
SERIE RESEARCH mEmORIMDn

ON RALLY, AN EVALUATION BASED ON CRITERIA

E. Spoor
E. Houweling
R. Geerts
R. Losekoot
M. Sprengers

Researchmemorandum 1987-33 september '87

VRIJE UNIVERSITEIT

FACULTEIT DER ECONOMISCHE WETENSCHAPPEN

EN ECONOMETRIE

A M S T E R D A M

•;§»

f

-)

On RALLY, an eva lua t ion based on c r i t e r i a *

E. Spoor
E. Houweling
R. Geerts
R. Losekoot
M. Sprengers

Free Uhivers i ty , Dept of Econoraics,
August 1987t Amsterdam.

ABSTRACT

The past few years have seen enormous attention directed towards
aatabases and especially towards relational theory. The prominent
coverage received by these subjects has until recently somewhat
obscured the advances that have been achieved in a closely related
field: that of Fourth-Generation-Language (4GL) Application-
Development-Systems (ADS's). Has this database-oriented interest
led to a gross undervaluation of the ADS phenoraenon? No, on the
contrary, it now is a hotly debated topic, but the point is: the
discussions are rather chaotic. This is mainly due to the fact
that a theoretical framework, comparable to that of e.g. relational
databases is lacking. The absence of such an academie foundation
means that there are almost no clear reference-standards against
which the often spectacular claims of manufacturers for their
ADS-s can be gauged. This article therefore attempts to investigate a
specific ADS (VAX RALLY) [RALL86] within the context of a set of
criteria. The research for this publication was carried out in the last
quarter of 1986 and the first few months of 1987.

*-A version ofthis article is submitted to DECUS U.S. CHAPTER SIGs.
NEWSLETTERS.

i

lies"*-")!

CHAPTER 1 INTRODUCTION

For many years the development of informat ion-systems has appeared
to be a very expensive and time-consuming af f a i r . Many causes are a t
the root of t h i s f a c t . In t h i s r e s p e c t the changing requirements of
end -use r s , t h a t have con t r ibu ted to the d r a s t i c a l l y increased
complexity of these sys tems, are of g rea t importance. Besides t h i s the
s i g n i f i c a n t shor tage of i n f o r m a t i o n - s p e c i a l i s t s i s a r a t h e r se r ious
problem. F i n a l l y the speedy developments concerning hardware and the
r e s u l t i n g c o n v e r s i o n - p e r i l s can be mentioned. Until r e c e n t l y
developments in the so f tware - f i e ld could not keep up with these
advancements.

Next t o the production of new informat ion-sys tems , another i s sue i s
r e l e v a n t : t h a t of app l i ca t ion-main tenance . This appears to be of
c r u c i a l importance, but a t the same t ime i t c o n s t i t u t e s one of the
g r e a t e s t bo t t l enecks in many o r g a n i s a t i o n s . Responsible for t h i s
s i t u a t i o n again are the above mentioned causes from the a p p l i c a t i o n -
development phase . Besides t h i s , o the r problems of a d i f f e r e n t na tu re
are prominent , l i k e badly docunented programs and poor ly s t r uc tu r ed
systems. P a r t i c u l a r l y to obv ia te the forenamed d i f f i c u l t i e s , the
so -ca l l ed "St ruc tured Design Techniques" were introduced during the
s e v e n t i e s . These design-methods have brought some a l l e v i a t i o n , but
c e r t a i n l y have not become an unqual i f ied s u c c e s s . The development and
maintenance of software cont inue to be s t r u c t u r a l problems.

Si r ecen t years e f f o r t s have been made to change t h i s s i t u a t i o n
funcamental ly. Various manufacturers a re c o n t r i b u t i n g to t h i s by
launching "Appl icat ion Development Systems" (ADS's) . One of these ADS's
i s descr ibed and examined aga ins t a number of c r i t e r i a in t h i s a r t i c l e .
For t h a t purpose t h i s t e x t i s arranged as follows : In Chapter 2 a shor t
explanat ion of ADS's in general i s g iven . Moreover t h i s chapter inc ludes
a paragraph with a d i scuss ion of the e v a l u a t i o n - c r i t e r i a t h a t are used..
Chapter 3 g ives a sys tem-descr ip t ion of the s p e c i f i c a l l y researched ADS.
F i n a l l y , Chapter 4, conta ins the eva lua t ion and the conc lus ion .

CHAPTER 2 APPLICATION DEVELOPMENT SYSTEMS

2.1 What a re a p p l i c a t i o n development systems ?

In g e n e r a l , a d i s t i n c t i o n i s made between the t h i r d and the four th
genera t ion within the cu r r en t computer l anguages . That t h i r d genera t ion
c o n s i s t s of the well-known higher programming languages l i k e Cobol,
Fo r t r an , Bas i c , e t c . These languages p resen t many advantages in
r e l a t i o n to t h e i r p r ecece s so r s , but they a l so have se r ious drawbacks,
the worst of which i s t h e i r procedural n a t u r e . This means t h a t expe r t s
a re requi red and t h a t they need to convert a l l u s e r - s p e c i f i c a t i o n s i n t o
program-procedures . In other words "HOW" the software i s to perform
must be spec i f i ed in d e t a i l , which i s a t ed ious and t e chn i ca l process .
The d i r e c t consequence of t h i s u s u a l l y i s a very long and e r ro r -p rone
software-development s t a g e . Moreover the extremely important
appl ica t ion-main tenance appears t o be a very l a b o u r - i n t e n s i v e a f f a i r ,
mainly because of the used languages .
m response t o these l a s t d i s advan t ages , in r ecen t years f ou r th -
genera t ion software has been introduced to the marke tp lace . This
software p re tends t o be as non-procedural as p o s s i b l e . In c o n t r a s t to
the usual s t a t e of a f f a i r s concerning t h i r d - g e n e r a t i o n l anuages , now the
d e c l a r a t i v e aspect i s prominent . This means t h a t the p r i o r i t y now r e s t s
with t h e d e c l a r a t i o n of the s p e c i f i c a t i o n s ("WHAT' t h e software i s t o
d o , ins tead of "HOW" i t has t o perform) , and thus no longer with the
t e c h n i c a l t r a n s l a t i o n to the program-procedures . The implementation of
t h i s conversion now i s taken care of au toma t i ca l ly by the sof tware .

In p r a c t i c e the term " fou r th -gene ra t i on software" encloses a
broad spectrum of programs and t o o l s , with mutual ly g r e a t l y varying
f e a s i b i l i t i e s . Nevertheless some common elements can be d i s t ingu ished .
P a r t i c u l a r l y :

- Data Bases and DataBase Management Systems (DBMS's);
- Program-generators: i . e . advanced software t h a t genera tes a l l

required procedural programs on the b a s i s of mainly non-procedural
s p e c i f i c a t i o n s and uses the forementioned d a t a b a s e s . Such
genera to r s should include "Proto typing" f a c i l i t i e s , t o enable
f a s t development of rough program- frameworks ;

- Query-languages: languages t h a t a l low the user t o e a s i l y perform
manipulat ions on data in a d a t a b a s e . Of course a u t h o r i z a t i o n
c o n t r o l s are e s s e n t i a l in t h i s r e s p e c t ;

- Se r een -gene ra to r s : t o o l s which can be used for a c l e a r
p r e s e n t a t i o n of data by way of a s o p h i s t i c a t e d l a y - o u t ;

- Repor t -wr i t e r s : a i d s to generate h a r d c o p y - p r i n t o u t s .

The confusion concerning the term " fou r th -gene ra t i on software"
n e c e s s i t a t e s the i n t roduc t i on of a new concept : Appl icat ion Development
Systems (ADS's):

An ADS can be descr ibed as a system t h a t conta ins a l l the above
mentioned e lements , in such a way t h a t they form a c o n s i s t e n t u n i t y ,
which enables developers t o produce a p p l i c a t i o n s in a r e l a t i v e l y
non-procedural manner.

2

2.2 ADS-Evaluation-criteria

The evaluating character of th i s a r t i c l e requires the summing up of
a number of c r i t e r i a , against which experiences with specifio ADS's can
be placed in the context of standards for ADS's in general . The c r i t e r i a
mentionea below are part ly derived from Caraenas [CARD82] and in our
opinion can serve as a t es t for the judgement of any a rb i t ra ry ADS:

1 Do the ADS-tools form a unity ?
(They should not overlap each other , for then a choice-problem
comes into existence ; nor should they show mutual gaps, because
th i s causes a penalty in the form of appl ica t ion- l imi ta t ions) ;

2 Is the ADS DataBase- ana DataCommunication-oriented ?;
3 Are the tools independent of a specific DBMS ?

(That i s : can they be connected to DBMS's of different origins ?) ;
4 Is the ADS in te rac t ive ly oriented ?

And does i t in th i s respect contain :
- high quality data-manipulation f a c i l i t i e s ?
- features that enable screen-formatting ?
- report-writing f a c i l i t i e s ?;

5 Does the ADS possess language-elements (i f possible non-
procedural) to describe a c t i v i t i e s , that cannot be d i rec t ly
deduced from the in- /output-specif icat ions ?;

6 Can an observable productivity-improvement be witnessed in
re la t ion to third generation languages ?
(We consider th i s an essent ia l evaluation-item, because here the
motivation for the development of fourth generation software
l i e s : t h i s software should c lear ly lead to a substantial
shortening of the above mentioned application-ctevelopment s tage .) ;

7 Is there r ea l ly a higher measure of f l ex ib i l i t y as compared to
third generation languages ?
(This criterium i s closely related to the former one, because
obviously the increase in productivity should be evident here
too . However f l ex ib i l i t y goes one step further : I t requires that
the applicat ion, generated by the ADS, has an easi ly changeable
internal s t ruc ture . For i t i s imaginable, that an ADS produces
applications with extremely r ig id internal bui ld-ups. (Often the
application consists of main-parts which can be changed or
deleted, only after a l l of the i r sub-elements labouriously have
been removed one after the other.) If t h i s i s the case, changes
and/or additions natural ly are d i f f icu l t to r e a l i s e . By t h i s ,
application-maintenance i s seriously hampered and l i t t l e or
nothing would have been gained in re la t ion to the current
practice with third generation languages concerning th i s
extremely important aspect. Concluding: the f lex ib i l i ty -cr i te r ium
mainly covers the maintenance-friendliness of the software,
generated by the ADS.);

8 Does operating the ADS s t i l l require the specialized knowledge of
a computer-expert, or i s i t indeed the case that enc-users can
generate complex applications on the i r own ?
(This i s greatly enhanced if the ADS i s as non-procedural as
possible, but even then ease of use i s s t i l l not guaranteed
automatical ly.) ;

9 Is fast and good "Prototyping" possible ?
(That i s : are there f a c i l i t i e s within the ADS that enable the
generation of a rough concept ?) ;

10 Does the ADS-software guarantee the in tegr i ty of the to t a l
application ?
(In th i s respect a validation-mechanism comes to mind, that
(automatically) checks the defini t ion of an application on
in tegr i ty and gives clear messages about the r e s u l t . Thus there
should not be a tiresome debugging-process.).

3

CHAFTER 3 SYSTEM-DESCRIPTION

3 . 1 An overview of VAX RALLY

After the genera l d e s c r i p t i o n of ADS's and the e v a l u a t i o n - c r i t e r i a
t h a t should be taken i n t o c o n s i d e r a t i o n , now the spec i f i c ADS-product
VAX RALLY of DEC, l inked t o a RDB/VMS da tabase [RDB/85], can be
d e s c r i b e d . For an i n t roduc t i on of t h i s package, an a r t i c l e has been
w i t t e n by R.T. Bennett [BENN86]. I t was published in a former e d i t i o n
of t h i s magazine. In the subsequent t e x t a summery of the most important
c h a r a c t e r i s t i c s of t h i s ADS fo l l ows .

VAX RALLY i s made up of two main sys tems:
* The Dialog, cons i s t i ng of t o o l s t o genera te an a p p l i c a t i o n ;
* The Runtime System. This pa r t t akes ca re of the execut ion of the

a p p l i c a t i o n . The Runtime System wi l l not r e ce ive a t t e n t i o n in
t h i s a r t i c l e .

Figure 1

The Dialog shows itself as a series of menus and sereens that
enable the user to create a set of linked objects, which in turn form
the application. Some important objects are:

- Forms;
- Repor t s ;
- Menus;
- H e l p - t e x t s ;
- Error-messages;
- Linkages t o the d a t a b a s e (s) .

These o b j e c t s are l a id down in the form of c t a t a - s t ruc tu re s , which
RALLY s t o r e s in a spec i a l a p p l i c a t i o n - f i l e (AFILE) . The above-mentioned
Runtime System processes the con ten t s of t h i s f i l e during the execution
of the a p p l i c a t i o n . The Dialog i t s e l f .a lso c o n s i s t s of two pa r t s :

* The Builder Tools;
* The Edit ing Environment.

The Builder Tools .

This i s a c l u s t e r of 5 s u b - t o o i s , t h a t can be used to s t a r t bu i ld ing
an a p p l i c a t i o n . Those sub - too l s a r e :

- The Database Bu i lde r .
This c r e a t e s and modifies RDB/VMS d a t a b a s e s . These databases are
loca ted ou t s ide the AFILE, as can be seen from f igure 1. (see
sub-paragraph 3. 2. 1.) ;

- The Data-Source-Defini t ion Bui lder .
With t h i s , l i n k s between the fo rms/ repor t s from the a p p l i c a t i o n
and the underlying da tabase (s) can be made. (see 3 . 2 . 2 .) ;

- The Form/Repört Builder . This pa r t c r e a t e s the s t r u c t u r e of the
fo rms / repor t s and a l so b u i l d s the s c r e e n - l a y o u t . (more about t h a t
in 3 . 2 . 3.) ;

- The Menu Bui lder .
With t h i s t o o i , the main-menu for the a p p l i c a t i o n i s c o n s t r u c t e d .
(see sub-paragraph 3 . 2 . 4 .) ;

- The Message Bui lde r . He lp - t ex t s and e r ro r -messages , t h a t can be
connected to a form or a menu, a re c rea ted here . (no sepa ra t e
sub-paragraph has been devoted to t h i s) .

4

The Ectiting Environment.

The Editing Environment enables the developer to refine and/or
change application-objects, that were macte with the Builder Tools.
Moreover it is possible to create new application-objects (except a
aatabase). Besides this, links to e.g. Cobol or Fortran can be
established. Finally, the Editing Environment allows the use of VAX
RALLY ADL (a procedural language) . All these facilities will be
explained more thoroughly in paragraph 3.3.

3.2 Further description of the Builaer Tools

3. 2.1 The Database Builder

The RDB is a relational DBMS and the presentation of aata therefore
takes place in the form of tables, callea relations. A RDB/VMS aatabase
can be definea in two ways, namely by means of the Relational Database
Operator (RDO; this is no part of RALLY, so that it will not receive
attention here) and by means of the VAX RALLY Database Builder.

With that Database Builder a aatabase can be established in the
following way:

1 The initial creation of the database.
This takes place by specifying a database-name. If the naming is
completed, two files are created in the home-directory. These
files contain the data ana allow the aatabase to be queriea;

2 The definition of global fields.
Every field in a relation must be based on a global field. Such
global fields allow the user to aefine a set of stanaara
definitions for all the aata in the database. This promotes
simplicity ana consistency. A global fiela can thus be viewed as
a template, on which specific data-items are based;

3 The creation of relations in the aatabase.
RALLY takes a relation to be a collection of local fielas. These
local fielas are namea on the basis of global fields ;

4 The definition of indexes in the database. An index is a data-
structure that enables RALLY to find aata in a relation ana to
fetch them , without the need to view all the records in that
relation. This method saves time if data have to be accessed
frequently and therefore it then is adviseable to create many
inaexes. tfowever, if a lot of updates occur , it is sensible to
use few inaexes. In RALLY, the user can determine to what extent
inaexes should be usea.

3.2.2 The Data-Source-Definition Builaer

Often a database will not be involved in its totality by a
manipulation. Therefore RALLY offers the possibility to redefine the
aatabase into new "sources", that only present the required parts of
that particular aatabase. This reaefinition can be seen as the
translation from the conceptual level to the external level [DATE86]
and takes place in two steps:

5

1 The f i r s t step concerns the defini t ion of the Data Sources.
Such a Data Source establ ishes a bridge between the RDB and the
st i l l- to-be-made form/report. In that Data Source Definition (DSD)
the r e l a t i o n (s) , which can be used, are r eg i s t r a t ea . Besides,
here the poss ib i l i ty exis ts to fix additional r e s t r a i n t s to that
use. In a DSD re la t ions can be coupled by way of a " join" .
ffowever , t h i s join has l imi ta t ions : updating, deleting and
insert ing are not allowed. In other words, the "joining" of
different relat ions in a DSD mainly serves repor t -wri t ing .
Furtheron in t h i s t ex t , a method (involving another kind of joins)
will be shown that does allow a l l manipulations (including
updating, deleting and inse r t ing) ;

2 The second step in the redefini t ion i s described in sub-paragraph
3.2.3 (Form/Report Builder) .

Schematically the redefini t ion can be depicted as follows (Groups
wil l be discussed hereaf ter) :

Figure 2

3.2.3 The Form-/Report Builder

This tooi serves to build sereens, with which data can be presented
to the end-user. Moreover RALLY-objects can be generated, that
f a c i l i t a t e manipulations against the database. In t h i s Form-/Report-
Builder the second step i s made in the redefini t ion-proces. To that end
so called "Data Source Groups" (usually abbreviated to "Groups") are
created within the forms/reports. These "group-definitions" designate
the DSD's that are used by a par t icular form/report. (In t h i s respect
only a single DSD can be defined per group ; however several groups can
refer to the same DSD.) A DSD i s independent of any singular group-
def in i t ion .

The functions of the group l i e in the formulation of more str ingent
requirements for the access to the database and in the establishment of
specific charac te r i s t i cs (l ike the manipulation-mode that i s allowed).
In other words a group-definition i s r e s t r i c t i v e towards a DSD and thus
can never signify a widening of competencies. Groups can be "joined" in
a so called hierarchical form/report. RALLY ca l l s t h i s a "Parent-child
re la t ion" . In th i s case i t i s possible to carry out1 a l l norm al database-
manipulations (update, de le te , i n s e r t) , which are not allowed when DSD's
are joined (Therefore i t i s evident, that a form/report in which one
or more of the groups make use of joined DSD's, does not allow a l l
these manipulations any more) .

3.2.4 The Menu-Builder

I t i s absolutely neccessary to build a Main-menu before an
application can be run. The Menu-Builder i s only capable of defining a
single menu, which has a simple s t ruc tu re . The reason for t h i s , i s that
menu-choices can only point to forms/reports. To create one or more
submenus and/or complex s t ruc tu res , the Bditing Environment has to be
used.

6

In the Menu-Builder, the ' I n i t i a l Usage Mode' has to be specified
for each form/report. This mode indicates which manipulations may be
carried out . The options a r e :

- Browse/Update/Delete (BUD)
This possibility allows the user to make inquiries and to add,
delete or change data;

- Insert
In oase th i s i s specified, the user may add data to the database;

- Query
This option gives permission to make inquiries to the database;

- Print only
The specification of th i s choice r e su l t s in a hardcopy pr in tout ,
insteaa of a aata-presentation on the terminal-screen.

3.3 Further description of the Editing Environment

The main differences between the Builder Tools and the Editing
Environment are formed by:

- the scope and complexity of the objec ts ;
- the use of extensive default-choices in the Builder Tools;
- the sp l i t t i ng up of objects (whether or not maae in the Builder)

into subobjects, so that detailed changes can be maae to the
appl icat ion.

The Editing Environment does not , l ike the Builder, consist of
neatly demarcated and separately named too l s . Only two mechanians are
mentionect as such the re :

- the Image Editor, with which the lay-out of forms/reports, menus ,
legends, help- and error-messages can be eai ted;

- the Verif ier .
With th i s the va l id i ty of objec ts , created in the Dialog can be
checked. Possible mistakes are mentioned in •Integrity Reports ' ,
together with location of occurrence and l ike ly cause. These
tools are not discussed in de ta i l in t h i s a r t i c l e .

Tne Editing Environment and i t s sub-parts can be entered through
menu-choices. The 'Defining Application Objects' option of the RALLY-
Main-menu proviaes th i s entrance. Thereafter a choice can be made from
the following submenus:

- defining Menus;
- defining Forms/Reports;
- defining Data Definitions & Data Related Information;
- defining Tasks;
- defining, maintaining and managing applications ;
- procedural language (ADL).

Each of these submenus again forms the entrance to a broad variety
of further options, which every time are united in t r ee - s t ruc tu res .
It would lead to far to explain a l l of these poss ib i l i t i e s in d e t a i l .
Only the most significant options are dealt with in the unaermentioned.

7

3.3-1 Defining (& editing) Menus

In the Builder Tools only a simple menu (the Main-menu) can be
created , which points exclusively to forms/reports. In the Editing
Environment the poss ib i l i ty ex is t s to es tabl ish several (sub-)menus and,
as a consequence, even complete menu-hierarchies can come into
existence. Moreover, the seperate menus can now be equipped with complex
s t ruc tures , which enable them not only to point to forms/reports, but
also to other items l ike menus, t a sks , commands and ADL-procedures (as
will be explained furtheron). Finally, there are several options that
enable changing/improving the lay-out of menu-sereens. (Editing i s not
possible in the Menu Builder .)

3.3.2 Defining (& editing) Forms/Reports

Forms/reports themselves again consist of a number of sub-objects.
To mention the most important of these:

- G-oups (4 types) ;
- Fields;
- Text-areas;
- Form/report ca l l -packets .

The Defining Forms/Reports option gives entry to a number of
techniques to create or change these sub-objects. As far as the groups
are concerned, "Data Source Q-oups" have been treated (in 3 .2 .3) . No
further at tention will be paid to the other groups and to f ields and
t ex t -a reas , because t h i s would lead to fa r . Because they are essent ia l
for understanding some fundamental RALLY-concepts, form/report c a l l -
packets (also called form/report packets; cal l -packets or jus t packets)
will now receive a short explanation:

In the Builder Tools Standard forms are created and, to enable
manipulations against the RDB, linked to the Main-menu. This
coupling i s established through these form/report packets, which
are created implici t ly by the Builder. In the Editing Environment
these packets can be bu i l t exp l i c i t l y . In a form/report packet, the
following i s specified:

- which form/report must be cal led;
- in what " i n i t i a l usage mode" the form/report stands;
- the before- & a f te r -ac t ions , that are to be deployed (see

3-3.4).

Forms and reports are independent of form/report packets. This means
that a form/report can be defined in several different packets (and thus
in various modes and with different before- & a f t e r - ac t ions) . In other
words, such a form/report i s reuseable.

3.3.3 Defining (& editing) Data Definitions

With the Builder Tools, among other th ings , DSD's are defined. In
the Editing Environment three types of DSD can be created and/or
changed :

- the Base DSD;
- the View DSD;
- the Breakup DSD.

8-

The Base-DSD: This one i s conform to the (above described) DSD from
the Builaer and forras the connection between the re la t ions ana the
appl icat ion:

Figure 3

The View-DSD: As soon as a "parent-chi ld-relat ion" (see the above-
mentionea) within a hierarchical form/report i s used, the Forra/Report
Builder impl ic i t ly (!) creates. so called "View-DSD's (one for each
c h i l a) . This i s necessary to l ink required Base-DSD's. In the Editing
Environment i t i s possible to exp l i c i t l y create View-DSD's. This changes
the aata-flow to the hierarchical form/report, because the new View-DSD
couples different Base-DSD's to each other , than the old one. View-DSD's
are bui l t from Base-DSD's ana therefore inher i t many charac ter i s t ics
from them.

Figure 4

The Breakup-DSD: This third kind of DSD i s also used to make
hierarchical forms/reports, but each of these forms/reports i s (in
contrast to those basea on View-DSD's) derived from a single Base-DSD
and in aadition are merely reaa-only. The Breakup-DSD's can only be
created and changed in the Editing Environment. These DSD's too are
aerived from Base-DSD's and again inher i t many cha rac te r i s t i c s .

Figure 5

3.3.4 Defining Tasks (Application Flow Control)

The management of the flow of an application requires the presence
of a number of specific control-processes. In RALLY t h i s control i s
realized through the execution of so called 'Act ions ' , which are
combined into one or more 'Tasks' . On top of that i t i s possible to
switch (back and forth) between Tasks ana Actions, through 'Commands'.
All these a c t i v i t i e s are essent ia l in order to properly run an
application and therefore are defined within a framework, that i s called
'Application Flow Control' (AFC) . Within the Editing Environment i t i s
possible to define complex forms of Flow-Control, which consist of many
(sub-)objects . The most important components and their relat ionships
will be explained in the following:

- Action: The invocation of certain RALLY-objects i s seen as an
act ion. Each action can ca l l one of the following objects :
. a menu;
. a form/report packet;
. an ADL-procedure (see 3.3.5);
. a parameter-packet (no at tent ion will be paid to t h i s) ;
. an external program-link (th i s too is not discussed);
. an ac t ion - l i s t (will not be attended to ei ther) .

9

- Task: An independent set of mutually re la tea act ions . The nuraber
of aotions within such a set i s not limitea theore t ica l ly . Each
task has i t s own 'Action stack' (see one of the next i tems).
Several tasks can be active at the same time. The d i s t inc t
tasks can be shown simultaneously and foliowed in separate
windows on the screen. This enables the user to a switch
between tasks with one of the coramands (e . g . 'next - t a s k ') . With
a task (anong other things) the following can be accomplished :
. the creation of additional 'Entry Points ' ;
. running some processes in batch;
. linking an application-commanü to a task;
. the creation of a window on the screen, in which the task-

flow can be seen. The f i r s t two points will now be illuminated:

- Entry poin ts : If an application coraes into existence in the
Builder Tools, automatically a single aefaul t - task will be
generatea. This 'Main-Task' serves as an entry (Entry Point) to
the application and ctirectly leads to the Main-menu. Only after
a choice has been made from t h i s menu, can the user s t a r t
working. If however several tasks are created , i t i s possible
to define a new Entry Point for each task . Now users to whom an
Entry Point has been assigned, can s t a r t r ight away, without
the requirement to them to pass through the Main-menu f i r s t .
This division of the application into tasks ana Entry Points
also means that protection of parts of the application can be
accomplished for the sake of specific end-users :

Figure 6

- Batch-processes: The creation of such a process can be desired in
s i tuat ions in which a c t i v i t i e s ex i s t , that don' t require direct
user-input and thus don ' t have to take place in te rac t ive ly . To
be processed batchwise, those a c t i v i t i e s must be aefined as
tasks and supplied with Entry Points. Two application-areas a r e :
. the execution of a ser ies of printcoramands, called 'P r in t -

only-reports ' (for example Standard periodical sales-reports) ;
. the carrying out of Data Maintenance Operations, that aemand

a considerable amount of capacity (For t h i s , ADL-procedures
have to be wr i t ten) .

- Command : With commands various kinds of operations can be
executed. One of these operations concerns the navigation among
tasks and ac t ions . These navigations can take place
in teract ively or can already be defined during the design of
the appl icat ion. This implicates that these commands have great
influence on the Flow Control.

- Action-stack (= execution-stack): A queue, which takes care of
the management of a stream of actions that have to be executed
when running an appl icat ion. This queue operates according to
the l i fo (l a s t in f i r s t out) p r inc ip le . Each active task has
i t s own Action-stack. When an action c a l l s another act ion, the
f i r s t action stays in the stack, but the new action i s placed
on top of i t . If t h i s second action i s completea, i t i s removed
from the stack and the Flow-Control résumés with the f i r s t
ac t ion, which now i s at the top of the stack. If the stack
contains only a single action and when that action has been a
executed, the task i s cornpleted.

10

- Invocation-type (= cal 1- type ; insteaa of 'type', 'style' is also
used) . Tnis is the method , with which an action, task or
command is activated, beoause filling the Action-stack happens
through these invocatlon-types. Examples of these invocation-
type s are:
. call: the present action stays in the queue ; a new action is
placed into the queue and executed;

. execute: the present action is removed and a new action is
placed into the queue and executed (to be sure, there are
more types, but our investigation has been restricted to these).

- Action-site: A point in the application to call an action, a task
or a command. This takes place by mentioning the name of the
object and stating an invocation-type. Action-sites are among
others:
. the first action of a task;
. a menu-choice;
. a fora/report cal l -packet ;
. a form/report;
. an ADL-procedure.

- Before- & af te r -ac t ion : This i s a RALLY-object, with which
actions automatically can i n i t i a t e other act ions, without
necessitat ing user-input (in the form of an expl ic i t menu-choice).

3.3.5 Defining, maintaining and managing applications

This menu-choice leads to a miscellaneous set of ' U t i l i t i e s ' and
other mat ters . Of these , the following can be mentioned :

- the creation of additional Entry Points (see the Task-description);
- the creation and changing of Help-, Error- and Legend- messages.

This forms an addition to the Message Builder and i s of
subordinate importance to th i s descr ip t ion;

- secur i ty ; th i s i s an important issue and therefore i t requires
some further explanation:

It i s possible to protect (parts of) an application against a l l
unauthorized users . The protection can be accomplished in four different
ways, but only the las t two methods are part of RALLY i t s e l f (so called
Dialog Security Mechanisms):

- on the f i l e - l e v e l , through 'VMS f i le protection' . A feature, that
controls entry to the AFILE and the RDB/VMS database f i l e s . This
control i s carried out by the VMS Operating System, which can
assign different authorizations to different users ;

- through 'RDB/VMS Security' . A mechanism , that takes care of
specific re la t ions in a database (through RDO) ;

- on the level of d i s t inc t RALLY-objects. This happens by way of
'RALLY Security Items' , which (among other things) contain
passwords. Each password i s linked to a specific object , l ike a
(Main-) menu, form/report packet, ADL-procedures, e t c . Through
such a security-item i t i s also possible to couple a password to
an AFILE and thus protect an ent i re application against
modification-attempts;

- through the creation of additional Entry Points (see the fore-
going) . Only' users, who know the name of such an Entry Point have
access to the associated task. Therefore those users only have
permission to use a part icular part of the to ta l appl icat ion.

11

3.3.6 Procedural Language (Application Development Language)

As part of VAX RALLY, the Application Dsvelopment Language (ADL)
can be used. This i s a special language, which should be applied for
the defini t ion of necessary eleraents within the application and/or the
creation of advanced supplements. Exaraples are :

- the development of f ie ld-val idat ion procedures, which cannot be
produced with the form/report validation method;

- the formulation of complex formulas to determine the value of
* computed fi eld s ' ;

- the execution of sophisticated data-manipulations, without d i rect
user-input (see the task-descr ip t ion) . Therefore ADL includes
b u i l t - i n DML-statements;

- the settlement of error-condit ions.

ADL i s the only procedural part of RALLY. DIGITAL (DEC) claims that
t h i s language i s very easy to work with. Two reasons are i t s powerfull
structuredness (in 'b locks ') and i t s s imi lar i ty with e .g . Pascal. As
recorded, RALLY takes ADL-procedures to be actions and that i s why they
can be invocated from any a rb i t ra ry a c t i o n - s i t e .

3.3.7 Integration of defined RALLY-objects

To conclude th i s chapter a scheme will be shown, to explain how
the various objects in an application f i t together , and are related to
each other through the Flow-Control:

Figure 7

From the figure i t appears, tha t the task-level i s the highest
l eve l . The s t a r t of an application or part of an application always
begins with the invocation of a task . In th i s case , the f i r s t action of
the f i r s t task i s the invocation of the Main-menu. A Main-menu in turn
can i n i t i a t e several ac t ions , varying from a menu-set to a new task.
In t h i s respect i t applies that every menu-option i s an ac t ion - s i t e . In
each one of these ac t i on - s i t e s , invocation-types are used to ca l l RALLY-
objects (e .g . form/report packets) . These invocat ion-act iv i t ies can be
monitored by means of the associated tasks and par t i cu la r ly thei r
act ion-stacks.
Qily the lef t side of the figure i s worked out in d e t a i l . A Main-menu
(in t h i s example) consists of a number of sub-menus. Each sub-menu in
turn can i n i t i a t e several form/report packets. As said , in these
packets the forms/reports, that are to be invoked, are mentioned. After
the execution of these packets, another action (e .g . a p r in t - command)
can be carried out, without the requirement of any user-action. This
then i s accomplished through the a f te r -ac t ion . The data of the database
that have a bearing on a form/report are determined by the groups,
which are defined in the form/report-definit ion. The group-definition
r e l i e s on the Data-Source-Definition, which in turn contains one or
more RDB-relations.

12

CHAPTER 4 EVALUATION AND ASSESSMEHT

4.1 P r a c t i c a l experiences and c r i t i c i s r a s

The following remarks a re derived from our s p e c i f i c exper iences and
they encompass p o s i t i v e as well as nega t ive e lements :

- The t o t a l i t y of the Builder Tools i s goal-oriented and transparent:
In t h i s context goal-oriented means, that the user can confine
himself to the aeclaration of nis wishes without having to
convert a l l the de ta i l s into a programming language. Transparent
refers to the fac t , that there i s not a great stream of options,
but always only a limited number. In oraer to know what everything
means, a somewhat tedious learning-process needs to be absolved,
but once th i s has been accomplished , i t i s rather easy to buila a
simple application with the Builder. The Editing Environment i s
much less c lear , because of the enormous amount of options. All
in a l l , RALLY comes across as massive ana therefore r e l a t ive ly
unclear to the un in i t i a t ea . This means that a long span of
experience with th i s ADS i s required , to handle i t well .

- We question ourselves as whether there has to be a dis t inct ion
between the Builder Tools and the Editing Environment, for in our
opinion the Buiiaer does not allow genuine "Prototyping". While
there i s only one menu; the objects can not be subdiviaed; e t c ,
a l l t h i s means that the pos s ib i l i t i e s for arriving at such a
rough aesign are r ea l ly too l imi ted. Moreover , the Editing
Environment has to be studied anyhow, to build a full-blown
appl icat ion. So, why not e .g . one single t o o i , that contains a l l
the options ? Of course, t h i s would neccessi tate a thorough
tackle of the transparency problem.

- ADL pretenas to be a simple programming language, with statements,
procedures, functions and syntax resembling that of Pascal. In
other woras i t i s procedural. If an application gets a l i t t l e
complex, extensive validation-procedures are necessary to
guarantee the in tegr i ty-survei l lance of the database. Then the
use of ADL i s inescapable . This means that some procedural
programming turns up again. As a consequence spec ia l i s t i c know­
how i s s t i l l required ana so many of the RALLY-advantages are
neutralized again!

- The poss ib i l i ty to verify applications has saved much time and
effort during the development of programs. However, the error-
messages that were displayed when something went wrong were not
always cr isp and c lea r .

- The "Tracé-log" command (in VAX/VMS) is extremely important.
Without th i s option, we never could have succeeaea in aeveloping
a properly working ADL-procedure. Besides , t h i s command enabled
the tracking down of the reasons why some other parts of the
application i n i t i a l l y did not l ive up to our expectations. For
th i s trace-log option precisely denotes which form/reports are
called , what ADL-proceaures are run through, what happens to the
aatabase, e t c .

- Nowhere can i t be aiscoverea , what the underlying base-language
i s that RALLY uses. This implicates that no thorough investigations
are possible in the case of pers is tent errors and that "tuning"
(by spec ia l i s t s) cannot be unaertaken.

13

- The application in i t s t o t a l i t y can be well protected with, among
other things, Entry-points and/or Passwords. In t h i s way several
end-users can use the same appl icat ion, without thera having to
see the to ta l or each others views.

- The integr i ty-protect ion of the singular objects within an
applicat ion, by way of mutual " l inking", i s sometiraes carried too
far . Therefore, repairing mistakes and performing changes and
additions i s a tiresome process, that takes quite some time. This
i s because many mutual references in the application have to be
unlinked f i r s t (they can remain in exis tence) , before any part of
that application can be altered or deleted.

- Guaranteeing the in tegr i ty of the database [CODD85]. F i r s t , the
en t i t y - in t eg r i t y . In RALLY the use of a primary key i s opt ional ,
for the user does not have to define t h i s . Furthermore, the use
of indexes with unique values i s optional too . Alltogether, t h i s
in tegr i ty rule i s thus not supported automatically. Secondly, the
r e f e ren t i a l - i n t eg r i t y . This rule i s not supported automatically
e i the r . To enforce i t , r e l a t ive ly complex ADL-procedures must be
wr i t ten . Thirdly, the user-defined i n t eg r i t y . This i s optional
too. The specification of e ,g . maximal values i s not required.
Concluding: Guaranteeing the in tegr i ty of the database i s t o t a l l y
up to the user.

- Concerning user - f r iena l iness , the following aspects can be
distinguished (N.B. in our opinion i t sometimes i s necessary to
discern between application-developers and end-users in the
undermentioned):

. The bulk of t h i s ADS package has been experienced to be
reasonably user-fr iendly, mainly because of the good menu-
guidance;

. We have found the extensive on-line help to be very handy,
especially at the beginning of our research. Unfortunately
t h i s help information i s not available when formulating ADL-
procedures ;

. Notwithstanding the on-line help, manuals (in part icular
those concerning ADL) are s t i l l neccessary. In our opinion,
the manual that deals with ADL i s too res t r i c ted and gives
l i t t l e c l a r i f i ca t ion ;

. During the development of an appl ica t ion, the developer i s
kept well informed by a " s t a tus - l ine" at the bottom of the
screen;

. If a certain item i s required by an object of the appl icat ion,
t h i s i s c lear ly indicated;

. The l i s t -of -values (lov) features help to avoid unneccessary
typing, especially as far as the developer i s concerned.
(A lov i s a legenda, that automatically appears on the screen
whenever a choice has to be made.);

. The function-keys are very usefull for application developers,
but in our opinion the same does not hold for end-users.
Certainly to incidental users , the handling of the many
function-4<eys can be quite frightening;

. The systèm i s fast as far as processing-speed i s concerned
and when i t has to generate new applicat ions;

. The manipulation of the database can be accomplished in a
re la t ive ly simple manner through a language that resembles
CBE [ZL0075].

14

4.2 Evaluation

Following now i s a judgement, based on the c r i t e r i a as described in
Chapter 2:

1 Do the ADS-tools form a unity ?
Yes, they cer ta inly ao. There i s a wel l -bui l t s t ruc ture ,
especial ly with regard to the Builder Tools. All those tools are
neatly grouped into menus ana can be invoked eas i ly . But: If the
Builder Tbols are corapared with the Editing Environment a marked
duplication of tools emerges. With the exception of building and
editing a database, exactly the sarae (and of course many
aaditional) things can be done by the Editing Environment as by
the Builder. We therefore consider t h i s duplication to be
unneccessary. (see point 9 ana the conclusion too) We did not
encounter essent ia l mutual gaps between the t o o l s .

2 Is the ADS DataBase- and DataConmunication-oriented ?
I t c lea r ly i s DB-oriented. The DB even i s indispenseable ana the
f i r s t thing that has to be created (apart from of an AFILE) in
the Builder i s the database. Whether RALLY i s DC- oriented could
not be ascertained by us, though i t i s quite l ikely because of
the l inkage-capabi l i t ies of the VMS Operating System (with among
other things DB's on so called "remote nodes") , that are
mentioned in the docunentation. We only had a "stand-alone system"
at our aisposal , so we could not invest igate i f (and when so, to
what extent) network- f a c i l i t i e s can be implemented.

3 Are the tools inaependent of a specific DBMS ?
Probably not . We cannot make def ini te statements concerning th i s
item, for we only could work with VAX/RDB. In a l l DIGITAL manuals
just t h i s one type of DB (and related DBMS) is mentioned and
discussed.

4 Is the ADS in te rac t ive ly oriented and does i t possess good data-
manipulation features, screen-formatting and report-writ ing
f a c i l l i t i e s ? Ihe part of th i s question concerning in terac t ive
or ientat ion can be answerea affirmatively, though th i s i s not the
case as far as ADL i s concerned . The data-manipulation f a c i l i t i e s
have been arranged in an excellent manner, by way of a QBE-like
language in form/reports. With respect to repor t -wri t ing: the
generation of reports i s simple through the "print-only-moae"
specification in menus and/or packets. Finally, screen-formatting
i s excel lent , through aajustments of the so callea "aefault-
layouts" .

5 Does the ADS posses language-elements (i f possible non-procedural)
to aescribe a c t i v i t i e s , that cannot be a i rec t ly aeducea from the
in-/output-specif icat ions ?
Yes, RALLY does, in the form of ADL (mainly needed for the
creation of valiaation-procedures). fë>wever, t h i s language i s
highly procedural. (N.B.: the great majority of the ac t i v i t i e s
that have to be incluaed can be aescribed in the in-/output—
specifications of the non-ADL part of RALLY).

6 Can an observable productivity-improvement be witnessed in
relat ion to third generation languages ?
Yes, for in a very short time a working new application can be
b u i l t . However, we have not quantified the advantage.

15

7 Is t h e r e r e a l l y a higher measure of f l e x i b i l i t y as compared to
t h i rd genera t ion languages ?
P a r t l y t h e r e i s , because implementing improvements or add i t ions
i s aone f a s t e r and e a s i e r than with t h i r d genera t ion languages .
Tnis too of course i s a s u b j e c t i v e judgement, t h a t can be
subjugated to fur ther q u a n t i f i c a t i o n . On the o ther hand,
f l e x i b i l i t y i s s t i l l a long way from being op t ima l , due t o the
rigict i n t e r n a l s t r u c t u r e , with very ex tens ive mutua l" l ink ings" .
I h i s means t h a t a l l sub-objec t s of a c e r t a i n ob jec t have t o be
aecoupled or des t royed , before any changes or a d a i t i o n s can be
made t o the objec t i t s e l f and t h i s in tu rn i s c e r t a i n l y not
ma in tenance- f r i ena ly .

8 Does the ADS s t i l l r e q u i r e s p e c i a l i s t i c knowledge ?
Yes i t does , for e a r l y on in the c tes ign-process , procedural
l a n g u a g e - f a c i l i t i e s have t o be ca l l ed i n . Tnerefore an end-user
probably w i l l not be able to bu i ld complex a p p l i c a t i o n s on h i s own.

9 I s f a s t and good "Prototyping" poss ib l e ?
Indeed i t i s pos s ib l e to c r e a t e such a rough design in the
Builder Tools in a shor t t i m e . However, we consider the r e s u l t t o
be too s i m p l i s t i c . For example, i t i s not p o s s i b l e to c r e a t e more
than one menu in the Builder and so i f more (sub-)menus a re
needed i t i s neccessary to use the Edit ing Environment. The same
procedure has to be foliowed for many o ther o b j e c t s .

10 Does t h e ADS-software (au tomat i ca l ly) guarantee the i n t e g r i t y of
the (t o t a l) app l i ca t i on ?
Yes, t h e r e i s a "Ver i f i e r " t h a t undertakes a check of every
s ing l e RALLY-object, whenever the d e f i n i t i o n - p h a s e of such an
objec t i s completed. Furthermore, i t i s poss ib l e t o exe rc i s e
con t ro l on the v a l i a i t y of the e n t i r e a p p l i c a t i o n through the
"Verify a p p l i c a t i o n " command. F i n a l l y , a check i s made a t the
beginning of any run t ime- se s s ion .

4 . 3 Conclusion

Taking everything t o g e t h e r , we can conclude t h a t RALLY d i s p l a y s a
r a t h e r p o s i t i v e image. I t c e r t a i n l y i s a g rea t improvement in r e l a t i o n
to Cobol and o ther t h i r d - g e n e r a t i o n l anguages .
Never the less , some p o i n t s are s t i l l s u s c e p t i b l e t o improvement:

- I t i s adviseable t o :
. e i t h e r merge the Builder Tools and the Editing Environment,

in o raer to e l imina te d u p l i c a t i o n in t o o l s ,
. or e i t h e r fur ther develop the Builder in such a way, as to

enable ful l-blown "Pro to typ ing" .
- The ADL i s a stumbling block on the road t o v i r t u a l l y complete

non -p rocedu ra l i t y . By paying much a t t e n t i o n t o t h i s weak s p o t ,
the t o t a l p i c t u r e could be improved cons ide rab ly . In our opinion
t h i s can be accomplished by deminishing the r o l e of ADL in RALLY
and moreover by reducing the procedural na tu re of ADL. Deminishing
the r o l e of ADL could p a r t l y be a t t a i n e d by the inc lus ion of the
c r e a t i o n of (advanced) v a l i d a t i o n s in the non-procedural pa r t of
RALLY.

- L i n k a g e - p o s s i b i l i t i e s with other da tabases and DBMS's a re
mentioned nowhere. These f a c i l i t i e s should be p resen t and they
should be described e x p l i c i t l y in the docunen ta t ion .

16

- The internal s tructure of the generated applications shoula be
less rigid , as far as the rautual "linkage" of the objects i s
concerned. Through the increased f l ex ib i l i t y which would be
established in that way, the maintenance-friendliness i s bound
to be greatly enhanced.

17

L i t e r a t u r e

•[BENN863: Bennet t , R. T. ; An Ih t roduc t ion to RALLY, DECUS SIGs
Newsle t t e r s , December 1986, Volume 2, Number 4.

[CARD82]: Caraenas, A. F. and W. P. Grafton; Challenges and Requirements
for New Application Genera tors . AFIPS, Proceedings of the
1982 National Computer Conference, June 7-10, 1982, Houston,
Texas.

[CODD85 3: Codd, E. F . ; "Is Your Rela t iona l Database Management System
Really Rela t ional? An eva lua t ion scheme . " , Computerworld ,
October 1985.

[DATE86]: Date , C. J. ; In t roduc t ion t o Database Systems, Fourth Ed i t ion ,
Adaison-Wesley, 1986.

[RALL86]: In t roduc t ion t o VAX RALLY, April 1986, D ig i t a l Equipment
Corporat ion, Maynard, Massachuset ts .

: VAX RALLY Dialog Use r ' s Guide, April 1986, D ig i t a l Equipment
Corporat ion, Maynard, Massachuset ts .

: VAX RALLY Dialog Reference Manual, April 1986, D i g i t a l
Equipment Corporat ion, Maynard, Massachuset ts .

: VAX RALLY Command Reference Manual, April 1986, D i g i t a l
Equipment Corporat ion, Maynard, Massachuset ts .

: VAX RALLY ADL Use r ' s Guide, April 1986, D i g i t a l Equipment
Corporat ion, Maynara, Massachuset ts .

[RDB/85]: VAX Rdb/VMS Guide t o Database Design and Def in i t i on , December
1985, Digi ta l Equipment Corporat ion, Maynard, Massachuset ts .

: VAX Rdb/VMS Guide t o Database Adminis t ra t ion ana Maintenance,
December 1985, Digi ta l Equipment Corporat ion, Maynara,
Massachuse t t s .

: VAX Rdb/VMS Reference Manual, December 1985, D ig i t a l Equipment
Corporat ion, Maynard, Massachuset ts .

[ZLOO75]: Zloof, M. M.; Query By Example, Proc. NCC 44, May 1975.

18

i r i t U1ALÜU

Edit ing
Environment

Data­
base
Builder

Data
Source
Def.
Builder

Form/
Report
Builder

Menu
Builder

Message
Builder
Tool

Edit ing
Environment

, i t \ .

\ \ X i

' \ \ \ V
RHh/VM^

\
V

s, N
Database Data

Source
Def.

Form/
Report •

Menu Message

Relat ion

Data
Source
Def.

Form/
Report •

Menu Message

Relat ion
J F l rr c

ii

1 1 1

RALLY Runtime

Figure 1

19

Form/ Report Form/Repor t

Group

DSD

Group

DSD

R R
e ö

1 1
a a
t t
i i
0 0

n n

Group

DSD

R
e
1
a
t
i
o
n

Group

DSD

R
e
i

a
t
i
o
n

EXTERNAL

LEVEL

CONCEPTUAL

LEVEL

F i g u r e 2

20

Form/Report

Data Source
Group 1

Data Source
Group 2

"join"

DSD

DSD

Rdb/VKS Database

Relation

Relation

Relation

Figure 3

21

Form/Report

Parent
Group

Link

Ease-
DSD

Base-
DSD

Relation Relation

Child
Group

Identification of the
specific Link to be
used in this particular
instance (by reference
to its definition) .

Definition of the Link

Figure 4

22

Form/Repor t (r e a d - o n l y)

Par e n t
Group

Breakup Set

Pa r e n t
Breakup-
DSD

Chi ld
Ereakup-
DSD

Base-DSD

Chi ld
Group

R e l a t i o n

F i g u r e 5

23

User 1

'r

en t ry point

en t ry

Ma in Menu
1
2
3
n

en t ry

' 1

en t ry

Form

en t ry en t ry User 2 en t ry User 2
point

e n t r y
poin t

en t ry

point

e n t r y
poin t

en t ry

\ '

point

e n t r y
poin t

en t ry

Form

point

e n t r y
poin t

en t ry

~

point

e n t r y
poin t

en t ry

Sub
Menu

point

e n t r y
poin t

en t ry

Sub
Menu

point

e n t r y
poin t

en t ry

User 3
Sub
Menu

point

e n t r y
poin t

en t ry

User 3
T

Sub
Menu

point

e n t r y
poin t

en t ry
Report _

Sub
Menu

point

e n t r y
poin t

en t ry
Report

Sub
Menu

point

e n t r y
poin t

en t ry
Report

point

e n t r y
poin t

en t ry User 4
Report

_

point

e n t r y
poin t

en t ry User 4
Report

poin t poin t

Figure 6

24

Main-task task-2 task-3
I

main-menu

i r i i
menu-set ADL-proc. form/rep. task

packet
form/report-packet

af ter-act ion

form
I

group
I

DSD

I
RDB-relations

Figure 7

25

981-1 E. Vogelvang

981-2 H.P. Smit

981-3 R. Vos

981-4 F.C. Palm

981-5 P. Nijkamp in co-op.
with H. v. Handenho-
ven and R. Janssen

981-6 R. Ruben

981-7 D.A. Kodde

981-8 B. Out

981-9 P. van Dijck and
H. Verbruggen

981-10 P. Nijkamp, H. de

Graaff and E. Sigar

981-11 P. Nijkamp

981-12 A.J. Mathot

981-13 S.P. van Duin en
P.A. Cornelis

981-11 W. van Lierop and
P. Nijkamp

981-15 Hidde P. Smit

981-16 F.C. Palm

981-17 F.C. Palm and
Th.E. Nijman

A quar te r ly econometrie model for the Prioe
Formation of Coffee on the World Market

Demand and Supply of Natural Rubber, Part I

The p o l i t i c a l Economy of the Republic of
Korea; A proposal for a model framework of
an open econoray in the ESCAP-reglon, with
emphasis on the Role of the S ta te

S t r u c t u r a l Econometrie Modeling and Time
Ser ies Analysis - Toward3 an Integrated Ap-
proach

Urban Impact Analysis in a Spa t i a l Context:
Methodologie and Case Study

Primaire exporten en ekonomiese ontwikke­
l ing

Het genereren en evalueren van voorspel ­
l ingen van omzet en ne t to wins t : een toege­
past kwant i ta t ieve benadering

Financiële vraagstukken onder onzekerheid

A Constant-Market-Shares Analysis of ASEAN
Manufactured Exports to the European Commu-
n i ty

A Multidimensional Analysis of Regional In-
f r a s t r u c t u r e and Economie Development

I n t e r n a t i o n a l Confl ic t Analysis

L ' U t i l i s a t i o n du Crédit lo r s de 1'Achat d*
une Voiture

Onderzoek naar levensomstandigheden en op­
vat t ingen over arbeid b i j mensen zonder
werk, deel I

Disaggregate Models of Choise in a Spa t i a l
Context

The World Vehicle Market

S t r u c t u r a l Econometrie Modeling and Time
Ser ies Analysis: An Integrated Approach

Linear Regression Using Both Temporally Ag-
gregated and Temporally Disaggregated Data

1981-18 F.C. Palm and
J.M. Sneek

1981-19 P. Nijkamp and
P. Rietveld

1981-20 H. Blommestein and
P. Nijkamp

1981-21 P. Nijkamp and
P. Rietveld

1981-22 F. Brouwer and
P. Nijkamp

1981-23 A. Kleinknecht

1981-21 Hidde P. Smit

1982-1 Peter Nijkamp

1982-2 J.M. Sneek

1982-3 F.E. Schippers

1982-4 Piet van Helsdingen
maart 1982

1982-5 Peter Nijkamp
Jaap Spronk

1982-6 Ruerd Ruben (ed.)

1982-7 H.W.M. Jansen
mei 1982

1982-8 J . Klaassen and
mei H. Schreuder

1982-9 F. Brouwer and
P. Nijkamp

