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APPENDIX : Mathematical Proofs

Proof of Theorem 1. Let & be a random drawing from F. Then by hypothesis

of the theorem the distribution of the random variable B'(xl-xz), where
x; € X and %7 € X are non-random, is atomless for x| # x;. Consequently

we have

1 if xl = xz »

(A1) P {8'(x,~x,) = 0} =
1 72

0 if Xy # Xy -

From (Al) and the countability of X we now conclude

. ] L = 1 - i
(A2) P(8 x; = 8'x, for.som? (xl,xz) € X x X with x; # xz)
T P {e'(xl-iz) =0} =
xle X, xiix, X, # X,

This proves the thecrem
Q.E.D.

Proof of Theorem 4. The strong consistency results in Theorem 4 follow

straightforwardly from Kolmogorov's strong law or large numbers and
Theorem 2.2.5 of Bierens (1981). For proving asymptotic normality,
observe that by the central limit theorem

1 ¢n ' Ao =1 n A
(A3) (n Ej=l xjxj) Jn(d BO) T Ej=1( 5 8 )x
2
1 - [ ]
> Nk[O, E(yj Boxj) xjxj ] in distr.

and that by Kolmogorov's strong law of large numbers,

(A4)

dlh'

x x + E x . x! a.s.
j 373 ’

The asymptotic normality result follows now from Theorem 2.2.14 in
Rierens (1981). A similar proof can be found in White {(1980).

Q.E.D.

Proof of Theorem 5. Since 8y is a linear separator its components are
non-zero, possibly except the components corresponding with nonvarying
components of X. Therefore the functions M{(8) are continuously differen-

tiable in a neighborhood of 83, and so is z(x,0) for each x € X. Using
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Theorem 2.3.3. of Bierens (1981) it is now not hard to verify that for
some compact neighborhood Sg of 89 ,

(AS) sup  sup | vg(z]8) - $o(z]0)]> 0 a.s.
lzls1 e€s,

for 2=0,1,2,..., vhere similarly to (12).

(A6) v, (z(z,,8)[0) v (x.,8)]8) =

Ewrl % | *2 *3 ! 0 if r, #2, .
Defining
(A7)  Yq(8) = E v 6£(z(xj,e)|e)

it follows from (KS) that

(A8) sup | ?2(9) - ?E(e)] + 0 a.s.

64580

Since by Theorem 4, B » 8g a.s., the theorem under review now easily
follows from (A6) and (A8) and Theorem 2.2.5 of Bierens (1981),

. Q.E.D.
For proving Theorems 6 and 7 we need the following lemma's.

Lemma Al. Let u be a random variable in K, satisfying E|u| < = and let z
be a random variable in a bounded subset Z of R. Then P(E(ulz) =0) <1
if and only if for some & > 0, Eue'Z # 0 for all t € (-5,0) U (0,8).

Proof. Lemma Al follows straightforwardly from the Proof of Theorem 2 of
Bierens (1982).

QnEoDo

Lemma A2. Let the conditions of Lemma Al be satisfied. Let

(A9) ?={t € X : Eue"? = 0}.



If P(2(u]z) = 0) < 1 then T is countable and any bounded subset of T is

finite. -
Proof: Let tg € T. From lemma Al it follows that there exists a 6 > 0
such that

T 2 .
(A10) Fue © e%2 # 0 for all te€(-6,0) U (0,5) ,
hence
(Al1) Fue'? # 0 for all t € (-6+15,T) U (t4,7,%8) .

Obviocusly {All) implies that for every Tg €T

(A12) inf |t
tGT,t%tO

ol >0

which in its turn implies that Lemma AZ holds.
QCE.D.

Proof of Theorem 6. First we note that we may replace E(xj,e*) in (14),

(15) and (17) by 9*‘xj. However, using z has the advantage that t then
becomes independent of the scale of 8%'x:.

J
Now let
2 8%'x, - max 6%'x - min 6%'x
. - %y = XEX xeX
(A13) z(xj’e ) = max 65X - min 8%'x )
: x€X x€X

Since X is finite and contains only points with positive probability

mass, we have

(Al4) lim  P( {xl,...,x }I=oX)=1 ,
n->e - n

hence

(Al5) lim P{z(x,,08%) = z(x,,8%) for j=1,...,n} = 1 .
o i 3

Therefore we may replace z by z without loss of generality.
Assume that (18) holds. Then



(A16) B(ylx,) = g(x,) = 570 ¥0(80) ve(a(x;.80)|8p)  a.s.
so that
n tz(x, ,9%)
(A17) (1/4dn) 25 (v -8, (x [0))e
tz(x,,0%)

= (1/4n) E?=1(uj+3(xj)'§m(xjIBO)+§m(xj|60)-§m(xj|§))e 3
) 2 u, o 3™
j=1 Y -
(1/4n) S0 500 (55(0) = v(85) Vg (2(x,0,) [0 vax;,6%)
je1Pemo V2 ¥2(89))0g(2(x;,8,}8g)e

(ém(leﬁ)-ém(leeo?)e

(1/+n) zJ=1
='31(t,9*) - 52(1,9*) - EB(t,S*) , S&aY.

Observe from (9) that for 2=0,1,2,...

(A18) Talog) - va(89) = ¢ T b wz(z(xj,eo)le ),
hence
(A19) 3)(x,0%) = TpT0 () v ¢g(z(xj,90)|9 )
tz(x,,9%)

. (% E?=l¢£(z(xj,90)|80)e 3
Denoting
(A20) c,(c,8%) =

t2(x,,0%)

Ez;é (7% Eg=l u, ﬁl(z(xj,eo)|90)E($g(z(xj,90)|90)e N Y,

where ﬁg(xleo) is the probability limit of ¢g(z|80), it is easy to verify
that

(A21) plim {52(1,9*) - &,(5,0%)} = 0.

NI

Next, observe that by the mean value theorem there exists a random vector
8(<,0%) satisfying

(A22) [18(x,6%) -8, || s || 8 -8, 1] a.s.



and _
R tz(x,,0%)
(A23) Ccqa(T,0%) = 7 j 18y (le ) - sm(leeo))e .
1. s _ ti(xj,ﬁ*)

= Jn(é-&o) 5 Ej-l(BIBB )gm(leﬁ(t,e*))e

Moreover, from (A22) it follows ’

tz(x,,0%)

(A24) plin 337, (3/20')§ ACHLEADE :

o

1 tz(x,,0%)
= plim = (3/ae’ )g (x 8e
ﬁéﬂm n j =] I
) _ Iz(xj,e*)

= ﬁ-lmim 1 zj , (3/3e0 )gm(leﬂo)e A

= Em(t|e*), say.
Denoting
(A25) . ¢,(7,8%) = Jn(B-6,)"' E(c{e*)
we thus have |
(A26) plim {2,(t,6%) - 33(«:,9*)} = 0.

s
Furthermore, observe that

_ (1l n -1 _1 n ot
(A27) Jn(8-8,) = (& Ziel Xy 3) 7n Zim1 %3(757%}80)
and that by (A4),
. S | X .

(A28) ﬂ.lmm {Jn(é-eo) - (Exjxj) Tn & j -1 j(yj 90)} 0
Thus denoting

= - . iv-1 1 on .
(A29) c3(t,9*) = am(:,e*) (Exjxj) n Ej_l xj(yj xjeo)
we have
(A30) plim {33(1,9*) - ¢4(7,6%)} = 0 .

-«
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From (Al15), (A17), (A21), (A26) and (A30) we now obtain

zz(x, ,0%)
(A31) plim {7- J_l(yJ-gm(xJIB))e J - d(z|e*)} =0 ,
where
(A32) d(x|e%) = & (x,8%) - & (7,8%) - c,(x,8%)
tz(x,,0%)
" ey ]
1 tz(x,,0%)
e j S pbs ¢£(z(xj,6 )18, E(wg(z(x 85)|8g)e 7 )
- E_(z]o%) (& xjxj) 71 _i% (y;mxt00)
= o ey vy by, a(ele0) - £ Glen x4 k) x(exle)
with
tz(x,,0%) me1 - . tz(x.,0%)

(A33) p altle®) = e J - Toog Palz(x,05) 180 E(he(2(x,,80)|0g e I

Realizing that the terms in (A32) are i.i.d. with zero mean and variance

 (A38) §§(1|e*) = B(u;p, (cfe%) - Em(t|e*)’(Exjxs)-lxj(yj-xéeo)}z

3
- E{u? 52 m(z|e*5} - 2 Blugp, (c[on)E (vox) (B x')‘lxj(yj xt0,))
+ E(ulon) (Ex,xt) T (R(y, -0 0% ) 2 x ) (B x! 3 E (x]%)

= E u2 p2 (tle*)

- 2R uj(yj~x390) Ej,m(t|e*) x&(Exjxj) Em(tle*)
+ £ (z]e%)' @ £ (c|e%) ,

we have by the central limit theorem

(A35) a (c|ex) » N(o,éi(zle*)) in distr.

We leave it to the reader to verify that

(A36) 2(x|o%) » S2(xle%) a.s.

and that Ei(tle*) > 0 for t # 0. Combining (A31), (A35) and (A36), part



(19) of Theorem 6 follows.
Next, assume that (18) fails to hold. Then by (AlS) ,

wz{x,,0%)

(A37) 'z‘j‘=1(yj - ém(x. [8))e
tz(x,,0%)

> By - Tpg ve(8) ¥ylalx;,00)[0g))e a.s.

=

Moreover, it is not hard to verify that also now SZ(TIB*) converges a.s.
to a limit s*(tle*), say, which is positive for t#O Thus part (20a)
follows straightforwardly from (A37) and Lemma's Al and A2.

Finally, the conclusion that we may substitute 8 for 6* follows from
the fact that by Theorem 4

zz(x,,8)
(A38) plim { T j= 1(yj gm(x ,8))e  d
: 1 <z(x,,8,)

-Tjul(y “By(%558))e } =0

provided (18) is satisfied. Proving (A38) is not too hard and therefore

left to the reader.
QQE!D'

Proof of Theorem 7. The result (19) is equivalent with

- 2
(A39) lim E ei ™ (xjo*) = e“i t

n=>"

for every t € R

If © and 8% are random and independent from the data-generating process
then we have similarly,

(A40) E(ei tﬁm(tle*) {t,0%) > e“é t? a.s.
Hence by bounded convergence,
(A41) £ et En(TlO%) o prpcel © (1M ny ) 5 o7 e
which proves that (19) carries over if 8% and t are random.
Now suppose that (18) fails to hold. Lemma A2 implies that (20a) hold

for © € R\T, where T is a countable subset of E. But since T is now

continucusly distributed we have



(A42) P(t € E\T)= 1,
Moreover, Theorem 1 implies that 6% is a.s. a linear separator. Therefore

(20a) also holds for the random T and 8% involved,
Q.EODQ

Proof of Theorem 8. From the mean value theorem it follows
(A43) Yo (8) - vy(8,) = [(8/30)¥y(8)] (B-8,) ,

where 8§ is a mean value satisfying ||§-90|| £ ||§-60|1 . From this result

we see
-?0(6 ¥y(8g) - N

(A44) plim {n || . | -1 7. - T dn(8-00)} =0,
Ym-l(e) Ym-l(eo)

where

(A45) I, = plim Pm

Moreover, from (9) and (10) it follows that
- 1 .n
(A46) Yg(eo) = Yg(eo) = H Ej=1 uj¢£(z(xjseo)l90) .

Combining (A44) and (A46) and using (A28) we see that

Y,(8) v,(8,)
(447) plimfJn ‘0. - 0. 0
L) Ym-1(90)

T ex"l 1 on Lol + 1 .n -
(B3 o Zjey %505750%) + T Fjur®y¥y,n) 1= 0

where
wo(z(xjgeo)lﬁo)

(A48) wj,m = E

‘pm_l(é(xjyeo)leo)

But the random vectors



(A49) d F (Bx.x') -1 x (y -x'B ) + u,

i i3

are indepenent with zero mean vector and variance matrix

b jsm

A50 Edd'=I‘ szr'+r‘ Ex lg yt
(A50) 393 ( jxj) (ujxj i,m )
+ ] l- l+
E(uj xj)(Exjxj) P E(uj?
Denoting
(A51) io=umis? oy, v, ,
m .nd Y5 *5m ti,m
(A52) § o=1tm 23" (u®¥. x')(Ex.x!)"!
m e D=l 5,557 %
(A53) A =T QT +% T +T &'+23_ ,
m m m m m m m m

we thus have by the central limit theorem

(A54) T z d >N (o, A ) in distr.

1
,mwj,m

Combining (A47) and (AS4), the first part of Theorem 8 follows.

We leave it to the reader tc¢ verify the second part.

Proof of Theorem 9: Similarly to the proof of Theorem 7.

)

Q-EoDo



