complete simplices. The path starting in a connects the 

starting point (&,%) with a complete simplex. This path is generated by 

the algorithm. In theorem 4.6 it is shown that a complete simplex yields 

an approximate solution to the nonlinear complementarity problem on 

Sn x Rm
+. 

In the following lemma and theorems v is a continuous function from 

Sn x Rm
+ to Rn+1 x Rm as given in section 2. So, v(p,y) = 

(z(p,y)T,x(p,y)T)T with p e Sn, y e Rm
+, z(p,y) e R

n+1, x(p,y) e Rm and 
T T T v satisfies a condition equivalent to Walras' law, i.e. (p ,y ) .v(p,y) 

= E-j^.z^p.y) + S^y, .x-(p,y) = 0 for all p e Sn, y e Rm+. Furthermore, 

Z(p,y) respectively X(p,y) is the piecewise linear approximation to 

z(p,y) respectively x(p,y) with respect to the chosen VK-triangulation 

of Sn x Rm
+. 

Lemma 4.4 

For all e > 0, for all x > 0, there is a S(e,x) > 0 such that for each 

VK-triangulation with mesh size 5' < S(e,x), for all (p,y), p e Sn, 

yj e [0,y-max+2x], for given Yj m a X > 0, j=l,...,m, holds that: 

|pT.Z(p,y) +-yT.X(Pjy)| < (1+Sjyj).e 
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Proof 

Since v is a continuous function and Sn x [ 0,y-j_max+2x] 

x ... x [0,y max+2x] is a compact set there is a 8 > 0 such that for all 

r,s e Sn x [0,yi
max+2x] x ... x [0,ym

max+2x] holds that 

maX| |r^ - s?\ < 5 implies max^ |v^(r) - v-(s)j < e. Consequently, for 

(p,y) e aCw1 wt+1) with w k=(p k,y k), k=l,...,t+l, (p,y)-

SkAk(p
k,yk), Ak > 0, SAk = 1, we have, using "Walras' law": 

|pT.Z(p,y) + yT.X(p,y)| = 

| s i p i Z i ( p , y ) + SjyjXjCp.y) - { 2 i p i . z i ( p , y ) + 2 j y j . X j (p ,y)} | -

IS^iCZiCp.y) - z ^ p . y ) ) + SjyjCXjCp.y) - XjCp.y))! = 

l S iP i { S k A k^ z i (P k ' y k ) ' z i (P .y)>) + S j y j C Z ^ C X j ^ y 1 * ) - XjCp.y))! < 

a + s j y j ) . e , 

s ince ' " ' " k " k ^ - " '~ "^ ' ' - ~~A ' " ' ~ k - k N | z i ( p K
) y k ) - 2 i ( p , y ) | < £ and |x.j (p^.y*) - X j ( p , y ) | < 

Q 

Convergence Assumption 

There are finite y,max > 0, j=l,...,m such that x.= (pk,yk) < -ip, for some 

i, > 0, if ykj > y j
m a x, j-1 m. 

Now, using lemma 4.4 with e = i> we can show that under the convergence 

assumption the algorithm is confined to a compact set. 

Theorem 4.5 

Let x > 0- Under the convergence assumption there is a mesh size 8' > 0 

such that the algorithm, when operating in a triangulation of Sn x Rm, 

with mesh size 5', is confined to the compact set Sn x [0,y-Lmax+x] 

x ... x [0,ym
max+x]. 
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Proof 

Let 5' < min(S(ij},x) ,x) • Suppose there is a t-simplex a' with vertices 

w' = (p' ,y' ), k=l,...,t+l, which is visited by the algorithm, such 

that for some h, for some k, y' ^ > y-^^+X- No te that er' does not lie 

in Sn x .[O.y^^+x] x ... x [0,ym
max+x]. If a' is visited by the 

algorithm there must be some t-simplex o with vertices w = (p ,y ), 

k=l,...,t+l, be visited by the algorithm with yk
h e (yh

max,yh
max+2x] for 

all k. But then, according to the definition of A(7(T-i),T2) o must lie 

in some A(7(T1),T2) with T2 such that h+n+1 e T2 and o must be T-

complete. According to the convergence assumption, x^(p ,y ) < -ip for 

all k and consequently, X^(p,y) = SjcAjcXj1(p ,y ) < -ïp. Furthermore, since 

o is T-complete we have according to (4.1) that X^(p,y) = 

max(max£ Z^(p,y), max. X^(p,y)) and therefore Z^(p,y) < -tf>, i=l,...,n+l 

and X^(p,y) < -if>, j=l m. But then we have p.Z(p.y) + y.X(p,y) < 

-(1+S-y-).ip. However, according to theorem 4.4 this cannot be the case. 

In other words such a simplex a cannot be visited by the algorithm. 

Consequently, also a' cannot be visited by the algorithm and the 

algorithm is confined to Sn x [0 .y-^^+x] x ... x [0,ym
max+x]. 

G 

Theorem 4.6 

For all e > 0, for all x > 0 there is a mesh size 8(e,x) > 0 such that 

each complete simplex in Sn x .[0Iy1
max+x3 x ... x [0,ym

max+x] with 

solution (A ,/J. ,0 ) to (4.1) in the VK-triangulation with mesh size 

smaller than 5(e,x) contains a point (p ,y ) with: 

1/5*1 < < 

/3* - £ < z£(p*,y*) < fi* + e if p*-_ > 0 

2i(p",yx) < ^ + e if P X
± - o 

/T - e < Xj(p",y") < 0* + e if y ̂  > 0 

Xj(p",y ) < /T + e if y", = 0 
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Proof 

Let a (w , . . . ,w ) be a complete simplex in the VK-triangulation with 

mesh size smaller than 8(e,x). The linear system (4.1) with respect to 

o has a solution (A ,/J. ,/3 ) such that A k > 0, k-1, . . . ,t and ̂  h > 0, 

h € T. Let (p*,y*) be given by <p*,y*) - 2kA*kw
k. Since SkA*k = 1, 

(p ,y ) lies in a , Furthermore, we have from (4.1) that 

SkA\Zi(p
k,yk) - 0* if i e Tlf SkA*kz1(p

k,yk) = /?* - p*± if i « T1, 

2kA\xj(p
k,yk) = fi* if j e T2, SkA*kxj(p

k
fy

k) -/?*.- / , if j € T2. 

Consequently, since (p ,y ).v(p ,y ) = 0 we have: 

| (1+2**5 )/J*1 

Id+Sy*^* - (p*T,y*T).v(p*,y*)| = 

|/3 - p .z(p ,y ) + Sy yp -y \x(p ,y ) | < 

\fi* - P*
T. 2(p* ) y*)| + \Xy*yP* - y*T.x(P*,y*)| -

|p*T(EkA*kz(p
k,yk) - z(p*,y*))| + |y*T(ZkA*kx(p

k,yk) - >:(P*,y*))| < 

e + Sy*j.e - (l+2y*j)e, 

s ince p * i = 0 i f i £ Tx and y*. = 0 i f j g T2 , 

1 Z i ( p k
> y

k ) - Z i ( p * ( y * ) | < e and | x j ( p k , y k ) - X j ( p * , y * ) | < e. 

So, | /3*| < e. 

Furthermore, 

K ( p * , y * ) - /3*| - |S k A* k ( z i (p* ,y*) - Z ; L ( p k , y k ) ) | < e i f p* . > 0 

Zi(p*,y*) - P* * S k A* k (z i (p* ,y*) - z i ( p k , y k ) ) < e i f p ^ = 0 

| x j (p* ,y*) - • / ] - I ^ A ^ X j t p * ^ * ) - X j ( p k , y k ) ) | < e i f y*j > 0 

Xj(p*,y*) - j9* * S k A* k ( X j (p* ,y*) - X j ( p k , y k ) ) < e i f y*. - 0 

D 
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Fr om the above theorem we can conclude that the point (p , y") in a 

complete simplex o gives an approximate complementarity point on S x 

[0,y^max+X] x ... x [ 0, ym
maX+X' ] with accuracy bounds given by 2e. In 

most economie applications we can indeed restrict the problem to Sn x 

[0.y-^^+x] x ... x [0,ym
max+x]. Combining theorem 4.5 and 4.6 we derive 

that when the algorithm operates in the VK-triangulation with mesh size 

S' < mln(S(e ,x) ,8(ij),x) ,x) both convergence and an accuracy of 2e is 

assured. 

Finally, we give the steps of the algorithm in detail: 

Step 0 

Let t be the (unique) index such that vr (p_,y_) = maxi v̂ (t2,y) 
.0 

If 

(E>ï) = e(t ) then {(E,y.)} i-s complete and the algorithm terminates. 

Otherwise set T = {t0} and t = 1. Furthermore, set Tj_ = t and T2 = 0 if 

t° G In+1 and Tx = 0 and T£ = t° if t° e In+m+1\In+1. Set w
1 = (p,y) , 

ff(T) = (t°) aiw1,*^)), r - 2, 0, i e In+m+l' Al ~~ 1' 

^h = vto^'^) " vh(2'2) h^t° and £ = vt0(E,y_) . 

Step 1 

Perform a linear programming pivot step by bringing (z(w-),x(w-) ,1) in 

the linear system: 

t+1 

k-l l 

k^r 

f 2 ( P
K , y K ) 1 ' -! ' 0 ' 

, k kx e(h) e 
x ( p K , y K ) + E u-, 

h£T h 0 - 0 0 
_ 0 

1 - . - 1 . 

If fj. becomes zero for some s £ T then goto step 3. Otherwise A becomes 

zero for some r ̂  r. 

Step 2 

If r - l , r-, = 7-1 and a(n-,) = m-1 then the facet of o opposite the 

vertex w is a complete simplex and the algorithm terminates. 

If 1 < r < t+1, 7rr - ~/i, Tt-j.̂  =• Ti.x- 2 < i < t± and a(>r) =
 aOr_]_) 

then tr(w ,7r(T)) and 7(T-i) are adapted as given in lemma 3.9. Return to 

step 1 with r = r. 
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I f r = t + 1 , 7rr = 7 t and a(7rfc) = O then s e t s = Tj\{. and t 

t-1, while cr(w ,7r(T)) and 7(Ti) are adapted according to lemma 3.10. Go 

to step 4. 

If r - t+1, 7rt e To and a.(nJ) = 0 then set s = 7rt, T2\{' and t = 

t-1, while CT(W ,7r(T)) is adapted according to lemma 3.10. Go to step 4. 

In all other cases a(w , «-(T)) and a are adapted according to table 3.6 

by replacing wr. Return to step 1 with r the index of the new vertex of 

<J . 

Step 3 

If s e In+1, then if PJL = 0 for all i g T^Uts} and yj _ (n+;n = 0 for all 

j £ In then o is a complete simplex and the algorithm terminates. 

Otherwise set T-L - T]_U{s} and t = t+1, while crCw
1,^!)) and 7(T]_) are 

adapted according to lemma 4.3. Return to step 1 with r = t+1. 

If s € In+m+i\In+i. then if pj - 0 for all i € Tx and Vj_(n+1) = 0 for 

all j £ T2U{s} then o is a complete simplex and the algorithm 

terminates. Otherwise set T2 = T2U{s} and t = t+1, while CT(W ,TT(T)") is 

adapted according to lemma 4.3. Return to step 1 with r — t+1. 

Step 4 

Perform a linear programming pivot step by bringing (e(s),0) in the 

linear system: 

f z(p*,y*) 1 ' • * ' 0 ' 
t + 1 , k k. e(h) e 
, 2 , Ak xCp^.y*) + S u-, 

h<2T h 
" ^ = 0 

k=l K + S u-, 
h<2T h 0 0 

1 h ^ s «. ^ . 1 , 

If /ii becomes zero for some h &. T, h ̂  s, then return to step 3. 

Otherwise, A becomes zero for some r and return to step 2. 
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