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APPENDIX : Mathematical Proofs 

Proof of Theorem 1. Let 9 be a random drawing from F. Then by hypothesis 

of the theorem the distribution of the random variable 9'(x^-X2)» w n e r e 

x^ € X and X2 € X are non-random, is atomless for x^ £ X2» Consequently 

we have 

{1 if x. = x, , 

0 if Xj ̂  x2 . 

From (Al) and the countability of X we now conclude 

(A2) P(9'x. • 9'x_ for some (x..,x_) £ X x .X with x.. # x_) 

< 2 P {9'(x1-x2) = 0} = 0 
X- c X, XAC'AJ X- F X~ 

This proves the theorem 
Q.E.D. 

Proof of Theorem 4. The strong consistency results in Theorem 4 follow 

straightforwardly from Kolmogorov's strong law or large numbers and 

Theorem 2.2.5 of Bierens (1981). For proving asymptotic normality, 

observe that by the central limit theorem 

(A3> (ÏÏ =>! Vi> * " - V • 35 sj-i(y:feó V d 
-» N, [0, E(y. - 9'x.) x.x! ] in distr. K J u J J J 

and that by Kolmogorov's strong law of large numbers, 

(A4) - E. , x.x'. •* E x.x'. a.s. , 

The asymptotic normality result follows now from Theorem 2.2.14 in 

Bierens (1981). A similar proof can be found in White (1980). 

Q.E.D. 

Proof of Theorem 5. Since 9Q is a linear separator its components are 

non-zero, possibly except the components corresponding with nonvarying 

components of X. Therefore the functions M^(9) are continuously differen-

tiable in a neighborhood of 9Q, and so is z(x,9) for each x 6 X. Using 
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Theorem 2.3.3. of Bierens (1981) it is now not hard to verify that for 

some compact neighborhood SQ of 9g , 

(A5) sup sup | ij>£(z|6) - if»a(z16)| -» 0 a.s. 

|z|<i ees 0 

for £=0,1,2,..., where similarly to (12). 

1 if r1 = r2 , 
(A6) E* (z(x. ,e)|e) * (x.,8)|e) - , 

rrl J 2 J 0 if r1 ^ 2 2 . 

Defining 

(A7) YfcO) = E y $£(z(Xj,8)]8) 

it follows from (A5) that 

(A8) sup | Yj,(8) - Ta'(8)| "* 0 a.s. 

ees Q 

Since by Theorem 4, 8 •» 8Q a.s., the theorem under review now easily 

follows from (A6) and (A8) and Theorem 2.2.5 of Bierens (1981). 

Q.E.D. 

For proving Theorems 6 and 7 we need the following lemma's. 

Lemma Al. Let u be a random variable in I, satisfying E|u| < « and let z 

be a random variable in a bounded subset Z of I. Then P(E(u|z) = 0) < 1 

if and only if for some ó > 0, EueXZ £ 0 for all x e (-6,0) U (0,6). 

Proof. Lemma Al follows straightforwardly from the Proof of Theorem 2 of 

Bierens (1982). 

Q.E.D. 

Lemma A2. Let the conditions of Lemma Al be satisfied. Let 

(A9) T - {x e I : EueXZ = 0}. 
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If P(E(u|z) = 0) < 1 then T is countable and any bounded subset of T is 

finite. 

Proof; Let XQ £ T. From lemma Al it follows that there exists a 5 > 0 

such that 

X Z 

(AIO) Eue ° e X Z é 0 for all x&(-ö,0) U (0,6) , 

hence 

(All) EueTZ * 0 for all x £ (-ö+x0,x0) U (X Q,X 0+Ö) . 

Obv iously (All) implies that for every x_ € T 

(A12) inf |t-t0| > 0 , 
x€T,x^x0 

which in its turn implies that Lemma A2 holds. 

Q.E.D. 

Proof of Theorem 6. First we note that we may replace z(xj,8*) in (14), 

(15) and (1.7) by 8**Xj. However, using z has the advantage that x then 

becomes independent of the scale of G^'x^. 

Now let 

2 8*'x. - max 8**x - min 8*'x 

(A13) Ë(x Q*) - £f£ £Ê£ 

xex xex 

Since X is finite and contains only points with positive probability 

mass, we have 

(A14) lim P( {x.,...,x } 3 X) - 1 , 
1 n n-x» 

hence 

(A15) lim P{z(x.,8*) = z(x.,8*) for j=l,...,n} = 1 . 
n-x» ^ 

Therefore we may replace z by z without loss of generality. 

Assume that (18) holds. Then 



(A16) E ( y j l x j } = 8 ( x j } = S£=o ï«-(eo) +a<z(xj»eo)IV a , s -

so that 

xz(x. ,8*) 
(A17) (1/Vn) Z n

= 1 (y -gjx |S))e
 J 

xz(x.,8*) 
= (1/Vn) Ej-1(uj+«(xj)-gBi(xj|fl0)+8m(xj|e0)-^i(xj|S))e

 J 

xz(x.,8*) 
= (1/Vn) S ^ 1 u e

 J 

. xz(x.,8*) 

- (i/Vn) s ^ l j (Y£(e0) - Y,(e0))^(z(x.,e0)|e0)e
 J 

xz(x.,8*) 
- (1/Vn) S n

= 1 (im(xj|8)-8m(x.|80))e J 

= c1(-c,8*) - c2(x,8*) - c3(x,8*) , say. 

Observe from (9) that for Jt=0,l,2,.... 

(A18) Y £(9 0) - Yl(90) = i S n
= 1 U j ̂ (z(Xj,e0)|80) , 

hence 

(A19) E2(x,8*) = Ŝ lJ (i S n
= 1 U j T|»a(z(xj,80)|80) 

1 „ tz(x.,8*) 
• 1 _n (n Sj=l^<z(xj'e0)le0)e J' 

Denoting 

(A20) c2(xs8*) = 

1 , xz(x. ,8*) 
S!=0 (7n" Sj=l uj n(z(xy%nQQMhWxy%n*0)e

 3 ) . 

where xpĵ Cx|©0) is the probability limit of i|)̂ (z|90), it is easy to verify 

that 

(A21) plim {ë2(x,9*) - 52(x,9*)} = 0. 

Next, observe that by the mean value theorem there exists a random vector 

9(x,9*) satisfying 

(A22) ||9(x,8*) - 9Q || < || 8 - 8Q || a.s. 



and 
xz(x 9*) 

(A23) c3(x,9*) = -jn ^ ( ^ ( x . l ê ) - im(x.ie0))e *' 

, xz(x.,8*) 
= Vn(8-60)' i S^=10/a9')im(Xj|9(x,9*))e

 J 

Moreover, from (A22) it follows 

xz(x.,9*) 
(A24) plim - S1? , (9/99' )g (x. |§(x,e*))e J 

n*~ n J=1 m J • 

1 Xz(x. 

-plim - s" (3/aeM-g (x.|5)e J 

n 1—1 m i' 
xz C x 

= plim i s" 0/99')gm(x |9Q)e
 j' 

= im(x|9*), say. 

Denoting 

(A25). c3(x,9*) = Vn(9-90)' 5mx|8*) 

we thus have 

(A26) plim { C 3 ( T , 8 * ) - c3(x,9*)} = 0. 

Furthermore, observe that 

(A27) Vn(8-e0) - (I ^ = 1 xjx')"1 £ 2;=1 . ^ - . j e , , ) 

and t h a t by (A4), 

• "'* v - ̂ w ^ >>i Yyr xiv (A28) pl im W n ( § - e n ) - ( E x . x ' ) " 1 -r- s " x , ( y , - x « 9 n ) } = 0 

n-x» 

Thus denoting 

(A29) c3(x,8*) - Cm(x,8*)
,(Exjxj)"

1 ^ E n
= 1 x ^ - x ^ ) 

we have 

(A30) plim {c3(x,9*) - c3(x,9*)} = 0 . 



From (A15), (A17), (A21), (A26) and (A30) we now obtain 

, „ xz(x ,8*) 
(A31) plim { ^ Sn==1(y-.-gm(xj|ê))e

 J - a(x|9*)} = 0 , 

with 

where 

(A32) a(x|9*) = £1(x,8*) - C 2(T,9*) - c^Cx.B*) 

xz(x ,9*) 
= -7- S. , u. e J 

, i xz(x.,9*) 
- ̂  Z"=1 ̂ E^IJ ̂ (z(xj,90)|90).E(^(z(xj,90)|80)e

 J ) 

- I (x|8*)'(E x.x!)"1 -r Sn ,x (y.-x!9n) 

= A Sn_, u. p. (x|9*) - f (x|9*)'(Ex.x.') A S" x.(y.-x.'9) 
-/n j=l j j,n m j ] Vn J=l J j j 

xz(x. ,9*) . xz(x. ,9*) 

(A33) Pj>m("n|e*) = e J - E ^ J * l < z ( x j , 9 0 ) \QQMii(zUyQQ) |9Q)e J ) 

Realizing that the terms in (A32) are i.i.d. with zero mean and variance 

(A34) i2(x|9*) = E{ujP\)m(x|e*) - 5m(x|e*)'(Exjxj.)"
1xj(yj-xj90)}

2 

= E{u2 p^mCx|e*)> - 2 E^Pj^Cxle^y^Cxle^O'CEXjXp^XjCyj-x^Q)} 

+ 5m(-c|9*)
,(Exjxj)"

1(E(yj-9^)xj)
2xjx^)(Exjx^)

1 5m(x|9*) 

= E u 2 p2 (x|9*) 

- 2 E u ^ - x ^ ) Pj>m(T:|e*) x'CEXjX^)"
1 ïm^\Q*) 

+ L(x|9*)« Q l (x|9*) , m ' m • 

we have by the central limit theorem 

(A35) a (x|9*) •* N(0,s2(x|9*)) in distr. m ' m ' 

We leave it to the reader to verify that 

(A36) s2(x|9*) •* s2(x|9*) a.s. 
m * m ' 

and that s (x|9*) > 0 for x è 0. Combining (A31), (A35) and (A36), part 
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(19) of Theorem 6 follows. 

Next, assume that (18) fails to hold. Then by (A15) , 

i „ x£(x,,e*) 
1 r,n (A37> i ^ - ^ j - ^ ' j l 8 » - J 

, xz(x.,8*) 
- E ( y j - S

m
=J ya(90) +i(z(xj,.80)|e0))e

 J a.s. 

Moreover, it is not hard to verify that also now s^(x|8*) converges a.s. 

to a limit s^Xxje*), say, which is positive for x^O. Thus part (20a) 

follows straightforwardly from (A37) and Lemma's Al and A2. 

Finally, the conclusion that we may substitute 8 for 8* follows from 

the fact that by Theorem 4 

1 n xz(x.,8) 
(A38) plim { ̂  S"ssl(yj-gln(xj,ê))e

 J 

i r, xz(x.,8n) 
- 4 E " (y.-i (x.,8))e J ü } - 0 Vn j=l Jj ömv j 

provided (18) is satisfied. Proving (A38) is not too hard and therefore 

left to the reader. 
Q.E.D. 

Proof of Theorem 7. The result (19) is equivalent with 

2 
(A39) lim E e 1 tT1m ^ l 9 * 5 . e"^

 t for every t e 1 
n-x» 

If x and 8* are random and independent from the data-generating process 

then we have similarly, 

(A40) E(ei t\Cx|8*) (T>eft) , e-U
2
 a g > 

Hence by bounded convergence, 

(AAI) E e 1 ̂ i 9 * ) - E t ^ e 1 fc %<*1 9*> |x,8*) ] - ."* ^ 

which proves that (19) carries over if 8* and x are random. 

Now suppose that (18) fails to hold. Lemma A2 implies that (20a) hold 

for x € R\T, where T is a countable subset of 1. But since x is now 

continuously distributed we have 



(A42) P(x £ 1\T)= 1. 

Moreover, Theorem 1 implies that 8* is a.s. a linear separator. Therefore 

(20a) also holds for the random x and 8* involved. 
Q.E.D. 

Proof of Theorem 8. From the mean value theorem it follows 

(A43) Y£ (§) " ÏJIOQ) - [0/39)ï£(8)] (8-GQ) , 

where 8 is a mean value satisfying ||9-8_|| < ||8-8n|| . From this result 

we see 

(A44) plim W n ye 
Vi<§> 

W 
Vi<V 

fmVn(ê-e0)} = o , 

where 

(A45) f - plim f 
m r m 

Moreover, from (9) and (10) it follows that 

(A46) Y £ ( 8 0 ) - Y£(80) = i S
n
= 1 uj*£(z(xj,8Q)|eo) 

Combining (A44) and (A46) and using (A28) we see that 

(A47) plimiVn y§) 
m-1 

W 
Vi(«o» 

{f (Ex.x!)"1 -r- 2" , x.(y.-x'.8n) + -r- S1? .u.Y. } : 
m j 2 Vn j=l 2 2 3 0 Vn j=l J j,mJ 

- 0 

where 

(A48) T 
J.m 

yz(x.,e0)|e0) 

Vi ( i ( xj' 9o )i eo ) 

But the random vectors 



(A49) d. - f (Ex.x1.)"1 x.(y.-x!8n) + u. *. 
J m JJ J J 3 O j j,m 

are indepenent with zero mean vector and variance matrix 

(A50) E d.d! - f Q ? ' + f (Ex.x l.)"1E(u?x. ,F! ) 
J J m m m J J J J j ,m 

+ E(u? f. x l X E x . x ! ) " 1 f • + E<u?Y. Tï 
J J . m j J J m J J . m j . m 

Denoting 

(A51) l - lim - Sn
 nE u? 7. Y'. 

m
 n̂ oo n j=l j j ,m j ,m 

(A52) S = lim - E ^ G i ? * . x ' .XEx.x!)"1 

m n-*» n J J J , m J 3 3 

(A53) A - r s r + E r + r S ' + A , 
m m m m m m m m 

we thus have by the central limit theorem 

(A54) -r 2" , d. -> N (0,A ) in distr. Vn j=l j m m 

Combining (A47) and (A54), the first part of Theorem 8 follows. 

We leave it to the reader to verify the second part. 

Q.E.D 

Proof of Theorem 9; Similarly to the proof of Theorem 7. 


