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1 Introduction 

Ever since Erlang's and Engset's classical results for open and closed 

single service facility models, the issue of whether an open or closed 

modeling approach is to be used for a given service network such as a 

computer or communication system has been actual (cf. [30]). At first 

glance an open modeling seems more natural as jobs that are usually gener-

ated exteriorly travel through a network in order to receive a certain 

amount of services after which it departs the system. Systems that are 

closed by nature such as Engset's classical machine interference system or 

relatedly a maintenance model for a fixed number of devices, seem much 

more special. However, typical present day service networks such as a cen­

tral processor system with a fixed number of input sources or a manufac-

turing sytem with a transport device are to be regarded as closed, since 

upon completion of a job's services a new job is instantly inserted (cf. 

[15], [30], [31]). Also, communication or broadcasting systems, like ALOHA 

or CSMA networks (cf. [10], [15]), can be analyzed as a closed two station 

service network with jobs representing transmitters that are idle (not 

transmitting) while at station 1 and busy (transmitting) while at station 

2 (cf. [24]). 

Beyond the natural modeling issue, however, there are other reasons for 

preferencing an open or closed modeling. For open networks that exhibit a 

product form, the "stationary independence" of the stations enables an 

analysis or computational procedure per station. Closed product form 

expressions, in contrast, can be computationally unattractable as the par-

titioning constant is to be calculated. Various techniques, such as mean 

value analysis (cf. [12]), asymptotic analysis (cf. [9]), or statistical 

mechanics (cf. [11]) can thus be involved. On the other hand, analytic 

results for closed form systems might lead to limiting results for open 

systems (cf. Barbour [1]). For non-product systems, open modeling can be 

handy for applying simple results as Little's formula, but generally clos­

ed networks are then more appropriate as computational procedures usually 

require a finite or truncated state space. 
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This paper therefore is concerned with estimating how much a perfor­

mance measure of interest like a throughput or system utilization differs 

for open and closed versions of a particular service network. No condi-

tions such as a product form structure will be imposed, so that the analy-

sis applies to networks with phenomena as blocking, synchronous servicing 

or breakdowns. A general condition will be provided from which an error 

bound or rate of convergence as the input source tends to infinity can be 

concluded (section 2). 

This result can be seen as a combined perturbation and state space 

truncation result. Though state space truncation is a common feature for 

practical computations, explicit error bounds or rates of convergence are 

hardly available in the literature. Convergence results of state space 

truncations are extensively studied with most notably references as [6] or 

[16]. The latter reference also reports simple error bounds but these are 

just robust bounds and do not secure an order of accuracy. Similar state­

ments hold for the somewhat related results of [2] and [14]. In the parti­

cular context of approximating open models by closed, convergence results 

have been established by [1] and [30]. Among various other results such as 

on monotonicity, throughput bounds and insensitivity, the latter reference 

also includes some error bounds for approximating some special Erlang 

models. 

The condition in this paper is straightforward and directly yields 

error bounds for arbitrary networks. The verification of this condition 

basically comes down to providing estimates for so-called bias terms of 

reward structures. This in turn can frequently be transformed to 

monotonicity results, for which various proof-techniques that have been 

developed over the last couple of years (cf. [17], [19], [21], [23], [27], 

[29]), might be applicable. 

The results will be illustrated for a particular network of practical 

interest: a queueing network subject to breakdowns. Breakdowns are a main 

problem of concern in developing and evaluating computer, communication or 

manufacturing systems. Particularly, performance evaluation of computer 

systems with disturbances, interruptions or breakdowns currently receives 
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considerable attention under the name of "performability" (cf. [8], [18]). 

As breakdown systems do not generally exhibit a product form expression, 

numerical or approximate computations are thus involved so that error 

bounds for closed modeling of open systems become most relevant. To this 

end, the necessary condition will be verified by establishing monotonicity 

results and estimates for the bias terms of the given reward structure. An 

explicit error bound for the throughput of the given breakdown network 

will so be derived (section 3). 

For expository convenience and to highlight the essential features, the 

presentation will be restricted to exponential queueing networks with non-

distinguishable jobs and in which only one job can change at a time. 

Extensions to multi-class, non-exponential and batch service networks 

however will briefly be argued as being essentially similar (section 4). 

2 General model and main comparison result 

Consider an arbitrary single class exponential queueing network such as 

illustrated below with either a Poisson arrival input with parameter A 

(hereafter called the open case) or a finite source input with M sources 

and exponential holding times with parameter 7 = A/M (hereafter called the 

closed case). 
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More precisely, let the network have N service stations and denote by n -
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(nx ,n2 nN) that nL jobs are present at station i, i - 1 N. 

Further, for i = 1,...,N, let n+ei and n—ei be the state equal to n 

with one job more respectively less, for n^O, at station i and introducé 

n+e0=n. Consequently, the state n—e^e^ is the state equal to n with 

one job moved from station i to j. Then the transition rates for a change 

from a state n into a state n—e^ej are given below, where j = 0 corre-

sponds to a departure from the system at node i while i = 0 corresponds to 

an arrival at the system at station j. Herein as well as throughout we use 

n - nx + ... + nN. 

qCn.n-ei) - ̂ (n) (i = 1,..,N) 

qCn.n-ei+ej) = nii (n) (i,j - 1.....N) 

{A Oj(n) for the open case 

[M-n] [A/Mjaj (n) for the closed case. K ^ - i - ) 

In words that is, a job leaves station i and leaves the system or routes 

to station j, with state dependent intensities pL(n) and pii (n) respec­

tively, while upon arrival of a job at the system it enters station j with 

state dependent probability ô  (n). Here it is noted that we allow j - i 

or j - 0, so that blocking phenomena can be modeled. For example, with 

probability a0(n) an arrival is rejected and lost. 

Without loss of generality assume that the open and closed model are 

irreducible at state spaces S and § C S with stationary distributions 

TT(.) and w(n) respectively. Throughout we will implicitly assume that 

the open and closed model are considered restricted to their irreducible 

sets. Now, let r(n) be some reward rate whenever the system is in state 

ü. Then, 

g - S s ir(n) r(n) (2.2) 

and 

g - S 5 w(n) r(n) (2.3) 

represent the performance measure under the reward rate r for the open and 
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closed case respectively. Here, without restriction of generality, we 

assume these performance measures to be well-defined. Without knowing or 

using the stationary probabilities TT(.) and n(.), we now wish to derive 

an error bound for the difference |g — g| . To this end, we assume that 

for some finite number Q: 

Q - SUP 5 [A + 2± ^(n) + 2 ^ Mij(n)] (2.4) 

so that we can apply the Standard uniformization technique (cf. [20], 

p.110) to transform the continuous-time models in discrete-time models. 

More precisely, we define one-step transition probabilities p(n,n—e^e^) 

and p(n,n—e^e^ ) for the open and closed case by: 

p(n,n-ei) - pCn.n-e^ = fiL (n)/Q 

pCn.n-ei+ej) = pCn.n-e^ej ) - lili (n)/Q (j*i, j,in0) 

but 

r p ( n , n + e j ) - AQ j(n)/Q (j - 0 , 1 , . . . , N ) 

^ p ( n , n + e j ) = [M-n][A/M]Qj(n)/Q (j = 0 , 1 N) 

and 

ƒ p(n,n) = l + ^ C n V Q - [2iMi (n)+Sl _ j Mu(n)+A]/Q 

^ p(n,n) - 1+Pil(n)/Q - [SiMi(n)+S± , ó ^d(n)+A[M-n]M"i]/Q (2.5) 

From now on, we always use an upper bar "-" symbol to indicate the closed 

case and the symbol "(-)" to indicate both the open and closed case. Now 
(-) 

in order to compare the values g and g, let the operators T 
C-) . 

and {Tt|t-0,1,2,...} for arbitrary functions f be given by 

'ï'fCn) - sj . ^ V ( n ^ - e ^ ) f ( n - e ^ ) 

(2.6) 
(T> + 1 =

(T5 (T> (t = 0,1,2,...) 
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and define the reward functions {Vt 11-0,1., 2, . . . } at S and 

{Vtjt-0,1,2,...} at S by 

(-) N-x (-) 
VN " 2 t-o Tt^/Q (2.7) 

Then by virtue of the uniformization technique (cf. [20], p. 110) and the 

irreducibility assumption of S and S, we obtain by Standard Markov reward 

theory (cf. [13]) 

(g} - lint | (V> (n) (2.8) 

for arbitrary n e S c S. The following key-result can now be proven. It 

provides a pair of conditions that guarantees an error bound for |g — g|. 

These conditions will be argued and illustrated later on. 

Theorem 2.1 Suppose that for some state ï e S, some nonnegative func-

tion p, some constants B and C and all t>0, n e S: 

Tt M(Ï) < B (2.9) 
i 

| n Sj aó (n) [V t (n+e^) - V t ( n ) ] | < M(n)C. (2.10) 

Then 

|(VN - V N ) ( Ï ) | < AN B C / [MQ] (2.11) 

|g - g | < A B C / M. (2 .12) 

Proof Clearly, (2.12) follows from (2.8) and (2.11). By virtue of (2.6) 

and (2.7), we have for all t > 0: 

Vt+1 - r/Q + T Vt. 
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Since T remains restricted to S C S, we can thus write: 

(VN - VN)(Ï) - (T V ^ - TJg.^Ü) 

- (T - T) V ^ ï ) + f(VK.x - Vg.jXÏ) 

= S lil Tt [(T-DV^^JCi) + TN(V0-V0)(Ï) (2.13) 

where the last term follows by iteration. From the uniformization 

construction (2.5) and the definition (2.6), however, we readily obtain 

for any n e S and s < N: 

(T-T)Vs(n) - n A[MQ]-
X ^ Qj(n)[Vs(n+ej)-Vs(n)] (2.14) 

(-) 
By substituting (2.14) in (2.13), recalling that V0(.)-0, taking 

absolute values and noting that expectation operators Tt are monotone 

operators, we thus obtain from (2.10): 

|(VN - VN)(Ï)| < ACtMQ]"
1 Sj:j Tt Ai(ï). 

Condition (2.9) completes the proof. D 

Remark 2.2 (/i-function) Typically one can think of the /j-function to be 

a polynomial in n. For example, with the terms Vt (n+e^)—Vt(n) uniformly 

bounded in all t, n and j, we can take /j(n) - (1+n). Condition (2.9) then 

simply requires the expected system size to remain bounded over time. This 

is most natural in practice. 

Remark 2.3 (Bounded bias-terms) From Markov reward theory it is stan-

dardly known that the so-called bias-terms |Vt(n+e^)—Vt(n)| can be esti-

mated from above for any given n and j and uniformly in t as based upon 

mean first-passage time results (cf. [7], [13], [26]) provided the reward 

rate r is bounded. Particularly, with the state space S being finite, an 

estimate C can then be provided uniformly in t, n and j depending on mean 

first passage times. For the unbounded case similar estimates can be 

provided under appropriate conditions (cf. [26]). For multi-dimensional 
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applications, however, mean first passage times are extremely hard to 

obtain (cf. [7]) and even not robust bounds seem to be generally avail-

able. For the application in section 3, therefore, we will estimate these 

bias terms in a direct manner based on monotonicity results. 

Remark 2.4 (Unbounded reward rate) Note that no assumption has been 

made as to the reward rate r. Particularly, we can think of unbounded 

functions such as 

r(n) - n 

for evaluating the mean system size. Other possibilities of interest are: 

r(n) - 1{B}(n), 

where 1{B}(-) denotes an indicator function of a subset B, so as to cal-

culate the steady state probability of a set B or 

r(n) - St Mi(n) 

by which we compute the output rate and thus the throughput of the system. 

Remark 2.5 (Mixed open and closed networks) Note that no conditions are 

imposed other than the irreducibility assumption and the uniformly bounded 

transition rates. Particularly, we may have mixed networks with a fixed 

number of jobs traveling within one subset of stations that cannot leave 

the system and jobs that enter from outside which travel through another 

subset of stations after which they leave the system. As the transition 

rates such as the service and/or arrival rates, however, depend on the 

total system state, these disjoint station clusters cannot be dealt with 

in isolation and are to be regarded as one system. This can be practical 

for modeling breakdowns, priority jobs or multiple job-types, as will be 

illustrated by the breakdown application in the next section. 
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3 Application: A Jackson queueing network with breakdowns 

In order to illustrate how the conditions (2.9) and (2.10) can be veri-

fied for concrete networks as well as to provide a result of practical 

interest, this section is concerned with applying theorem 2.1 to queueing 

networks with breakdowns. Such systems do not exhibit the celebrated 

product form expression but are of interest such as for evaluating the 

reliability or efficiency of a computer system which from time to time can 

be down. For expository convenience we restrict ourselves to the "simple" 

case of a Standard Jackson network with one type of breakdown. Similar 

results, however, can be expected along the same lines for other more 

complex networks and multiple breakdowns. 

3.1 Model 

Consider a Jackson queueing network with N service stations which is 

subject to breakdowns, independently of whether the system works or not, 

at an exponential rate with parameter vx . A breakdown renders the total 

system inoperative for an exponential period with parameter u0 . The 

service speed of station i when n.± customers are present is given by 

fii(ni) which is assumed to be non-decreasing in n± . Upon service comple-

tion at station i a job routes to another station j with probability p±j 

or leaves the system with probability pi0 = [l-SJ<Npij], i=l,...,N. Arri-

vals at the system are generated either by a Poisson process with para­

meter A (the open case) or by a finite source input with M sources and 

exponential source parameter [A/M] (the closed case). Upon arrival a job 

is assigned station j with probability p0>j - a^ . Without restriction of 
n 

generality it is assumed that the routing matrix (Pij)i.j-o i-s 

irreducible. The above description is visualized for an example in figure 

2 below. 
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FIGURE 2 

The breakdown description above is known in the literature as the "in­

dependent breakdown" case in contrast with the "active breakdown" case in 

which the system can go down only when it is working (cf. [5], p. 101). 

Either case appears to be as equally untractable analytically. For the 

simple case of a single multi-server facility without arrival blocking and 

either type of breakdown, closed form expressions have been obtained only 

for the generating function of the queue length (cf. [5], p. 103). For the 

general case as considered above no closed form expression has been re-

ported and certainly a product form will not hold (cf. [4]). The through-

put of the open case is equal to A assuming that the system is stable. For 

the practically more interesting closed case, however, there exists no 

counter part. To this end, we will apply the results of section 2. 

3.2 Reformulation 

First we need to reformulate our system in the setting of section 2. 

Therefore, as per the figure above and also referring to remark 2.4, 

consider two special stations N+l and N+2 and one special job which is 

always present alternately visiting these two stations with respective 
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exponential holding tintes with parameters vx and i/Q . When the job is at 

station N+l the system is up while when at station N+2 the system is down. 

The state of the system is denoted by (n,0) representing that nA jobs are 

at station i, i=l,...,N while 9 = n N + 1 indicates that the system is down 

for 6 = 0 and up for 0 = 1. The corresponding transition rates for this 

system with N+2 stations as per (2.1) are parametrized by 

j-PijCn.G) - l{e_1}Mi(n1)pij (j<N) (i<N) 

/ii(n,e) - 1 x p1(n1)pi0 (i<N) 

P ™ P = 1 
rN+l.N+2 rN+2,N+l 

H (n,6) = 1 i/, 
N+l {8=1} 1 

A» (n,6) = 1 va 

^N + 2 ' {8=0} ° 

. a3 («.o) = a4 

(3.1) 

where 1{A}-1 if event A is satisfied and 0 otherwise. The breakdown system 

as described above is hereby transformed to a stochastically equivalent 

system in the setting of section 2 with N+2 stations and Poisson arrivals 

with parameter A (open case) or a finite source input with M sources and 

exponential holding rate A/M per source (closed case). As performance 

measure of interest we wish to evaluate the throughput of the system. To 

this end, we set 

r(n,9) - l{e = u2 i M i(n i)p i (3.2) 

Further, we assume that for some finite Q: 

Q > sup s [A + i/0 + vx + Si Mi (%)] (3.3) 

The transition probabilities p(.,.) for the open case and p(.,.) for the 

closed case as according to the uniformization (2.5) and the parame-

trization (3.1) are now given by 



-12-

V ü n . 1 ] , [n ,0] = i/i/Q 

V U n . O ] , [ n , l ] - i/0/Q 

V ü n . 1 ] , [ n - e ^ l ] ) = ^ (nA ) p i 0 / Q 

V U n . l ] , [ n - e i + e j . 1 ] ) « A^O^ >Pi j / Q 

b u t 

p ( [ n , e ] , [n+e j .9 ] ) = Ac^/Q 

p ( [ n , 9 ] , [ n+e j . e ] ) - [M-n] [ A / M ^ / Q 

and 

p ( [ n , e ] , [ n .6 ] ) = 1 - { S ^ i d i i ) - i/e - A}/Q 

p([n,e], [n,6]) - 1 - {S^iCiii) - «/e - [M-n][A/M]}/Q (3.4) 

The operator T for the closed system and the functions {Vt|t-0,1,2,...} 

for the open system are correspondingly defined by (2.6) and (2.7) with r 

given by (3.2). 

3.3 Error bound 

Now we need to verify the conditions of theorem 2.1. To this end, the 

following lemma, which is the most essential step, is concerned with 

estimating the bias terms in (2.10). First, we introducé the notation 

AjVt(n,e) - Vt(n+ei,9) - Vt(n,6) (j-1,...,N),(t>0) (3.5) 

Lemma 3.1 For all t > 0 and [n,6], we have 

0 < AjV^n.e) < 1 (j-1 N) (3.6) 
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Proof This will be given by induction to t. For t = 0, (3.6) trivially 

holds as V0(.) = 0 . Suppose that (3.6) holds for t < m. Then by (2.7), 

(3.4) and (3.5): 

AiVm+i(n,e) -

l[l{e=i}2jMj(n j)p j0 + 

^•{e-i} [/*i(ni.+l)--Mi(iii)]Pio + 

A ZiaiVm(n+ei+ei ,6) + 

"o 1{9 = 0 ) ^ ( ^ , 1 ) + vx l{e = 1}Vm(n+ei,0) + 

l{e-i> Sj-i M n j> 4=o PjX VmCn+ei-ej+e^.l) + 

l { e = 1 } [^(^+1)-^^)] s5.0 Pii Vm(n+e/g,l)]/Q + 

[1 - {A+1/e+l{e = 1}E j/i j(n J)+l{e ,1}[/i i(n i+l)-/i i(n i)]}/Q] VB(n+eife)> 

- {[ l { e - i }
 Sj^j(nj)Pjo + 

A 2j<*j Vm(n + ^ , 9 ) + 

vo l{e=o}Vm(n,l) + vil{e-1}VB(n,0) + 

k e - n s i = i M V 2i=o Pji ^(n-ej+e^.l) + 

l{e-i> [Mi^+D-MiK)] s} . 0 P l j e Vm(n,l)]/Q + 

[ 1 - U+i/e+l{e.1} SjPj(n j)+l{e.1}[/* i(n1+l)-/i1(n1)]}/Q] Vm(n,0)} 
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- { l { e =i} [ A ' i ( n i + l ) - ^ i ( n i ) ] P i o + 

* S jOjA1Vm(n+e ;j,e) + 

"o 1{e = o} A i V m ( n . ! ) + " i l { e= i} AiVn>(n>l) + 

l { e - i } Z j = i M n J > 2 i = o P j i A i V m ( n - e j + e i > D + 

1 {e=i} tP i (n i+D-A*i(n i ) ] Zjé-i P i i A.gV^n.l) + 

l{e=i} [ / i i ( n i + l ) - M i ( n i ) ] p 1 0 [V m (n , l ) -V m (n , l ) ]} /Q + 

[ 1 - {A+z/e+l{ 8 = 1 } S j / i j C n ^ + l t e - u [ ^ 0 ^ + 1 ) - ^ (% ) ] }/Q] A i V m (n ,6) . 

(3 .7) 

Now recall that //i (nt) is assumed to be non-decreasing and note that the 

one but last term of the latter expression is equal to 0. Then by 

substituting the induction hypothesis (3.6) for t=m, the lower estimate 0 

of (3.6) for t=m+l follows immediately. The upper estimate 1 of (3.6) for 

t=m+l is guaranteed by letting the first term replace this one but one 

last term from which it is clear that all terms sum 'to 1.. D 

As will be shown shortly, lemma 3.1 will imply that condition (2.10) 

can be verified with a function n which is linear in n. Therefore, let us 

investigate condition (2.9) with 

Mn,6) - n (3.8) 

To this end, we first consider a modified version of the given breakdown 

system in the open case by letting arrivals be rejected and lost whenever 

the system is down (9=0). Then it can be concluded from literature (cf. 

[4]) or verified by direct substitution in the equilibrium balance 

equations, that this modified system has the product form: 

%(n,6) - c[l/i/ ] n [AJ Vt ^ Mi 00] (3-9> 
i k-1 
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where c is a normalizing constant and [XL } the unique solution of 

Aj - ).aó + S ^ p ^ (j<N) (3.10) 

As a consequence, the corresponding mean system load 1^ of this modified 

system is given by 

L„ - [u^1/{uQ+u1)]l, (3.11) 

where L is the mean system load of the original system without breakdowns, 

that is as corresponding to the Standard Jackson product form (3.9) 

without [l/i/e] (or with ê=°°).. As this system load L can easily be com-

puted, the following lemma is useful. Let Ö = (0,...,0), then 

Lemma 3.2 For all t > 0: 

Tt /x(Ö,l) < L„ (3.12) 

Proof By virtue of the uniformization technique (cf. [20], p.110) one 

can directly conclude that the mean system load under the construction 

(3.4) with p is equal to that of the original closed continuous-time 

model, say denoted by L0 . Clearly, as the state dependent arrival rates 

of the closed system are always less or equal than A as in the open case, 

one can show by Standard monotonicity proof techniques such as in [17], 

[19] or [29] that 

L0 * L0 . 

where L0 denotes the mean system loead of the original system in the open 

case. Finally, similarly to [21] and the proof of lemma 3.1, one can also 

show that 

by which the proof is completed. D 

We are now able to apply theorem 2.1. 
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Theorem 3.3 (Throughput error bound) With g and A the throughput of the 

closed and open system respectively, we have 

|g - A| < A 1^ / M (3.13) 

Proof This f ollows directly f rom lemma 3.1 and lemma 3.2 by applying 

theorem 2.1 with Ï-(Ö,1), /i(n,6)=n, a^(n,9)-aj for j=l,,,.N and 

aN+1(n,6) = aN+2 (n,6) = 0. Then (2.10) is guaranteed with C=l by: 

14»! aj [Vt(n+ej>e) - Vt(n,6)] | < 1 (3.14) 

Example 3.4 (Single server stations) As a particular example, with each 

station i<N a single server station with exponential service rate fii , 

(3.9)-(3.11) and (3.13) yield 

1 N 

|g - A| < A K±[u0u1/(u0+u1)][ n pja-Pi)] (Pi=AM) (3.15) 
i=l 

4 Some extensions 

4.1 Multiclass networks The results can be extended to multiclass queue-

ing networks if we model a different Poisson arrival stream or a finite 

source input for each separate job-class. Basically, condition (2.10) then 

needs to be replaced by 

|nr Sja^n) [Vt (n+ê  ) - Vt (n) ] | < ̂ (n)C (t>0) (r-1,2, . . . ) (4.1) 

with n - ((nj ,n\ , . . . ) , (n| ,n| , . . . ) , . . . , (nj| ,n§ , . . . ) ) denoting the 

number nj of class r jobs at station j for all r and j, nr the total 

number of class r jobs present, ej representing an additional class r job 

at station j and afj (n) the probability that upon arrival a class r job 

is assigned station j when the system is in state n. 



-17-

4.2 Non-exponentia1 networks Theorem 2.1 is essentially based on only 

the differences in the reward structure (bias terms) due to a single 

arrival (see condition (2.10)). The internal network transition structure 

is thus not relevant other than for providing concrete estimates for these 

bias terms such as illustrated in section 3. Particularly, by relaxing the 

exponential service structure to include mixtures of Erlang distributions 

as service distributions and extending the state description by the number 

of residual exponential phases of service to be received, similar results 

can be expected. Since, however, mixtures of Erlang distributions arbi-

trarily closely approximate general nonnegative distributions (in the 

sense of weak convergence), by Standard though highly technical weak con-

vergence arguments on appropriate sample path spaces (e.g. [1], [3]) a 

non-exponential analog of theorem 2.1 seems possible. Most crucially, 

however, in the non-exponential case the verification of condition (2.10) 

or rather the estimation of the bias terms as in lemma 3.1 will become 

much more complex (cf. [23]). 

4.3 Modified finite source inputs Slightly perturbed modifications of 

the given finite source input are also possible. In combination with 

perturbation results such as developed in [26], the error bound in theorem 

2.1 can then be proven with an additional error bound due to the 

perturbation. For example, assume that the M sources have an exponential 

holding time with parameter [A/M] where [A-A|<£. Then the error bound in 

(2.12) can be shown to be 

(A + e) BC/M (4.2) 

4.4 Infinite service rates The boundedness assumption of the transition 

rates was made merely to justify a discrete time transformation based on 

the uniformization technique. This, however can be avoided in an 

approximative manner similarly to [22] in order to allow unbounded 

transition rates such as arising from infinite service rates as in 

infinite server stations. 
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Evaluation The question of open or closed modeling for queueing networks 

can be adressed by providing error bounds for the performance in the open 

and closed case. Simple througput bounds for large closed networks or 

approximate computational procedures for infinite open systems can hereby 

be justified. A general condition is provided from which such error bounds 

can be concluded. The verification of this condition can be established by 

inductively proving monotonicity results of total reward structures. 

Explicit error bounds of order l/M with M the number of input sources in 

the closed case can so be derived. Extensions süch as to multiclass non-

exponential service networks seem possible. 

The results apply both to product and non-product form networks, for 

example with blocking phenomena or breakdowns such as arising in perfor-

mab i1ity analys i s. 
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