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1 Introduction 

Markov chain theory has proven to be a powerful tooi for both modeling 

and computational purposes in practice. A variety of practical models have 

so been analyzed such as in communication, manufacturing and reliability 

(e.g. [18]). Particularly, the steady state behavior is frequently of main 

interest. Analytical expressions to this end are available only in a limit-

ed number of applications, so that computational procedures such as succes-

sive approximation are to be used. In practice, however, one often encoun-

ters large or infinite state spaces such as in an infinite server queue or 

a maintenance system with an a priori unbounded lifetime. Truncation of the 

state space then becomes necessary. 

Though the technique of state space truncation is a common feature in 

practice, theoretical support in terms of orders of accuracy or rates of 

convergence seems hardly available. Convergence proofs as the truncation 

size tends to infinity have already been investigated in the early fifties 

by Savymsakov and were cristallized most notably by Seneta (1967), (1968) 

with reference to private Communications with Kendall. A detailed study of 

these convergence results as well as an extensive list of related litera-

ture can be found in Seneta (1980). In this latter reference, also simple 

error bounds are provided (cf. theorem 6.4 and its corallary, p.215), 

but these are just robust bounds and do not secure an order of accuracy. 

A different though related line of research is that of approximating or 

perturbed Markov chains (cf. Schweitzer (1968), Hinderer (1978), Whitt 

(1978), Meyer (1980), Van Dijk and Puterman (1988), Van Dijk (1988)). These 

references pay attention also to orders of accuracy. However, none of these 

results can be directly adopted for truncation purposes, as they basically 

require one and the same or at most a minorly perturbed state space. 

The present paper therefore is concerned with a simple but general 

criterion which guarantees an order of accuracy of truncated Markov chains. 

To this end, two concrete conditions are provided. The underlying insight 

of these conditions is essentially based upon bounded bias terms for total 

reward structures or relatedly of bounded mean first passage times. The 

results typically seem to be applicable to random walk or spatial birth-
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death type structures such as of queueing systems for which recursive 

proof-techniques of ntonotonicity results such as developed in [18], [19] , 

[21] or [23] can be exploited. Much of the attention of this paper there-

fore is devoted to applying such techniques for two concrete multi-dimen-

sional non-product form queueing examples: an overflow model and a tandem 

queue with blocking. 

The conditions are verifiable in two essentially different ways. Either 

by showing that sufficiently large states are reached only with suffi-

ciently small probability or by using that transition probabilities or 

rates for upward changes tend to 0 as the state label tends to infinity. 

Either way is illustrated by one of the queueing examples. Explicit error 

bounds for these two non-product form queueing examples are obtained. These 

bounds guarantee a rate of convergence as the truncation limit tends to 

infinity and enable one to determine an è priori truncation limit for any 

desired accuracy. 

2 Model and sufficiënt conditions 

Consider a Markov chain {Xt, t-0,1,2,...} with state space ]N={1,2,...} 

and one-step transition probability matrix P=(p(i,j)). Without loss of gen-

erality assume that this Markov chain is irreducible. 

Let L be a fixed number and define the truncated Markov chain {Xt , 

t—0,1,2,...} by the one-step transition probability matrix P=(p(i,j)) 

with 

- p(i,j) = 0, j>L, i<L, 

• p(i,j) =p(i,j), j*t[i], j<L, i<L (2.1) 

L p~(i,t[i]) = p(i,t[i]) + S.>L p(i,j) i<L 

where t[i]<L is s'ome given "state of truncation" for any i<L. Assume that 

this truncated chain is also irreducible. Throughout we use the upper bar 

"—"-symbol to indicate the truncated model while the symbol "( —)" is used 

when expressions are to be read both with and without the upper bar. In 

order to compare the original and truncated chain, define expectation 

operators Tt, t-0,1,2,... upon real-valued functions by: 
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'3 = I 

CT"t + i =
 (T MT>, t-0,1,2,... (2.2) 

L'ffU) - s/pjj f(j) (vi) 

(-) 
and for given real-valued function r let the functions VN, N—O,1,2,... 

be given by: 

VN = 2t=0
(T^r (2.3) 

(-) 
In words that is, VN(i) represents the total expected reward over N 

periods when starting in state i at time t=0 and receiving a one step 

reward r(Xt) at time t-0,1,...,N—1. Then 

(-) -. . 1 •(-) 

S ~ linH-„ ^ VN (2.4) 

is the expected average reward provided this limit exists componentwise. 

Based upon the irreducibility assumptions, moreover, we may assume these 

limits to be the same for all initial states. In the sequel, therefore, the 

symbol g can be read both as a constant function and a single real 

value. The following theorem is the key-result of this paper. It provides a 

pair of conditions that guarantees an error bound for the accuracy of the 

truncated average reward. These conditions will be argued and illustrated 

later on. 

Theorem 2.1 Suppose that for some function n, initial state i, constants 

£1,e2>0, all t>0 and i<L: 

Tt/i(J?) < e1 (2.5) 

|E.>Lp(i,j)[Vt(j)-Vt(t[i])]| < c2 Ai(i) (2.6) 

Then 

|V„(je) - VH(i)| < C le 2 N (2.7) 

and 

II- g| * ^1^2 (2-8> 



- 4 -

Proof As by (2.3) 

(^t+i ~ r + CT)(Vt (t>0) (2.9) 

while T remains restricted to {1,2,...,L}, we can write 

(VH - V„)(i) - (T VH.J. - T VN.1)(i) 

- (T - T) Vj,.^^) + T ( V ^ - VN.1)(i) 

- - SÏ-S Tfc [(T - T) VH.t.1](i), (2.10) 

where the last term follows by iteration and the fact that V (.)=0. From 

(2.1) and (2.2), however, we readily obtain for any i<L: 

(T-T) Vt(i) - Sjlid.j)-?^,:)] Vt(j) = Sj>L p(i,j)[Vt(j)-Vt(t[i])]. 

(2.11) 

By substituting expression (2.11) in (2.10), taking absolute values and 

noting that expectation operators are monotone operators, the proof of 

(2.7) now directly follows from (2.5) and (2.6). Inequality (2.8) is an 

immediate consequence of (2.4) and (2.7). D 

Let us briefly comment on the conditions (2.5) and (2.6). First of all, 

the initial state X. will usually represent the origin, but some other state 

might be appropriate. As for the constants ex and cz , one must typically 

think of either Cj or cz tending to 0 as the truncation limit L tends to «. 

This is related to a twofold manner in which the conditions and the p-func-

tions can be utilized as will be described below. 

Remark 2.2 (Twofold verification) 

(i) (cj-small) Mo^.; naturally, the /x-function can be an indicator func-

tion for sufficientl' large numbers. By requiring as by (2.5) that the 

probability of being Ln such states at some arbitrary fixed epoch is small, 

it then suffices as in (2.6) only to require that in these states the 

difference in the ore-step transition structures of hoth models remains 
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(ii) (e2-small) Another way of using the /i-function is to let it repre­

sent some bounding function such as the constant unit function or some 

polynomial in i. Condition (2.5) then simply requires; boundedness under 

this function over time, while condition (2.6) requires transition probabi-

lities for upward changes to become small. This can be useful when it is 

hard to prove (2.5) for small cx. This will be illustrated in section 3.2. 

Most essentially in either case, however, is the f act that differences 

of the form |Vt(j)—Vt(i)| can usually be estimated from above by a constant 

independently of t, while the functions Vt(.) themselves grow linearly in 

t. Lemma 2.3 below, adopted from [4] and related to Standard results in the 

theory of dynamic programming (e.g. [13]), provides explicit estimates of 

these differences for the bounded reward case. For the unbounded reward 

case, a similar though slightly more complicated result can be given (cf. 

[5]). First, we define Ri;j as the expected number of transitions needed to 

reach state j from state i, also known as the mean-first passage time. Then 

the following lemma is proven in [4] . 

Lemma 2.3 If |r(i)| < B for all i and some B, then for all i,j and t: 

|Vt(j)-Vt(i)| < 2B min [Rij.-RjJ (2.12) 

As in [4] , the above lemma can be fruitfully exploited for one-

dimensional queueing applications, for which the mean first passage time 

RtJ can usually be estimated from above based upon random walk type results 

such as developed in [10]. In the present paper, however, we wish to apply 

theorem 2.1 to more complicated two-dimensional queueing models so that 

random walk estimates are not readily applicable. Most of section 3, 

therefore, is concerned with estimating the differences Vt(j)—Vt(i) in a 

direct marnier. 

Remark 2.4 (Other truncations). The truncation (2.1) is a natural one as 

it corresponds to the original model as long as the truncation limit L is 

not exceeded. Clearly, similar conditions can be provided for other types 

of truncations. For example, rather than letting a transition i-*j for all 

j>L transform into one and the same state t[i] , we can also let it 

transform into different states in a randomized manner. Then, theorem 2.1 

remains valid provided condition (2.6) is modified correspondingly. 
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Remark 2.5 ((Un)bounded rewards). Note that no conditions are imposed 

upon the one-step reward function r(.) other than that we implicitly assume 

the average rewards g and g to be well-defined. The example of section 

3.1, for instance, covers a linear one-step reward function (see remark 

3.1.4) so as to compute a mean queue length of an infinite system. As a 

particular application of the bounded reward case, g represents the steady 

state probability of a set G if we choose: 

r 1 for i e G 
r(i) - \ 

*- 0 otherwise 

Remark 2.6 (State labeling). For expository convenience the states were 

labeled in a countable manner. Clearly, for more-dimensional applications 

such as in section 3 we thus have to label the states in an appropriate 

manner such that under the given truncation no states with label exceeding 

L can be reached (see the proofs of theorems 3.1.3 and 3.2.2). Particu­

lar ly, in such applications the need for different "states of truncation" 

t[i] rather than one fixed state naturally comes up. 

3 Applications 

This section contains two applications which will illustrate how the 

conditions of theorem 2.1 can be verified. Both applications concern a 

two-dimensional queueing model which does not exhibit an explicit product 

form expression for the steady state distribution. Numerical computation is 

thus required for evaluating a performance measure such as a steady-state 

probability, mean queue length or throughput. As the number of states is 

infinite numerical truncation will then be necessary. 

As in the queueing examples the jump rates are bounded,the Standard 

uniformization technique can be applied (cf. [20], p.110) in order to ob-

tain a discrete-time formulation. The crucial step is the estimation of 

differences of the form |vn (j)-Vn(i)|, where it is to be realized that the 

states are of a two-dimensional form (see lemma 3.1.1 and lemma 3.2.1). To 

this end, a recursive proof-technique will be applied as based upon Markov 

reward theory. Throughout, we let 1{A, denote an indicator of an event A, 

i.e. 1{A,=1 if A is satisfied and 0 otherwise, and 1{A}(.) the correspond-

ing indicator function of an event A. 
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3.1 Overflow model 

Consider a service system which consists of an Erlang loss station 

(station 1) with s1 servers and an additional Erlang-delay overflow station 

(station 2) with s2 servers. More precisely, a customer which arrivés is 

assigned a free server at station 1 when available and otherwise routed to 

the overflow station 2, which behaves as a Standard delay station with s2 

servers and a first-come first-served infinite waiting room. Further, 

customer switching from station 2 to station 1 is prohibited. The services 

are assumed to be exponential with parameter ni at station i. The customer 

arrival process is Poisson with parameter X. It is assumed that X < fi2 . 

fr s l s l • h 

co co 
* i-

The system under consideration has nó product-form solution for the 

steady-state joint queue size distribution (cf. [8]). The overflow stream 

is known to be hyperexponential (cf. [3]), so that the overflow station can 

be analyzed as a GI|M|s2-system. This, however, would still require complex 

computational procedures for large s2-values (cf. [2], p. 270-275). More-

over, here we are interested in a performance measure that can depend on 

both queue sizes, such as the total number of jobs present, where it is 

noted that Mî /̂ 2 ^S allowed. For expository convenience from now on we 

assume s1=s2=l. 

Let [i,j] denote the number of customers i at station 1 and j at station 

2, and consider the embedded chain by inspecting the process at exponential 

times with parameter M - (A+/ix+/i2). Then by virtue of the uniformization 

technique (cf. [9], [18], p.110), the one-step transition probabilities of 

this chain p( [i, j ]-*[m,n]) for transitions from a state [i,j] into a state 

[m,n] become: 



P([0,j] - [i.jD - VM 

P(.[l,j] - [l.j+l]) - A/M 

(3.1.1) 

p([i,j] - [i-l,j]) = Mi/M 

P([i.j] - [i,j-l]) - M2/M 

where i-1 and j-1 are to be read as 0 for i—O respectively j=0. Consider an 

arbitrary reward rate f([i,j]) for the original queueing process whenever 

the system is in state [i,j]. Further assume that for some constant H and 

all j and (i,j): 

|r(l,j) - r(0,j)| < H 

(3.1.2) 

|f(i,j+l) - r(i,j+l)| < H. 

Let r = r/M and consider the expected average rewards g and g of the em-

bedded process with one step reward r and the original queueing process 

with reward rate r. Then by the uniformization technique we also conclude 

g = g M. (3.1.3) 

We may thus restrict our attention to g for evaluating the performance 

measure g. To this end, for some constant Q the following truncation is 

proposed: 

p([l,Q] - [1,Q]) - 1 - [Mi + M2]/M 

(3.1.4) 
p([i,j] -• [m,n]) - p([i,j] •* [m,n]) otherwise. 

In words that is, we truncate the queue size of station 2 at level Q by 

rejecting arrivals whenever j=Q. The state space is thus restricted to 

SQ - {(i,j)|i-0,1; 0<j<Q}. In order to apply theorem 2.1 the following 

lemma is essential. 



Lemma 3.1 With C = ïaax[E/^1 ,H/(/i2 — A) ] , we have for all n and j: 

|Vn(0,j) - Vn(l,j)| < (j+l)C (3.1.5) 

|Vn(l,j) -Vn(l,j+l)| < (j+l)C. (3.1.6) 

Proof We apply induction to n. For n=0 it trivially holds as V0(.)»0. 

Suppose that (3.1.5) and (3.1.6) hold for n<m. Then by virtue of (2.11), 

Vm+1(0,j) - Vm+1(l,j) - r(0,j) - r(l,j) 

+ [A/M][Vm(l,j) - Vm(l,j+1)] 

+ [^/M][vm(0,j) - Vm(0,j)] 

+ t./i2/M][VB(0,j-l) - Vm(l,j-1)] l{j>0} 

+ [M2/M][Vm(0,0) - Vm(l,0)] l{.=0}. 

Taking absolute values per term and substituting (3.1.5) and (3.1.6), we 

find: 

lVm+i(0.J) - Vn+1(l,j)-| < H/M + [(A+Ml+^2)/M](j+l)C - [/z1/M]C. 

Recalling C > H/^2 and M = A+^+z^ , we have thus proven (3.1.5) for n=m+l. 

Similarly, 

Vm+1(i,j) - Vra+1(i,j+l) - r(i,j) - r(i,j+l) 

+ [A/M][vm(l,j) -VB(l,j+l)] l { i = 0 } 

+ [A/M][Vm( l , j+l) - V m ( l , j + 2 ) ] 1 { 1 . 1 } 

+ [/i1/M][VB(-0,j) - V m (0 , j+1)] 

+ I ^ 2 / M ] [ V m ( i , j - l ) - V r a ( i , j ) j l { j > 0 } 

+ [M2/M][Vm(i,0) - V m ( i , 0 ) ] l { j = 0 } . 
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Taking absolute values per term and substituting (3.1.6), we now obtain 

|Vm+1(i,j) - Vm+1(i,j+l)| |< H/M+[A/M]C+[(A+Ml+M2)/M](j+l)C - [A»2/M]C. 

With C > H/(/i2-A) and M = X+n1+fi2 , (3.1.6) is hereby proven for n = m+1. 

D 

Lemma 3.1.2 For all t>0, we have 

Ttl{[liQn(0,0) < (A/M2)
Q / [1 - A/ M 2]. (3.1.7) 

Proof Clearly, by directly routing all customers to the second station, 

the steady state-probability of Q customers at the second station is 

estimated from above by the steady-state probability that there are at 

least Q customers in an M'|M| 1 |«>-system with arrival rate A and service rate 

fj,z . This probability is equal to the right hand side of (3.1.7). It thus 

suffices to prove 

[Tt+1 - Tt]f(0,0) > 0 (3.1.8) 

for all t and with f (. , .) = 1. . 1 _.,(.,.). We will inductively prove 

(3.1.8) for any function f(.,.) which is non-decreasing in each argument, 

i.e., satisfying 

r f(l,j) - f(0,j) > 0 (j < Q) 
i (3.1.9) 
^ f(i,j+l) - f(i,j) > 0 (i = 0,1) (j < Q). 

For t=0, (3.1.8) is readily verified by 

^(0,0) - f(0,0) = [A/M][f(l,0) - f(0,0)]. 

Assume that (3.1.8) holds for t < n. Then for t = n+1 

[Tn+2 -Tn+1]f(0,0) - [Tn+1 - Tn](Tf)(0,0), 

so that by induction hypothesis (3.1.8) for t=n, (3.1.8) is proven provided 

(3.1.9) is satisfied if we substitute f = Tf. This in turn is guaranteed 

by: 
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( T f ) ( l , j ) - ( T f ) ( 0 , j ) - [ A / M ] [ f ( l , j + 1 ) - f ( l , j ) ] l { j < Q } 

+ [ M 1 / M ] [ f ( 0 , j ) - f ( 0 , j ) ] 

+ [ M 2 / M ] [ f ( l , j - 1 ) - f ( 0 , j - D ] l u > 0 } ^ 0 , 

and 

( T f ) ( i , j + 1 ) - ( T f ) ( i , j ) = [ A / M ] [ f ( l , j + D - f ( l , j ) ] l { i _ 0 } 

+ [ A / M ] [ f ( l , j + 2 ) - f ( l , j + l ) ] l { . = 1 } l { . + 1 < Q } 

+ [ / x 1 / M ] [ f ( 0 ) j + l ) - f ( 0 , j ) ] 

+ [ M 2 / M ] [ f ( i , j ) - f ( i , j - l ) ] l { . > 0 } > 0 . 

Finally, by noting that the indicator function 1, t x (,,,(.,.) satisfies 

(3.1.9), the proof is concluded. D 

Theorem 3.1.3 With the truncation (3.1.4) for truncation limit Q, g the 

corresponding average reward, H given by (3.1.2) and M - A+z^+z^ > w e have: 

|g-g| < [Q+l](A//i2)Q[AM2H/M] m a x ^ - ^ ^ - A ) -
1 ] (^-X)'1 (3.1.10) 

Proof Label state [m,n] by k=n voor m=0 and k=(Q+2)+n for m=l for all 

states with m=0,l and n<Q and let p(i,j) and Vt(i) be defined correspond-

ingly. Now consider (2.6) with i and j representing labels of different 

states of the form [m,n] and L=2(Q+1). Then by virtue of (3.1.1), (3.1.4) 

and (3.1.6), for any state [m,n] condition (2.6) transfers in: 

S{(i,s)ls>o}P([m>n] - EL*]) [Vt(l.s) -Vt(l,Q)] -

lulQ]}(m,n)[A/M] [Vt(l,Q+l) -Vt(l,Q)] < 

l{[1QU(m,n)[A/M] [Q+l] maxfH/M! ,H/(M2-A) ] . 

Taking /x(m,n) = 1, f1 ...(m,n) and noting that condition (2.5) with refer-

ence state i - (0,0) is then given by (3.1.7), application of theorem 2.1 

completes the proof. D 



- 12 -

Remark 3.1.4 Note that (3.1.10) holds for any reward rate r satisfying 

(3.1.2). For example, a stationary tail probability is computed by: 

r(i,j) - l{.>s}(i,j) (3.1.11) 

and the mean system load by: 

r(i,j) = i + j (3.1.12) 

3.2 Tandem queue 

Consider a tandem queue of an M|M|I|°° and M|M|l|N queue. That is, at 

the first station an infinite number of customers is allowed but at the 

second no more than N. When the second station is saturated the servicing 

at the first station is stopped (communication protocol). Both stations 

have a single server and queueing is assumed to be first-come first-

served. The service requirements are exponential with parameters iix and \xz 

at stations 1 and 2 respectively. The interarrival times are also exponen­

tial but with a state dependent parameter A(i) when i customers are present 

at station 1. 

A(i) Mi 

N 

H 

The steady-state joint queue size distribution of this tandem queue 

system does not exhibit a closed product form expression (cf. [8]). Numer-

ical studies and approximation procedures have therefore been widely inves-

tigated (e.g., [1], [6], [11]). Error bounds, however, have therein not 

been included. Now assume that for some constant A: 

A(i) < A 

A(i) -+ 0 as i •+ » 

A(i) : non-increasing in i, 

Let [i,j] denote the number of customers i at station 1 and j at station 

2 and consider the embedded chain by inspecting the process at exponential 

times with parameter M — (X+fx1+fi2) • The uniformization technique (cf. [20], 

p.110) then leads to the one-step transition probabilities: 
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f P ( [ i , j ] - [ i + l , j ] ) - [ M D / M ] 

P ( [ i , j ] - [ i . j - l ] ) = t /* 2 /«] l u » o > 

( 3 . 2 . 1 ) 

p ( [ i , j ] - [ i - l . j + 1 ] ) - [M l /M] l { i > 0 } l { j < N } 

P ( [ i , j ] - [ i , j ] ) - 1 " [ A ( i ) + P l l { i > 0 } l { . < N } + / z 2 l u > 0 } ] / M . 

We aim t o e v a l u a t e t h e t h r o u g h p u t g . To t h i s end , l e t 

r ( i , j ) - l { . > 0 } ( i , j ) ( 3 . 2 . 2 ) 

Then with g the corresponding average reward of this embedded Markov chain, 

the throughput of the original system is given by 

1 - g M2 (3.2.3) 

To compute this relevant performance measure we can thus restrict our 

attention to evaluating g. To this end, for some constant Q the following 

truncation is proposed: 

p([Q,j] - [Q,j]) - 1 - [^l{i>0}l{j<N} + ̂ 21{.>0}]/M 

(3.2.4) 

p([i,j] - [m,n]) -p([i,j] -+ [m,n]) otherwise. 

In words that is, the queue size at station 1 is truncated at level Q by 

rejecting arrivals whenever i=Q. The state space is thus restricted to 

S = {(i,j)|0<i<Q, 0<j<N}. In order to apply theorem 2.1, the following 

lemma is crucial. 

Lemma 3.2.1 For all n and restricted to S : 

0 < AxVn(i,j) = Va(i+l,j) - Vn(i,j) < [M/JIJ (3.2.5) 

0 < A2Vn(i,j) = Vn(i,j+1) - Vn(i,j) < [M/Ml] (3.2.6) 

0 < A3Vn(i,j) = Vn(i-l,j+l) - Vn(i,j) < [M//xJ (3.2.7) 
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Proof We will apply induction to n. For n=0, these estimates trivially 

follow from V0(.,.)-0. Suppose that (3.2.5), (3.2.6) and (3.2.7) hold for 

n-m. Then we will separately verify (3.2.5), (3.2.6) and (3.2.7) for 

n-m+1 under (i) , (ii) and (iii) below. Though the technique in each of 

these is the same it turns out that the technicalities involved are 

different and therefore are to be studied in full detail. 

(i) (3.2.5) for n=m+l From (2.11), (3.2.1) and (3.2.2) we find: 

AiVB+1<i,j.) " 

{[A(i+l)/M]Vm(i+2,j) + 

+ f Mi/M] l { j < N } V m ( i ( j + l ) + [ p 2 / M ] l { j > 0 ) V m ( i + l , j - l ) 

+ [1 - [ A ( i + 1 ) + Mi 1 { J < H } + M 2 l { j > 0 } ] / M ] V m ( i , j ) } -

. l [ A ( i ) / M ] V m ( i + l , j ) + 

+ ( M i / M ] l { i > 0 , l { J < H ) V m ( i - l . J + l ) + t M 2 / M ] l { J > 0 ) V m ( i , j - l ) 

+ [1 - [ A ( i ) + M i l { i > 0 ) l { J < N } + M 2 l u > 0 ) ] / M ] V m ( i , j ) ) -

[ A ( i + l ) / M ] A 1 V m ( i + l , j ) + [ ( A ( i ) - A ( i + l ) } / M ) [ V m ( i + l , j ) - V . < 1 + 1 , J ) ] 

+ [ / V M ] l { j < H > < l < i > 0 > A l V n , < i - l . J + l > + 1 ( 1 - 0 } [ V m ( 0 . J + l ) - V r a ( 0 , j ) J ) 

+ [ M 2 / M ] l u > 0 ) A 1 V m ( i , j - l ) + [ l - { A ( i ) + M i l u < N } + / i 2 l { J > 0 ) } / M ] A 1 V n ( i , j ) 

( 3 . 2 . 8 ) 

By noting that the second term is equal to 0 and substituting the induction 

hypotheses (3.2.5) and (3.2.6) for n-m, we have thus verified (3.2.5) also 

for n-m+1. 
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(ii) (3.2.6) for n=m+l Similarly to (3.2.8) and noting that 

r(i,j+l) — r(i,j) = 1.._0,, we now obtain: 

A
2Vm+1(i,j) = l{j = 0 } 

+ [A(i)/M]A2Vm(i+l,j) 

+ [ M l / M ] l { i > 0 } l { . + 1 < N ) A 2 V m ( i - l , j + l ) 

+ [ M l / M ] l { i > 0 } l { . + 1 = N } [ V m ( i , j + l ) - V B ( i - l , j + l ) ] 

+ [ M 2 / M ] l { . > 0 } A 2 V m ( i , j - l ) 

+ [ M 2 / M ] l u = o}IV
m( i>°) - V m ( i , 0 ) ] + 

+ [1 - [A(i) + / z 1 l { . > 0 } + /i2]/M]A2Vm(i,j) (3.2.9) 

By subst i tut ing the induction hypothesis A1Vm>0 in the fourth term and 

A2Vm>0 in the other terms, we direct ly verify A2Vm+1>0. By rewriting the 

f i r s t term as [/x2/M] 1{ . 0 , [M/p2 ] , noting that the one but l a s t term is 

equal to 0 and substi tut ing the hypotheses A1Vm<[l/[./fi2} and A2Vm<[M/V2] in 

the other terms, we also conclude A2Vm+1<[M/M2], which proves (3.2.6) for 

n=m+l. 
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(iii) (3.2.7) for n=m+l Again, similarly to (3.2.8) and noting that 

r(i-l,j+l) - r(i,j) = l{j.0}, we now find: 

A3Vm+1(i,j) = l u = 0} 

+ [A(i)/M]A3Vm(i+l,j) 

+ [{A(i-l)-A(i)}/M][Vm(i,j+l) -Vm(i,j)] 

+ f M l / M ] l { i . 1 > 0 } l { . + 1 < N } A 3 V m ( i - l , j + l ) 

+ [ M i / M ] l { i _ 1 = 0 } l u + 1 < N } [ V r n ( 0 , j + l ) - V B ( 0 , j + l ) ] 

+ [ M i / M ] l { j + 1 = N } [ V m ( i - l , j + l ) - V m ( i - l , j + l ) ] 

+ [ ^ 2 / M ] l { J > 0 } A 3 V m ( i , j - l ) 

+ [ M 2 / M ] l { J = 0 } [ V m ( i - l , j ) - V m ( i , j ) ] 

+ [1 - t X ( i - l ) + M 1 + / i 2 ] / M ] A 3 V m ( i , j ) ( 3 . 2 . 1 0 ) 

Now note that the one but last term is non-positive by induction hypo­

thesis. However, also by hypothesis we can estimate this term from below by 

— [/x2/M]l, . = 0, [M//x2 ] =
 —l/=o>' so that the first and this one but last term 

together are estimated from below by 0. Substituting the hypotheses 

A2Vm > 0 and A
3Vm > 0 in the remaining terms, v/e have thus shown 

A3Vm+1 > 0. Conversely, by deleting this nonpositive one but last term, 

rewriting the first term as [/i2/M]l, . = 0, [M//i2 ] and substituting the hypo­

theses A2Vm < [M/p2] and A3Vm < [M//i2 ] we conclude A3Vm+1 < [M//x2 ] . Also 

(3.2.7) for n=m+l is hereby proven, which completes the proof of the lemma. 

D 
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Theorem 3.2.2 With the truncation (3.2.4) for truncation limit Q, g the 

corresponding average reward and M = A + fi1 + fj.2 , we have 

|g - g| < A(Q)/M2 (3.2.11) 

Proof Label state [m,n] by k = (l+m)(l+n) for all m=0,l N and 

n=0,l,...Q and set L = (N+1)(Q+l). Further, let p(i,j) and Vt(i) be defined 

correspondingly. Now consider condition (2.6) with i and j representing 

labels of different states of the form (m,n) and L = (N+1) (Q+l) . Then by 

virtue of (3.2.1), (3.2.4) and (3.2.5), for any [m.n] condition (2.6) 

transfers in: 

S{[s,v]is>Q) Püm.n] - ts,v])[Vt(s,v) -Vt(Q,n)] -

l{ni=Q}(m,n)[A(Q)/M][Vt(Q+l,n) -Vt(Q,n)] < 

1
{ m = Q}0»,n)[A(Q)/M][M//i2]. 

Choosing p(m,n)=l for all (m,n), so that condition (2.5) is trivially sat-

isfied with B=l for all i, application of theorem 2.1 completes the proof. 

Corollary 3.2.3 The truncation (3.2.4) secures an exact order of accuracy 

A(Q) for the computations of the system throughput g - g/x2 . 

Evaluation Truncation of state spaces is investigated so as to enable a 

numerical computation of infinite Markov chains. In order to obtain an er-

ror bound of the accuracy a pair of conditions is provided that appears 

applicable in two characteristic situations: (i) when the probability of 

being in sufficiently large states can be sliown to be small, or (ii) when 

the probability for state increases tends to 0. Essential to either case, 

moreover, is the estimation from above of bias terms of total reward func-

tions. To this end, inductive proof-techniques for monotonicity results 

appear to be useful. The results typically apply to spatial birth-death 

type processes such as queueing networks. 
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