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1. Introduction 

Over the last decades queueing network analysis has gained popularity 

in telecommunication, computer performance evaluation and flexible manu-

facturing. A vast majority of the associated literature has been concern-

ed with the validity of explicit product type expressions, related to 

Jackson's celebrated product form, when realistic phenomena such as block­

ing, synchronous serving, resource sharing or prioritizations are involv-

ed. Particularizing to systems with blocking, product forms have so been 

obtained under the strong condition of a reversible routing (cf. [1], [3], 

[4], [7], [8], [9], [10], [11], [14], [15], [16]), and the assumption of 

capacity limitations or storage constraints imposed upon only individual 

stations. Though some extensions to non-reversible routing situations have 

been obtained (cf. [4], [5]), from a practical point of view the 

reversible routing can be regarded as almost necessary for the case of 

limited individual stations. 

In practice, however, one often encounters capacity constraints upon 

clusters of stations rather than upon individual stations. In telecommuni­

cation, for example, messages from different sources may have to contend 

for available trunks of a limited trunk group. In computer networks, pool­

ing of store and forward buffers frequently arises. In manufacturing, a 

number of workstations along an assembly line may have to share a common 

storage pool. 

For such systems one cannot adopt the above mentioned results as 

special station interdependences need to be incorporated. Nor can aggrega-

tion results (cf. [13]) be applied as detailed states are to be distin-

guished to justify a Markovian analysis. This paper, therefore, will be 

concerned with networks of queues with constraints upon station clusters 

such as clusters with limited capacities. The main results are: 

1. A concrete condition, in terms of local solutions of traffic 

equations, from which the existence and structure of a product 

form expression can be concluded. 

2. A number of novel product form examples with limited clusters. 

Particularly, examples with a non-reversible routing within and in 

between clusters are included. 
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To highlight the essential features, the presentation will first be re-

stricted to closed exponential systems with one type of customer. Exten­

sions to open, non-exponential and multi-class networks are briefly dis­

cussed afterwards. 

The model is described in section 2 while the conditions and product 

form result are given in section 3. A scala of examples is presented in 

section 4 and the above extensions are briefly discussed in section 5. An 

evaluation concludes the paper. 

2. Model 

Consider a closed network with N service stations and M jobs. A job 

at station i requires a random amount of service with mean MÏ 1. 

i=l,...,N. Throughout we will use the notation 

h = (n-L ,n2 , . . . ,nN) with nx + n 2 + ... + nN = M 

m = (m-L ,m2 , . . . ,mN) with m1 + m 2 + . . . + mN = M-l 

and we will consider states of the form: 

h = m + ej = (1% ,m2 m^ _x ,mj+l,mj + 1 , . . . ,mN) 

to indicate the state in which h constitutes the population vector m 

with one additional job at station j , j=l N. For a vector h 

= (n1 , . . . ,nN) , let h+ej^ -e^ denote the same vector with one job moved from 

station i to j . Also m+e^ is the vector m with one job more at station j 

and h—ej is the vector n with one job less at station j . 

Servicing. Service requirements are assumed to be independent and expo­

nential with parameter ^ at station i, i=l,...,N. For arbitrary strictly 

positive functions x(h) and 0(h) the service speed of station j when the 

system is in state h=m+ej is given by 

fj(m+ej) - x(m)/0(m+ej) (2.1) 

Routing. Assume that the N stations are partitioned in disjoint clusters, 

say clusters C(l) C(P) numbered 1 P. We introducé the notation: 
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s = (sx,...,sp) with s1 + ... + sp - M 

t = (tx , . . . ,,tp) with tx + ... + tp - M-l 

and consider cluster configurations of the form: 

s = t + ep = (tll...,tp.1,tp+l,tp+1,...,tp) 

to indicate that ŝ -tj jobs are currently within cluster j?*p and sp=t +1 

within cluster p. The vectors s+e —ep, t+ep and s—ep are defined simi-

larly as for s=h and t=m. Let B (t) for all possible p,q and vectors 

t be a given value between 0 and 1 (0 and 1 included) with B (. )=1 and 

denote by c(i) the number of the cluster which contains station i. 

The routing protocol can now be described as follows. Upon completion 

of a service at station i a job requests to route to station j with 

probability •pii . When the other jobs constitute cluster vector t, that is 

tj; from the other jobs are present in cluster 2 for i-l,...,P, this re­

quest is accepted with probability 

When the routing request is rejected, the job has to remain at station i 

where it has to undergo a new service. Let us give two exaniples of the 

blocking function B. Herein as well as in the sequel the symbol 1(A) de-

notes the indicator of an event A, i.e. 1(A)=1 if event A is satisfied and 

1(A)=0 otherwise. 

Example 2.1. (Independent departure/arrival blocking). Frequently a 

separate independent blocking mechanism for leaving and for entering a 

cluster is involved. This is reflected by 

Bpq(t) = Dp(t)Aq(t), (2.2) 

where Dp(.) represents a departure blocking or delay factor for leaving 

cluster p, while A (.) represents an arrival blocking for entering cluster 

q. Particularly, these departure and arrival blockings may depend upon 

only the individual cluster size, in which case for certain functions 

dp (.) and aq(.): 
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D p ( t ) = dpCtp) (2 .3) 

A q ( t ) = a q ( t q ) . 

As a s p e c i a l example, a c a p a c i t y l i m i t of no more than N jobs a t c l u s t e r 

q i s modeled by 

B ( t ) - l ( t < N ) . (2 .4) 
p q q q x / 

Example 2.2. (Resource sharing between clusters). Beyond capacity limi-

tations within clusters, such as due to storage constraints, different 

clusters themselves may have to share some restricted resource such as a 

storage pool, central processor or transmission system. For example, 

consider a three cluster system with capacity limitations Nt for cluster 

i-1,2,3 and an addition commonly shared pool of size K for clusters 2 and 

3. Then this is modeled by 

B u(t) = l(t+ej e C) 

with 

C = {s|si < N ^ i-1,2,3, s2+s3 < K}. (2.5) 

3. Product form characterization 

Assume that there exists a unique stationary distributoin ?r(.) for 

the set S of admissible states. To verify that n(h) has a particular form 

it suffices to verify the global balance (or forward Kolmogorov) equa­

tions. These in turn are guaranteed by the more detailed "station balance 

equations" stating tl.at for any station j separately and any admissible 

state: 

"the rate out of that state due to a departure at station j = 

the rate into that state due to an arrival at station j." (3.1) 

To formalize (3.1), consider a fixed station j and a fixed state h say 

with cluster vector s. Let m^h-ej and t=s-ep with p=c(j). Then (3.1) 

requires that 
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jr(ö+ej)Mj[x(in)/0(iii+ej)] Si PjiBc (j )o(i , (t) -

Si ff(m+e1))Ui[x(m)/0(m+ei)] PijBe(i)0 (j , (t) . • (3.2) 

Here it is noted that a blocked routing request is not included as it 

would actually contribute equally to both sides. Conversely, by checking 

(3.2) for all possible m and j such that h=m+ej is admissible global 

balance and thus stationarity is proven. 

To this end, first consider the local version of (3.1) for a fixed 

m. Without restriction of generality (see remark 3.7 below), assume that 

this local equation has a unique probability solution {y(j |m) |m+ejGS} . 

That is, for any j=l,...,N we have: 

v(j|S0 ^ PjiBc(J)c(i)(t) =Si y a j f i O P i ^ . ^ . ^ t ) . (3.3) 

Consider the local solutiohs {y(i|m)} at S(m)={m+e |m+e eS} for all 

possible ih. Then we can define an artificial Markov chain with transition 

rates q(ih+ei-*m+ej ) for a change from state m+eiGS(m) into m+ejeS(m) 

such that 

q(m+ej -> m+e^^) y(i|m) 
_ _ . _ ( 3 - 4 ) 

q(m+ei -• m+ej ) y(j |m) 

while transition rates not of this form are equal to 0. First observe that 

this Markov chain is restricted to the same state space S. Also note that 

its transition rates q are unique up to a constant factor at S(m) for 

any possible m. Consider such a Markov chain with q fixed and denote its 

stationary distribution by * ( . ) . Theorem 3.1 below will relate this 

artifial q-model with the possibility of a product form expression for 

the original model. First, we need a definition in corr€:spondence with the 

literature (cf. [8]). 

Definition. The q-model is reversible if for all m and m+ei.nn-e^ e S(m): 

^(m+ei) y(i|m) 

— : , (3 .5 ) 
*(m+ej) y(j|m) 
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Theorem 3.1. (Characterization of product form). The stationary distri­

bution ?r(.) satisfies (3.2) for all Sri-ê eS if and only if the q-model is 

reversible. Further, for all heS and with c a normalizing constant it 

then holds that 

N 

ir(n) - c *(n) 0(n) E (1/^)^ (3.6) 
i-l 

Proof. Assume that the q-model is reversible and consider the distribu­

tion TT(.) defined by (3.6). Then from (3.6) and (3.5): 

^(m+ei) y(i|m) 0(ra+ei) fii 

TrCm+ej) y(j|m) 0(m+e.j ) pL 

(3.7) 

By substituting (3.7) in (3.2), af ter dividing the left and right hand 

side of (3.2) by 7r(m+ej) and cancelling x(m) > equation (3.2) reduces to 

(3.3), which is guaranteed by definition of {y(i|m)}. The distribution 

defined by (3.6) is hereby proven to be a stationary distribution which 

satisfies (3.2). Conversely, assume that the stationary distribution 7r(.) 

satisfies (3.2) for any fixed m. Then {y(.|m)} chosen by 

y(i|m) ^(m+ei) 0(n+ei)~
1/ii 

(3.8) 
y(j|m) 7r(m+ej) 0(n+ej)"Vj 

will satisfy (3.3). Recalling that y(.|m) is uniquely determined up to a 

constant factor, reversibility of the q-model, that is (3.5), will then 

be guaranteed by choosing $(.) such that 

f(m+ei) n(m+ei) 0(ü+ei)"
1/ii 

(3.9) 
f (m+e.j ) 7r(m+ej ) 0(n+ej )~Vj 

and normalizing f(.). Furthermore, from (3.9) the form (3.6) is easily 

concluded. D 

Theorem 3.2. (Routing invariance condition). There exists a stationary 

distribution 7r(.) of the form (3.2) which satisfies the station balance 

equations (3.1) if and only if for some function *(.). some reference 

state h0 and all heS: 

• - i r y^k+i l rók) i - „ , « , 
n : — = *(n) (3.10) 
k = o L y(ik |mk)

 J 
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for all possible trajectories of the form 

h0 = m0+i0 -+ mo+J! = m^^ -»• n^+ji = ... 

= mk+ik -• mk+jk - mk + 1+ik + 1 •+ m k + 1+jk + 1 - ... - mz+j2 - h 

for which all denominators in (3.10) are positive and where z is arbi-

trary. 

Proof. An inunediate consequence of the reversibility condition (3.4) and 

the well-known Kolmogorov criterion for reversibility (cf. [8], p.21). • 

Conclusion 3.3. In order to investigate the existence of a stationary 

distribution of the form (3.5), it suffices to: 

(i) compute local solutions y(.|.) of the equations (3.3) and 

(ii) check (3.5) or (3.10) for some function #(. ) . 

Remark 3.4. (Non-reversible routing). It is emphasized that condition 

(3.10) allows the original Markov chain to be non-reversible. For example, 

we may have non-reversible routing probabilities pAj as will be illus-

trated in the next section. 

Remark 3.5. (Limited station case). Even for the more Standard case in 

which capacity limitations are imposed upon individual stations (in the 

present setting that is with each station seen as a separate cluster), 

theorems 3.1 and 3.2 have not been explicitly reported in the literature. 

In that case, however, the results relate to the so-called Kx-criterion in 

[5] for job-local-balance to hold. 

Remark 3.6. (Checking (3.10) directly). As will be illustrated in the 

next section, the local solutions y(.|.) are often easily calculated. 

These local solutions may directly suggest a required form of *(.) in or­

der to satisfy (3.5). As a consequence, rather than checking (3.10) for 

all possible trajectories, instead we can simply check whether expression 

(3.6) with this suggested form of <?(.) indeed satisfies (3.2). The validi-

ty of all examples in the next section are so verified directly. 

Remark 3.7. (Irreducibility of local chains). The assumption of a unique 

solution, up to normalization, of the local balance equation (3.3) for any 
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fixed ih is equivalent to requiring that the local Markov chain at S(m) 

is irreducible. However, from (3.4), (3.5) and the proof of theorem 3.1 it 

is readily concluded that only ratios of the local solutions y(.|.) need 

to be unique for states Ta+Q± and m+e^ that communicate at S(ih). The re-

sults, therefore, remain valid if this local irreducibility assumption is 

relaxed to local chains which decompose in irreducible (or ergodic) sets. 

In other words that is, the local chain at S(m) for the original q-model 

may not contain transient states. Such a relaxation can be useful for 

modeling blocked situations (cf. [5]). 

Remark 3.8. (Service speed functions). Note the specific form (2.1) for 

the service speed of station j with a different function x and 0. To the 

best of the authors knowledge, this form has not been explicitly reported 

earlier in the literature. In contrast, in the literature (cf. [2], [8], 

[15], [16]) one finds x=0. This extension allows more flexibility in net-

work dependent service speeds, such as with special service delay or ac-

celeration factors. However, as this paper is primarily concerned with 

cluster limitations, this extension will not be elaborated upon. 

4. Applications 

In this section we provide some product form examples that are based 

upon theorems 3.1 and 3.2. With partial exception of example 3.1, these 

examples are non-standard and appear to be new. Most notably, examples 

with non-reversible routing are given. The verification of the product 

forms by (3.2) or (3.5) (see Remark 3.6) is left to the reader. The nota-

tional conventions from sections 2 and 3 are adopted. 

Example 4.1. (Reversible routing; no internal routing). After a job com-

pletes a service at s station in some cluster p it always requires a next 

service at a static, n in some other cluster, say cluster q^p, with 

probability R . Upon acceptance by a cluster q a job is assigned station 

j with probability b (j) . Hence, for all i,j and with p==c(i) and q=c(j) we 

have: 

Pu = R
P qVJ> t4-1) 

The function B (t) is assumed to be of the form (2.2.) and (2.3) where 
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specifically the specification (2.4) can be kept in mind. Then, by assum-

ing that R is reversible, i.e. for some (7p) and all p,q: 

one immediately verifies (3.3) and (3.5) for all Sri-ê eS and heS with 

y(j|m) = 7qbq(j), q=c(j) (4.3) 

and 

•<*> " { X |?[q,(H)/«iï(k)]}.{jni ^.(j^.cj)]^}. <4-4> 

provided dp(k) > 0 for all k < s . Particularly, under (2.4): 

*(n) - l(sq <N q J q-1
 p>{ J?1['yc(j)

bc(j)]nj}. »GS- (4-5> 

The product form (3.6) thus holds with the above form of $(.) substituted. 

For the particular case where P=2, this product form result has been wide-

ly identified in the literature (cf. [1], [3], [7] and [10]) with typical 

applications as a material handling system in manufacturing (cf. [16]), a 

machine-interference model or an interconnected metropolitan area network 

(cf. [12]). 

Examples 4.2. Station independent cluster and non-reversible internal 

routing. Now assume that inside a cluster jobs can route from one station 

to another in a non-reversible manner while between clusters a station in­

dependent routing is applicable. More precisely, consider arbitrary proba-

bilities pid for jeC(i) and assume that for all j^C(i): 

Pij •" gP(i)
 R
Pq

bq(J) . p-c(I), q-c(j), 

(4.6) 
gp(i) - [1 - 2.eC(i)P..] > 0 , i-1 N. 

In words that is, given that a job leaves its cluster it: routes to another 

cluster with fixed probability Rp„. Given that it is accepted at cluster q 

it is assigned station j with probability b (j). Then with t the cluster 

vector corresponding to m and 

y(i|m) - [bp(i)/gp(i)] x(p|t) , p-c(i), (4.7) 
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(3.3) reduces to the pure cluster equation 

X(P|Ö Sq#P
 RpqB

Pq^) " 

(4.8) 
S . x(qlt) R B (t) . 
q?*p \i l / qp qp x ' 

The reversibility condltion (3.5) or (3.10) is then guaranteed by the 

existence of a function 6(.) satisfying for all p,q and t: 

9(t+ep) _ x(p[t) ( 4 9 ) 

B(t+eq) x(q|t) 

and the substitution , with s the cluster vector corresponding to h, 

n4 *(n) = 9(s) ±n [be(1)(i)/gc(1)(I)]"*. (4.10) 

(1) (Reversible cluster routing). For example, again by assuming that 

B (t) is of the independent departure/arrival form (2.2) and (2.3), 

while R satisfies the reversibility condltion (4.1), we directly verify 

(4.5) with 

P S 

6(s) = n (7p)
SP nP[ap(k-l)/cL(k)] (4.11) 

p = l p k=l v p 

assuming dp(k)>0 for all k<sp. Example 4.1 is hereby extended to internal 

non-reversible routings within each cluster. Particularly, for the natural 

form (2.4) again, (4.5) is generalized by setting 

dp(.) = 1 and ap(k) = l(k < N p). (4.12) 

(ii) (Non-reversible cluster routing). Another example under the assump-

tion of (4.6) but now with non-revers ible routing between clusters is the 

following. Consider a three cluster model with cyclic routing 

R-12 ~ ^2 3 = ^3i = 1 an(* capacity limitation N3 for cluster 3. Let 

B12(t) = B23(t) = l(t3 < N 3). (4.13) 

That is, upon saturation of cluster 3 a job is not allovred to leave any of 

the other clusters. Then (4.9) applies with 9(s)-l for all states with 

s3<N3 . 
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This example is related to example 4.4(i) below. In contrast, however, due 

to the special routing assumption (4.6), note that here jobs can continue 

to route within clusters 1 and 2 even though cluster 3 is congested. 

(iii) (Resource sharing of clusters; see example 2.2). As a particular 

application of the general framework (4.6) and (4.8), reconsider the re­

source sharing example 2.2 with three clusters and assume that the transi-

tion probabilities are given by (4.6) with R21=R31=1, Ri2
=P and R13=l-p 

for some 0<p<l. Then (4.7) through (4.10) hold with 

G(s) - l(s < N q=l,2,3; s2+s3 < K} II [7 ]Sq (4.14) 
H H q=l,2,3 q 

with 7!=!, 72=p and 73=(l-p). The product form expression (3.6) with (4.6) 

substituted is thus valid, restricted to S given by (2.5). 

Example 4.3. (Weak reversible routing). As a relaxation of the Standard 

reversible routing case, let Â  , j=l N be the unique solution, up to 

normalization, of the Standard traffic equations 

xi - SiAiPij, (4.15) 

and assume that for any i and q^c(i) 

Ai Sjec ( q )Pij - 2j SC(q)
AjPji- <4-16> 

Then, for example with B (t) of the form (2.2), (2.3) and (2.4), the 

reversibility condition (3.5) or (3.10) is immediately verified with 

y(i|m) = Xi (V i,m) and 
(4.17) 

f(n) = l(tp <N p, p=l,..,P) n j A j ] ^ . 

Examples 4.4. (Non-reversible routing) 

In the examples below no general conditions are imposed upon the routing 

probabilities p±j(t) such as of no internal routing (as in example 4.1), 

a uniform station assignment within a cluster (as in examples 4.2) or a 
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weak reversible routing (as in example 4.3). 

(i) (Preventive blocking). Consider an arbitrary network with routing 

probabilities pi;j and capacity limitation Np for cluster p=l P. Upon 

saturation of a cluster p, however, a job is not allowed to leave any sta­

tion outside this cluster p. The corresponding parametrization is 

Bpq(t) - l(tc < Nc for all c*p) (4.18) 

With {Aj} determined by the traffic equations (4.15) and 

S - {h|sp < Np, p=l P, sp+sq < Np+Nq for all p*q} (4.19) 

one verifies (3.5) or (3.10) with 

*(n) - n [Aj]n3 
J-i J 

(4.20) 
y(ijm) = Ai 

The product form expression (3.6) restricted to S thus applies. Here it is 

noted, in contrast with examples 2.1, 2.2 and 2.3, that no conditions at 

all are imposed upon the routing probabilities p±j . The above protocol can 

be practical, such as in manufacturing, as it prevents more than one clus­

ter to become saturated at the same time so that deadlocks or accumulating 

congestions are avoided. 

(ii) (Minimal workload blocking; cyclic cluster routing). Consider a net­

work in which the routing between clusters is cyclic. Each cluster, how­

ever, requires a minimal workload or occupancy, say of at least Mp jobs in 

cluster p=l P. Hence, 

BP,P + i
(_t) " Ktp * V ' 

with p+l=l for p=P. Note that the blocking is of the form (2.2), (2.3) and 

(2.4) with 

aq(.)-l but dpav-KtpSMp). (4.21) 

The condition (3.5) >r (3.10) and thus expression (3.6) is readily veri-
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fied with (4.10) and (4.11) substituted with ap(.)=dp(.)=1 restricted to S 

given by 

S - {h|sp > Mp, p-1 P}. (4.22) 

A minimal workload is thus secured for each cluster. This can be practical 

for workload balancing along assembly lines in manufacturing systems. 

5. Extensions 

5.1. Open systems. Similar results can be derived for open networks. To 

this end, one can either use Standard limiting arguments or one can in-

clude an extra station to represent the exterior of the network. The main 

difference will arise in relation (3.3) in which an extra term at either 

side is to be included. By introducing corresponding local solutions 

y(0|m) the results in the remainder can then be adapted easily. For exam­

ple, the open analogue of example 4.1 with P=2 is a Standard Jackson 

network with a single total capacity constraint. 

5.2. Multi-job classes. Clearly, when multi-jobclasses are allowed while 

jobs of one class route independently from other jobclasses, the above 

results directly transfer per jobclass. However, in practical situations 

with multiple jobclasses, interferences of different jobclasses is most 

common. In order to extend the present results to these situations, (e.g. 

similarly to [2] or [5]), a more refined notion of station-class balance 

is to be applied. Similar results can then be derived in analogy with the 

job-local-balance analysis in [5]. The local traffic equations such as 

(4.8), relations however, will become more complicated. 

5.3 Non-exponential servicing. It is well-known that product form expres-

sions, as based upon station or local balance notions in the exponential 

case, remain valid without exponentiality assumptions provided "locally 

balanced", such as so-called "symmetrie" service disciplines, are in order 

(e.g. [1], [2], [6], [8], [14], [15], [16]). Based upon the station 

balance property (3.1), this latter statement applies just as well in the 

present setting. For example, with each station behaving as an infinite 

server queue with the capacity limitations taken into account, the product 

form expression (3.6) can be shown to be insensitive for service distribu-
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tional forms. More precisely, it applies with 0(h)=[n1!n2!...nN!]"
x . 

Evaluation 

Closed queueing networks are studied in which groups of stations rather 

than individual stations have capacity limitations, for instance due to a 

common storage pool or commonly shared resource such as frequently arising 

in conununication, computer or manufacturing applications. A general condi­

tion is derived, based upon a notion of station balance, which guarantees 

a product form expression. This condition is given purely in terms of 

local solutions of state dependent routing equations. As explicit expres-

sions for these local solutions are often obtainable, a practical tooi for 

investigating the existence and computation of a product form is thus 

provided. A number of novel product form examples with blocking is so de­

rived. Particularly, examples with non-reversible routing both within 

clusters and in between clusters are concluded, thus relaxing the Standard 

restrictive reversibility conditions for a product form to hold in queue­

ing networks with blocking. Extensions to open, non-exponential and multi 

jobclasses are possible. 
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