ET

05348 -

< 14 SERIE RESEARCH MEMORANDA
@ .

2

ON RALLY, AN EVALUATION BASED ON CRITERIA

Spoor
Houweling
Geerts
Losekoot
Spremngers

R

Researchmemorandum 1987-33 septembey '87

VRIJE UNIVERSITEIT
FACULTEIT DER ECONOMISCHE WETENSCHAPPEN
EN ECONOMETRIE
AMSTERDAM

b

g

On RALLY, an evaluation based on criteria

——— - -

E. Spoor

E. Houweling
R. Geerts

R. Losekoot
M. Sprengers

Free University, Dept of Economics,
August 1987, Mmsterdam.

ABSTRACT

- -
=

The past few years have seen enormous attention directed towards
databages and especlally towaras relational theory. The prominent
coverage received by these subjects has until recently somewhat
obscured the aavances that have been achieved in a closely related
fiela: that of Fouwth-Generation-Language (4GL) Application-
Development=Systems (ADS's). Has this database-orienteda interest
led to a gross undervaluation of the ADS phenomenon? No, on the
contrary, it now is a hotly debatea topic, but the point is: the
discussions are rather chaotic. This is mainly duve to the fact
that a theoretical framework, comparable to that of e.g. relational
databases is lacking. The absence of such an academic foundation
means that there are almost no clear reference-stanaards against
which the often spectacular claims of manufacturers for their
ADS-s can be gaugea., This article therefore attempts to investigsate a
specifiec ADS (VAX RALLY) [RALLB6] within the context of a set of
criteria. The research for this publication was carried out in the last
quarter of 1986 and the first few months of 1987.

% -A version of this article is submitted to DECUS U.S. CHAPTER SIGs:
NEWSLETTERS.

CHAPTER 1 INTRODUCTION

For many years the development of information.systems has appeared
to be a very expensive angd time-consuming affair. Many causes are at
the root of this fact. In this respect the changing requirements of
end-users, that have contributed to the drastically increased
complexity of these systems, are of great importance, Besides this the
significant shortage of information-specialists is a rather serious
problem. Finally the speedy develomments concerning hardware and the
resulting conversion-perils can be mentionea. Until recently
agevelopments in the software-field could not keep up with these
advancements.

Next to the production of new information-systems, another issue is
relevant : that of application-mainterance, This appears to be of
erucial importance, but at the same time it constitutes one of the
greatest bottlenecks in many organisations. Responsible for this
situation again are the above mentioned causes from the application-
development phase, Besides this, other problems of a different nature
are prominent, like badly documented programs ana poorly structured
systems, Particularly to obviate the forenamea aifficulties, the
Sowcalled "Structured Design Techniques" were introduced dwing the
seventies, These design-methoas have brought some alleviation, but
certainly have nol become an ungualified success, The develomment and
maintenance of software continue to be structural problems.

In recent years efforts have been made to change this situation
funaamentally., Various manufacturers are contributing to this by
launching "Application Development Systems" (ADS's) . One of these ADS's
is described ang examined against a number of criteria in this article.
For that purpose this text is arranged as follows: In Chapter 2 a short
explanation of ADS's in general is given. Moreover this chapter ineludes
a paragraph with a discussion of the evaluation-criteria that are used.
Chapter 3 gives a system-description of the specifically researchea ADS,
Finally, Chapter 4, contains the evaluation and the conclusion.

CHAPTER 2 APPLICATION DEVELOPMENT SYSTEMS

—— it —— kvl kM e
] i e e

2.1 What are application development systems ?

In general, a qistinction is made between the third and the fourth
generabion within the curent computer languages. That third generation
consists of the well-known higher programming languages like Cobol,
Fortran, Basic, ete. These languages present many advantages in
relation to their preaecessors, but they also have serious arawbacks,
the worst of which is their procedural nature, This means that experts
are requirea and that they need to convert all user-specifications into
program-procedures. In other woras "HOW" the software is to perforn
must be specified in detail, which 1s a tealous and technical process.
The direct consequence of this usually is a very long and error-=prone
software-.gevelopment stage. Moreover the extremely important
application-maintenance appears to be a very labour-intensive affair,
mainly because of the used languages.

In response to these last disadvantages, in recent years fourth-
generation software has been introduced to the marketplace, This
software pretends to be as non-procedural as possible. In contrast to
the usual state of affairs concerning third-generation lanuages, now the
declarative aspect is prominent. This means that the priority now rests
with the declaration of the specifications ("WHAT' the software is to
do, instead of "HOW" it has %o perform), and thus no longer with the
technical translation to the program-procedures., The implementation of
this conversion now is taken care of automatically by the software,

In practice the term "fourth-generation software" encloses a
broad spectrum of programs and tools, with mutually greatly varying
feasibilities, Nevertheless some common elements can be gistinguishea,
Particularly :

— DataBases and DataBase Management Systems (DBM3's):

- Program-generators: i.e. aavanced scoftware that generates all
required procedural programs on the basis of mainly non-procecural
specifications ana uses the forementioneq databases. Such
generators should include "Prototyping" facilities, to enable
fast aevelopment of rough program- frameworks;

- Query=languages: languages that allow the user to easily perform
mattipulations on data in a database, Of course authorization
controls are essential 1n this respect;

- Screen-generators: tools which can be used for a c¢lear
presentation of data by way of a sophisticatea lay-out:

- Report-writers: aids to generate hardecopy-printouts.

The confusion concerning the term "fourth-generation sofftware"
necessitates the introduction of a new concept: Application Development
Systems (ADS's):

An ADS can be deseribed as a system that contains all the above

mentionea elements, in such a way that they form a consistent unity,

which enables developers to produce applications in a relatively
hon-procequral manner,

2.2

ADS-Evaluation-criteria

The evaluating character of this article requires the summing up of
a number of ceriteria, against which experiences with specjific AD3's can
be placed in the context of standards for ADS's in general., The criteria
mentionea below are partly aerived from Caraenas [CARDS82] and in our
opinion can serve as a test for the jwigement of any arbitrary ADS:

1

w

10

Do the ADS~tools form a unity ?

(They should not overlap each other, for then a choice-problem
comes into existence; nor should they show mutual gaps, because
this causes a penalty in the form of application.limitations);
Is the ADS DataBase- and DataCommunication-orientea 7?;

Are the tools indepehdent of a specific DBMS 2
{That is: can they be connectea to DBMS'3 of different crigins)
Is the ADS interactively oriented ?

And does it in this respect contain:

= high quality data-manipulation facilities ?
- features that enable screen-formatting ?
- report-writing facilities ?2:

Dees the ADS possess language-elements {if possible non-

procedural) to describe activities, that cannot be directly

deduced from the in-/output-specifications ?;

Can an observable productivity-improvement be witnessed in

relation to third generation languages ?

(We considger this an essential evaluation-item, because here the
motivation for the qevelopment of fourth generation software
lies: this software shoula clearly lead to a substantial
shortening of the above mentionea application-development stage.);

Is there really a higher measure of flexibility as compared to

third generation languages ?

{This criterium is closely related to the former one, because
obviously the increase in productivity shoula be eviaent here
too. However flexibility goes one step further: It requires that
the application, generated by the ADS, has an easily changeable
internal structure, For it is imaginable, that an ADS produces
applications with extremely rigida internal build-ups., (Often the
application consists of main-parts which can be changed or
deletea, only after all of their sub-elements labouriously have
been removed one after the other.,) If this is the case, changes
anda/or adaitions naturally are qifficult to realise. By this,
application~maintenance is seriously hampered and little or
nothing would have been gained in relation to the current
practice with third generation languages concerning this
extremely important aspect. Concluaing: the flexibility-ecriterium
mainly covers the maintenance-friendliness of the software,
generated by the ADS.);

Does operating the ADS still require the specialized knowledge of

a computer-expert, or is it indeed the case that end-users can

generate complex applications on their ownh ?

(This is greatly enhhancea if the ADS i3 as non-procedural as
possible, but even then ease of use is still not guaranteed
automatically.);

Is fast and good "Prototyping™ possible ?

{That is: are there facilities within the ADS that enable the
generation of -a rough concept ?);

Does the ADS-software guarantee the integrity of the total

application ?

(In this respect a validation-mechanism comes to mind, that
(automatically) checks the definition of an application on
integrity and gives clear messages about the result, Thus there
should ncet be a tiresome debugging-process.).

CHAPTER 3 SYSTEM-DE3CRIPTICH

- - v
EEREEEEEE R R TR NSRS RS S SRS EEEE

After the general deseription of AD3's ana the evaluation-criteria
that should be taken into consideration, now the specific ADS-product
VAYX RALLY of DEC, linked to a RDB/VMS database (RDB/85], can be
describea. For an iatroduction of this package, anh article has been
written by R.T. Bennett [BENNS6]. It was published in a former edition
of this magazine. In the subsequent text a summery of the most important
characteristics of this ADS follows.

VAX RALLY is made up of two main systems:
% The Dialog, consisting of tools to genherate an application:
¥ The Runtime System. This part takes care of the execution of the
application., The Runtime System will not receive attention in
this article.

Figure 1

The Dialog shows itself as a series of menus and scraens that
enable the user Lo create a set of linked objects, which in turn form
the application. Some important objects are:

- Forms;

- Reports;

- Menus:

- Help-texts;

- Error-messages; :

Linkages to the database(s).

These objects are laid down in the form of data-structures, which
RALLY stores in a special application=file (AFILE). The above-menticned
Runtime System processes the contents of this file duwring the execution
of the application., The Dialog itself also consists of two parts:

*# The Builder Tools:

* The Eaiting Environment.

The Builder Tools.

Thiz is a cluster of 5 sub-tools, that can be used to start builaing

an application, Those sub-tools are:

~ The Database Builaer.

This creatés and modifies RDB/VM3 databases. These databases are
locatea outside the AFILE, as can be seen from figure 1, {see
sub-paragraph 3.2.1.);

- The Data-Source-Definition Builaer.

With this, links between the forms/reports from the appliecation
and the underlying database(s) can be made. (see 3.2.2.);

- The Form/Report Builder, This part creates the structure of the
forms/reports and also builas the screen<layout. (more about that
in 3.2.3.)%

= The Menu Builder.

With this tool, the main-menu for the application is constructed.
{see sub-paragraph 3.2.4.):

- The Message Buillder ., Help-texts and error-messages, that can be
connectea to a form or a mehu, are created here. (no separate
sub-~paragraph has been devotea to this).

4

The Eaiting Environment,

The Editing Buwviromment enables the developer to refine ana/or
change application-objects, that were made with the Builder Tools.
Moreover 1t is possible To create new application-objects (except a
aatabase). Besides this, links to e.g. Cobol or Fortran can be
established, Finally, the Editing Enviromment allows the use of VAX
RALLY ADL (a proceaural language). All these facilities will be
explained more thoroughly in paragraph 3.3.

3.2 Further description of the Builder Tools

3.2 The Database Builaer

The RDB is a relational DBMS and the presentation of aata therefore
takes place in the form of tables, callea relations. A RDB/VMS aatabase
can be definea in two ways, namely by meansg of the Relational Database
Qperator (RDO; this is no part of RALLY, so that it will not receive
attention here) and by means of the VAX RALLY Database Builder.

With that Database Builder a adatabase can be established in the

following way:

1 The initial cereation of the database.

This takes place by specifying a database-name., If the naming is
completed, two files are created in the home-directory. These
files contain the qata ana allow the database to be querieaq;

2 The definjition of giohal flelds.

Every field in a relation must be based on a global fiela. Such
global fields allow the user to define a set of stahaara
definitions for all the aata in the database. This promotes
simpliecity and consistency. A global fiela can thus be viewed as
a template, on which specific data-items are based;

3 The creationh of relations in the aatabase,

RALLY takes a relation to be a collection of local fields. These
local fielas are namea on the basis of global fields;

4 The definition of indexes in the database., An index is a data-
structure that enables RALLY to fina data in a relation ana teo
fetch them, without the need to view all the records in that
relation. This method saves time if data have to be accessed
fregquently and therefore it then is adviseable to create many
ingexes. However, if a lot of upaates occur, it is sensible to
use few inaexes, In RALLY, the user can determine to what extent
ingexes should be used.

3.2.2 The Data--Souwrce-Definition Builder

Often a database will not be involved in its totality by a
manipulation. Therefore RALLY offers the possibility to redefine the
aatabase into new "sources", that only present the required parts of
that particular aatabase., This regefinition can be seen as the
translation from the conceptual level to the external level [DATEB6]
and takes place in two steps:

1 The first step concerns the definition of the Data Sowrces.
Such a Dbata Source establishes a briage between the RDB ana the
still-to~be-made form/report. In that Data Source Definition (D3D)
the relation{s), which can be used, are registratea. Besides,
here the possibility exists te fix aacditional restraints to that
use, In a D3D relations can be couplea by way of a "join",
However, this join has limitations: updating, deleting ana
inserting are not allowed, In other woras, the "joining" of
aifferent relations in a DSD mainly serves report-writing.
Furtheron in this text, a methoda (involving another king of joins)
will be shouwn that does allow all manipulations (including
upaating, deleting aha inserting);

2 The secona step in the redefinition is described in sub-paragraph
3.2.3 (Form/Report Builder).

Schematically the redefinition can be depicted as follows (Groups
will be aiscussea hereafter):
Figure 2

3.2.3 The Form-/Report Builder

This tool serves to build screens, with which data can be presented
to the end-user. Moreover RALLY-objects can be generated, that
facilitate manipulations against the database., In this Form-/Report-
Builder the second step is made in the redefinition-proces. To that ena
s0 callea "Data Sowurce Groups" (usually abbreviated to “"Groupst) zre
created within the forms/reports. These "group-definitions" aesignate
the DSD's that are uzed by a particular form/report. (In this respect
only a single DSD.can be gefined per group; however several groups can
refer to the same DSD.) A DSD is independent of any singular group-
gefinition,

The functions of the group lie in the formulation of more stringent
requirements for the access to the database and in the establishment of
specific characteristics (like the manipulation-mode that is allowed).
In other words a group=gefinition is restrictive towards a D3D and thus
can never signify a widening of competencies, Groups can be "joinea" in
a 30 callea hierarchical form/report. RALLY calls this a "Parent-chila
relation” . In this case it is possible to carry out all normal aatabase-
manipulations (upaate, delete, insert), which are not allowed when D3D's
are joinea (Therefore it is evident, that a form/repert in which one
or more of the groups make use of joinea DSD's, does not allow all
these manipulations any more).

3.2.4 The Menu-Builder

It is absolutely neccessary to build a Main-menu before an
application can be run, The Menu-Builder is only capable of aefining a
single menu, which has a simple structure. The reason for this, is that
menu-choices can only point to forms/reports. To create one or more
submenug and/or complex structures, the Editing Eanviromment has to be
used.,

In the Menu-Builder, the 'Initial Usage Mode' has to be specifiea
for each forwm/report. This mode indicates which manipulations may be
carried out, The options are:

- Browse/Upaate/Delete (BUD)

This possibility allows the user to make inquiries and to ada,
delete or change aata:

- Insert

In case this is specified, the user may add data to the database:
- Query

This option gives permission to make inquiries to the database;
- Print only

The specification of this choice results in a hardcopy printout,
instead of a aata-presentation on the terminal-secreen,

3.3 Further description of the Eziting Enviromment

The main differences between the Builder Tools and the Eiiting
Environment are formed by:
- the scope and complexity of the objects:
- the use of extensive default-choices in the Builder Tools;
- the splitting up of objects (whether or not made in the Builder)
into subobjects, so that detailed changes can be maae to the
spplication,

The Eaiting Enviromment does not, like the Builder, consist of
neatly aemarcated and separately namea tools. Only two mechanisms are
mentionea as such there:

~ the Image Editor, with which the lay-out of forms/reports, menus,

legends, help- and error-messages can be edqited;

- the Verifier,

With this the validity of objects, ecreated in the Dialog can be
checkea, Possible mistakes are mentionea in 'Integrity Reports’,
together with location of occurrence ana likely cause., These
tools are not aiscussed in adetail in this artiele,

The Eliting Eaviromment and its sub-parts can be entered through
menu-choices. The 'Defining Application Objects' option of the RALLY-
Main-menu provides this entrance, Thereafter a choice can be made from
the following submenus:

~ defining Menus:

- defining Forms/Reports; .

- defining Data Definitions & Data Related Information;

- defining Tasks;
defining, maintaining and managing applications;

- procedural language (ADL).

Each of these submenhus again forms the entrance to a broad variety
of further options, which every time are unitea in tree-structures,
It would lead to far to explain all of these possibilities in detail.
Only the most sighificant options are dealt with in the undermentionea.

3.3.1 Defining (& editing) Menus

In the Builaer Tools only a simple menu (the Main-menu) can be
created, which points exclusively to forms/reports. In the Editing
Enviromment the possibility exists to establish several (sub-)menus and,
as a consequence, even complete menu-hierarchies can come into
existence. Moreover, the seperate menus can now be equipped with complex
structures, which enable them not only to point to forms/reports, but
also to other items like menus, tasks, commanas and ADL.procedures (as
will be explainea furtheron). Finally, there are several options that
enable changing/improving the lay-out of menu-screens. (Eaiting is not
possible in the Menu Builder,)

3.3.2 Defining (& editing) Forms/Reports

Forms/reports themselves again consist of a number of sub-objects.
To mention the most important of these:

- Groups (4 types);

- Fields:

- Texteareas;

- Form/report call-packets.

The Defining Forms/Reports option gives entry to a number of
‘techniques to create or change these sub-objects. As far as the groups
are concerned, "Data Spurce Groups™ have been treated (in 3.2.3). No
further attention will be paid to the other groups ana to fields ana
text-areas, because this would lead to far. Because they are essential
for understanaing some fundamental RALLY-concepts, form/report call-
packets (also called form/report packets; call-packets or just packets)
will now receive a short explanation:

In the Builder Tools standard forms are created and, to enable

manipulations against the RDB, linked te the Main-menu. This

coupling is established through these form/report packets, which
are created implicitly by the Builder, In the Editing Environment
these packets can be built explicitly., In a form/report packet, the
following is specified:

= which form/report must be calledq;

- in what "initial usage mode” the form/report stanas;

= the before- & after-actions, that are to be deployed (see

2.3.4).

Forms and reports are independent of form/report packets. This means
that a form/report can be defined in several different packets (ana thus
in various modes and with different before- & after-actions). In other
words, such a form/report is reuseable,

3.3.%2 Defining (& editing) Data Definitions

With the Builder Toels, among other things, DSD's are definea. In
the Editing Environment three types of DSD can be c¢reateq ana/or
changea: .

~ the Base DSD;:

- the View D3SD;

- the Breakup DSD.

The Base-D3SD: This one is conform to the (above described) DSD’from
the Builder ana forms the connection between the relations ang the
application:

Flgure 3

The View-D3D: As soon as a "parent-child-relation" (see the above-
mentioned) within a hierarchical form/report is used, the Form/Report
Builder implicitly (!) creates so called "View-D3D's (one for each
chila) . This is necessary to link required Base-DSD's, In the Editing
Environment it is possible to explicitly create View-D3D's, This changes
the aata-flow to the hierarchical form/report, because the new View-DSD
couples different Base-D3D'!'s to each other, than the ola one, View-D3D's
are built from Base~DSD's anda therefore inherit many characteristices
from them,

Figure 4

The Breakup-D3D: This third kind of D3D is also used to make
hierarchical forms/reports, but each of these forms/reports is (in
contrast to those based on View-DSD's) derived from a single Base-DSD
and in addition are merely read-cnly. The Breakup-DSD's can only be
created and changed in the Editing Environment. These DSP's too are
gerived from Base~D3D's and again inherit many characteristics.

Figure 5

3.3. 4 Defining Tasks (Application Flow Control)

The management of the flow of an application requires the presence
of a number of specific control-processes, In RALLY this control is
realized through the execution of so called 'Actions', which are
combined into one or more 'Tasks'. On top of that it is possible to
switch (back ana forth) between Tasks ana Actions, through 'Commands'.
All these activities are essential in order to properly run an
application ana therefore are adefined within a framework, that is called
"Application Flow Control' (AFC). Within the Editing Faviromment it is
possible to aefine complex forms of Flow-Control, which consist of many
{ sub-)objects. The most important components and their relationships
will be explained in the following:

- Aetion: The invocation of certain RALLY-objects is seen as an
action, Each action can call one of the following objects:
. @ menu;
. a form/report packest:
. an ADL-procedure (see 3.3.5);
. a parameter-packet (no attention will be paid to this);
. an external program-link (this too is not discussea);
. an action-list (will not be attenaed to either).

- Task: An independent set of mutually relatea actions, The number
of actions within such a set is not limitea theoretically. Each
task has its own 'Action stack! (see one of the next items).
Several tasks can be active at the same time. The distinect
tasks can be shown simultanecously and followed 1ln separate
winaows on the screen. This enables the user fo a switch
between tasks with one of the commanas (e.g. 'next- task'). With
a task (among other things) the following can be accomplished:

. the creation of adaitional 'Entry Points':

. ruining some processes in batch;

. linking an application-command to a task;

. the creation of a window on the screen, in which the task-
flow can be seen., Tne first two points will now be illuminatea:

- Entry points: If an application comes into existence in the
Builder Tools, automatically a single default-task will be
generatea. This 'Main-Task'! serves as an entry (Entry Roint) to
the application ana airectly leads to the Main-menu. Only after
a choice has been made from this menu, can the user start
working., If however several tasks are created, it is possible
to define a new Entry Point for each task. Now users to whom an
Entry Point has been assignea, can start right away, without
the requirement to them to pass through the Main-menu first,
This division of the application into tasks ana Entry Points
also means that protection of parts of the application can be
accomplished for the sake of specific end-users:

Figure 6

~ Batchwprocesses: The creation of such a process can be desired in

situations in which activities exist, that don't require airect
user-input and thus don't have to take place interactively. To
be processed batchwise, those activities must be qefined as
tasks and supplied with Entry Peints. Two application-areas are:
. the execution of a series of printcommands, callea 'Print-

only=reports’ (for example stanaara periodical sales~reports):
. the carrying out of Data Maintenance Operations, that demand

a considerable amount of capacity (For this, ADL-procedures

have Lo be written).

" = Command: With commands various kinds of operations can be
executea, One of these operations concerns the navigation among
tasks and actions., These navigations can take place
interactively or can alreaay be aefined during the design of
the application. This implicates that these commands have great
influence on the Flow Control.

- Action-stack (zexecution-stack): A queue, which takes care of
the management of a stream of actions that have to be executed
when running an application. This queue operates accoraing to
the 1ifo (last in first out) principle. Each active task has
its ot Action-stack. When an action calls another action, the
first action stays in the stack, but the new action is placed
on top of it, If this second action is completea, it is removed
from the stack and the Flow-Control resumes with the first
action, which now is at the top of the stack. If the stack

contains only a single action ana when that action has been a
executea, the task is completed.

- Invocation-type (= call-type; insteada of 'type', 'style' is also

used) . This is the method, with which an action, task or

command is activated, because filling the Action-.stack happens

through these invocation-types. Examples of these inveecation-

types are:

. call: the present action stays in the queue; a new action is
placed into the queue and executeq;

. execute: the present action is removea and a new action is
placea into the queue anha executed (to be sure, there are
more types, but our ilnvestigation has been restricted to these).

- Action.site: A point in the application to call an action, a task
or a command. This takes place by mentioning the name of the
object ana stating an invocation-type, Action.sites are among
others:

. the first action of a task:
» @ menu-choice;

. a form/report call-packet;
. a form/report;:

+» an ADL-procedire,

— Before- & after-action: This is a RALLY-object, with which

actions automatically can initiate other actions, without
necessitating user-input (in the form of an explicit menu-choice).

3. 3.5 Defining , maintaining ana managing applications

This menhu~choice leads to a miscellaneocus set of 'Utilities' ana
other matters., Of these, the following can be mentioned:

- the creation of adgaitional Entry Points (see the Task-dgeseription);

- the creation and changing of Help-, Error- and legend. messages.
This forms an aadition to the Message Builager ana is of
subordinate importance to this description:

- security; this is an important issue anda therefore it requires
some further explanation:

It is possible to protect (parts of) an application against all
unauthorizea users. The protection can be accomplished in four aifferent
ways, but only the last two methods are part of RALLY itself {so called
Dialog Security Mechanisms):

- on the file-level, through 'VMS file protection'. A feature, that
controls entry to the AFILE ana the RDB/VMS database files. This
control is carried out by the W3 Operating System, which can
assign aifferent authorizations to different users;

- through 'RDB/VMS Secuwity'. A mechanism, that takes care of
specific relations in a aatabase (through RDO);

- oh the level of distinet RALLY-objects. This happens by way of
'RALLY Security Items', which (amotig cother things) contain
pasawords. Each password is linked %o a specific object, like a
(Main-) menu, form/report packet, ADL-procedqures, etec, Through
such a security-item it is also possible to couple a password to
an AFILE anda thus proteet an entire application against
modification-attempts:

- through the ereation of additional Entry Roints (see the fore-
going). Only users, who know the name of such an Entry Point have
access to the assoclated task. Therefore those users only have
permission to use a particular part of the total application,

11

3.3.6 Procedural Language (Application Development Language)

As part of VAY RALLY, the Application Develomment Language (ADL)
can be usea. This is a special language, which should be applied for
the definition of necessary elements within the application and/or the
creation of advanced supplements. Examples are:

= the development of fiela-validation procedures, which cannot be
proaquced with the form/report valiaation methoa:

- the formulation of complex formulas to determine the value of
Ycomputea fielas':

- the execution of sophisticated data-manipulations, without direct
user-input (see the task-description). Therefore ADL incluaes
built-in [ML-statements;

- the settlement of error-conditions.

ADL is the only procedural part of RALLY. DIGITAL (DEC) c¢laims that
this language is very easy to work with, Two reasons are its powerfull
structuredness (in 'blocks'!) and its similarity with e.g. Pascal. As
recorded, RALLY takes ADL-procedures to be actions and that is why they
can be invocatea from any arbitrary action-gsite.

3.3.7 Integration of gefined RALLY-objects

To conclude this chapter a scheme will be shown, to explain how
the various objects in an application fit together, and are relatea to
each other through the Flow-Control:

Figure 7

From the figure it appears, that the task-level is the highest
level, The start of an application or part of an application always
begins with the invocation of a task. In this case, the first action of
the first task is the invocation of the Maih-menu, A Main-menu in turn
¢an initiate several actions, varying from a menu-set to a new task,

In this respect it applies that every memi-option is an action-site. In
each one of these action-sites, invocation-types are usea to call RALLY-
objects (e.g, form/report packets). These invocation-activities can be
monitored by means of the assoclated tasks and particularliy their
action-stacks.

Only the left side of the figure is worked out in detail. A Main-menu
(in this example) consists of a number of sub-menus. Each sub-menu in
turn can initiate several form/report packets., As said, in these
packets the forms/reports, that are to be invoked, are mentioned. After
the execution of these packets, another action (e.g. a print- command)
can be carrieda out, without the requirement of any user-action. This
then is accomplished through the after-action. The data of the database
that have a bearing on a form/report are geterminea by the groups,
which are gefined in the form/report-definition. The group-aefinition
relies on the Data-Source-Definition, which in turn contains one or
more RDB-relations,

12

CHAPTER 4 EVALUATION AND ASSESSMENT

it N A L E AR L S A AR A A A b A A
SRa===za= - -

E.1 Practical experiences and criticisms

The following remarks are derived from our specific experiences and

they encompass positive as well as negative elements:

— The totality of the Builder Tools is goal-oriented and transparent:
In thlis context goal-oriented means, that the user can confine
himself to the aeclaration of his wishes without having to
convert all the details into a programming language., Transparent
refers to the fact, that there is not a great stream of optiouns,
but always only a limited number. In order to khow what everything
means, a somewhat tedious learning-process needs to be absolved,
but once this has been accomplished, it 1s rather easy to buila a
simple application with the Builder, The Editing Enviromment is
much less clear, because of the enormous amount of options. All
in all, RALLY comes across as massive and therefore relatively
unclear to the uninitiatea, This means that a long span of
experience with this ADS is required, to handle it well.

- We guestion ourselves as whether there has to be a aistinction
between the Builder Tools and the Editing Enviromment, for in owr
opinion the Builder does not allow genuine "Prototyping". While
there is only one menu; the objects can not be subdiviaed; ete,,
all this means that the possibilities for arriving at such a
rough design are really too limited. Moreover, the Editing
Environment has to be studiea anyhow, to build a full-blown
application. So, why not e.g. one single tool, that contains all
the options ? Of course, this would neccessitate a thorough
tackle of the transparency problem.

— ADL pretends to be a simple programming language, with statements,
procedures, functions and syntax resembling that of Pasecal. In
other words it is procedural. If an application gets a little
complex , extensive validation-procedures are necessary to
guarantee the integrity-surveillance of the aatabase. Then the
use of ADL is inescapable, This means that some proceauwral
programming turns up again. As a consequence specialistic know-
how is still required ana so many of the RALLY-advantages are
neutralized again!

- The possibility to verify applications has saved much time and
effort during the development of programs. However, the error-
messages that were displayed when something went wrong were not
always erisp and clear.

- The "Trace-log" command (in VAX/VM3) is extremely important.
Without this option, we never coula have succeeded in developing
a properly working ADL-procedure, Besides, this commanda enabled
the tracking aown of the reasons why some other parts of the
application initially did not live up to our expectations. For
this trace-log option precisely aenotes which form/reports are
called, what ADL-procedures are run through, what happens to the
database, etc.

- Nowhere can it be aiscoverea, what the underlying base-language
is that RALLY uses. This implicates that no thorough investigations
are possible in the case of persistent errors and that "tuning"
(by specialists) cannot be undertaken.

- The application in its totality can he well protected with, among
other things, Entry-points ana/or Passwords. In this way several
end-users can use the same application, without them having to
see the total or each others views,

- The integrity-protection of the singular objects within an
application, by way of mutual "linking", is sometimes carried too
far, Therefore, repairing mistakes and performing changes and
agaitions is a tiresome process, that takes quite some time. This
is because many mutual references in the application have to bhe
unlinkea first {they can remain in existence), before any part of
that application can be altered or qeleted,

- Guaranteeing the integrity of the aatabase [CODD85]., First, the
entity-integrity., In RALLY the use of a primary key is optional,
for the user does not have to qefine this. Furthermore, the use
of indexes with unique values is optional %feo. Alltogether, this
integrity rule is thus not supported automatically. Secondly, the
referential-integrity. This rule is not supported automatically
either. To enforce it, relatively complex ADL-procedures must be
written., Thirdly, the user-defined integrity. This is optional
too, The specification of e.g. maximal values is not requiren.
Concluding : Guaranteeing the integrity of the database is totally
up to the usger.

- Concerning user-frienaliness, the following aspects can be
aistinguishea (N.B. in our opinion it sometimes is necessary to
discern between application-~developers and end-users in the
unaermentioned):

. The bulk of this ADS package has been experienced to be
reasonably user-friendly, mainly because of the gooa menu-
guldance;

. We have found the extensive on-line help to be very handy,
especially at the beginning of our research. Unfortunately
this help information 1s not available when formulating ADL-
procedures:

. Notwithstanaing the on-line help, manuals (in particular
those concerning ADL) are still neccessary. In our opinion,
the manual that deals with ADL is too restricted and gives
little clarification;

. During the develomment of an application, the developer is
kept well informed by a "status-line" at the bottom of the
screen;

. If a certain item is required by an object of the application,
this is clearly indicateq:

. The list-of-values (lov) features help to avoid unneccessary
typing, especially as far as the developer is concerned.

(A lov is a legenda, that automatically appears on the screen
whenever a choice has to be made.);

. The function-keys are very usefull for application developers,
but 1n our opinion the same does not hola for ena-users,
Certainly to incidental users, the handling of the many
function-keys can be quite frightening;

. The system jis fast as far as processing—speed is concerned
and when it has to generate new applications;

. The manipulation of the database can be accomplished in a
relatively simple manner through a language that resembles
GBE [ZL00751].

14

4.2 Evaluation

Following now is a judigement, based on the c¢riteria as deseribed in
Chapter 2:

1 Do the ADS-tools form a unity ?
Yes, they certainly do. There is a well-built structure,
especially with regard to the Builder Tools. All those tools are
neatly grouped into menus and can be invokea easily. But: If the
Builder Tools are compared with the Editing Enviromment a marked
duplication of tools emerges. With the exception of building and
editing a database, exactly the same (and of course many
adagitional) things can be done by the Eaiting Environment as by
the Builder, We therefore consider this duplication to be
unneccessary, (see point 9 ana the conclusion too) We aid mot
encounter essential mutual gaps between the tools,

2 Is the AD3S DataBase~ and DataCommunicationworientea ?
It clearly is [B-orientea., The DB even is indispenseable and the
first thing that has to be ecreated (apart from of an AFILE) in
the Builder is the database., Whether RALLY is DC~ oriented could
not be ascertained by us, though it is quite likely because of
the linkage-capabilities of the VM3 Operating System (with among
other things DB's oh s8¢0 called "remohbe nodes™), that are
mehtioned in the documentation. We only had a "stand-alone system™
at our aisposal, 380 we could not investigate if {and when so, to
what eyifent) network- facilities can be implemented.

3 Are the tools inaependent of a specific DBMS 2
Probably not . We cannot make definite statements concerning this
item, for we only could work with VAX/RDB. In all DIGITAL manuals
Just this one Lype of DB (and related DBM3) is mentioned and
aiscussed.

4 Is the ADS interactively oriented and does it possess good data-
manipulation features, screen-formatting and report-writing
facillities 7 The part of this question concerning interactive
orientation can be answered affirmatively, though this is not the
case as far as ADL is concerned., The data~manipulation facilities
have been arranged in an excellent manner, by way of a QBE-like
language in form/reports. With respect to report-writing: the
generation of reports is simple through the "print-only-mode"
specification in menus and/or packets. Finally, screen-formatting
is excellent, through aajustments of the so callea "default-
layouts",

5 Does the ADS posses language-elements (if possible non-procedural)
to deseceribe activities, that cannot be airectly aeduced from the
in-/output-specifications ?

Yes, RALLY does, in the form of ADL (mainly needed for the
creation of validation-procedures), However, this language is
highl y procedural, (N.B.: the great majority of the activities
that have to be included can be deseribed in the in-/output-
specifications of the non-ADL part of RALLY).

6 Can an observable productivity-improvement be witnessed in
relation to thirg generation languages ?
Yes, for in a very short time a working new application can be
built, However, we have not quantified the advantage.

15

4.3

———

7

10

Is there really a higher measure of flexibility as compared %o
third generation languages ¢

Partly there is, hecause implementing improvements or adaitious
is qone faster and easier than with third generation languages.
This too of course is a subjective juigement, that can be
subjugatea to further quantification. On the other hana,
flexibility 1s still a lcong way from being optimal, due to the
rigiga internal structure, with very extensive mutuval™linkings".
This means that all sub-objects of a certain object have to be
decoupled or destroyed, before any changes or adqitiouns can he
made to the object itself and this in turn is certainly not
maintenance-frienaly.

Does the ADS still require specialistic knowledge ?

Yes it does, for early on in the design-process, procedural
language-facilities have to be called in, Therefore an end-user
probably will not be able to build complex applications on his own.

Is fast and good "Prototyping" possible ?

Indeed it is possible to create such a rough aesign in the
Builder Tools in a short time. However, we consider the result to
be too simplistie. For example, it is not possible to create more
than one menu in the Builder and so if more (sub-)menus are
needed it i3 neccessary to use the Eaiting Environment. The same
procedure has to be followed for many other objects,

Does the AD3-software (automatically) guarantee the integrity of
the (total) application 7 '

Yes, there 1s a "Yerifier" that undertakes a check of every
single RALLY-object, whenever the adefinition-phase of such an
object is completed. Furthermore, it is possible to exercise
control on the validity of the entire application through the
"Werify application” command. Finally, a check is made at the
beginning of any runtime-session.

Conclusion

Taking everything together, we can cohclude that RALLY dispiays a
rather positive image. It certainly is a great improvement in relation
to Cobol and other third-generation languages.

Nevertheless, some points are still susceptible to improvement:

- It is adviseable to:

. either merge the Builder Tools and the Editing Environment,
in oraer to eliminate duplication in tools,
. or either further develop the Builder in such a way, as to
ehable full-blown "Prototyping®,
The ADL is a stumbling block on the road to virtually complete
non-procedurality. By paying much attention to this weak spot,
the total picture could be improved considerably. In ou opinion
this can be accomplished by deminishing the role of ADL in RALLY
and moreover by reducing the procedural nature of ADL. Deminishing
the role of ADL could partly be attained by the inclusion of the
creation of (advanced) validations in the non-procedural part of
RALLY.
Linkage=possibilities with other databases and DBMS's are
mentioned nowhere. These facilities should be present and they
should be described explicitly in the documentation,

- The internal structure of the generatea applications shoula be
less rigid, as far as the mutual "linkage" of the objects is
concernea, Through the inereased flexibility which woula be
established in that way, the maintenance~friendliness is bound

to be greatly enhanced.

17

Literature

[(BENN861:

[CARD82]:

[(CODD851:

[DATES86]:

(RALLB61:

(3]

[RDB/85]:

1]

.-

[ZLO0751:

Bennett, R. T.; An Introauction to RALLY, DECUS SIGs
Newsletters, December 1986, Volume 2, Number i,

Caraenas, A. F. and W. P. Grafton; Challenges ana Hequirements'
for New Application Generators. AFIPS, Proceeaings of the

1982 National Computer Conference, June 7-10, 1982, Houston,
Texas.

Coda, E. F.; "Is Yow Relational Database Management System
Really Relational? An evaluation scheme.", Computerworld,
Qctober 1985.

Date, C., J.: Introduetion to Database Systems, Fourth Edition,
Acaigson-Wesley, 1986.

Introduction to VAX RALLY, April 1986, Digital Equipment
Corporation, Maynard, Massachusetts,

VAX RALLY Dialog User's Guide, April 1986, Digital Equipment
Corporation, Maynard, Massachusetts,

VAX RALLY Dialog Reference Manual, April 1986, Digital
Equipment Corporation, Maynard, Massachusetts,

VAX RALLY Command Reference Manual, April 1986, Digital
Equipment Corporation, Mayhara, Massachusetts.

VAX RALLY ADL User's Quide, April 1986, Digital Equipment
Corporation, Maynard, Massachuselts,

VAX Rdb/VM3 Guide ‘tq Database Design and Definition, December
1985, Digital Egquipment Corporation, Maynard, Massachusetts,

VAY Rdab/VMS Guide to Database Adminigtration and Maintenance,
December 1985, Digital Equipment Corporation, Maynara,
Massachusetts,

VAX Rdb/VM3S Reference Manual, December 1985, Digital Equipment
Corporation, Maynard, Massachusetts.

Zloof, M. M,; Query By Example, Proc. NCC U4, May 1975.

18

THE DIALOG
Data- Data Form/ Henu tlessage Editing
base Source Report Builder Builder Environment
Builder. Def, Builder Tool
Builder
! { ‘\\\\\\‘ '\\\\\\- ‘\\\\\h *\\\\\ !
1
Rdb/VMS \ \ \\ \
Database Data Form/ Menu Message
Source Report - ' '
DEf »
Relation
AFILE

RALLY Runtime

Fig

19

we 1

Form/Report Form/Report

EXTERNAL
Group Group Croup Group
LEVEL
D3D DSD DSD DSD
R R R R
e @) e
1 1 1 1
a a a a CONCEPTUAL
t t £ t
i i i i LEVEL
o] o o] o]
1 e ti n

Figure 2

20

Form/Report

Data Source
Group 9

1 joinll

Rdb/VMS Database

L—~—1 Relation

Data Source
Group 2

DSt

4 Relation

DSD

Figure 3

21

—~d Relation

Parent
Group

Form/Report

i |
l -t
-]
L -t
View-
DED
Link
Pase- Base-
DSD DSD S,
|
Relation Relation
Figure U

22

Child
Group

Identification of the
specifie Link to be
used in this particular
instance (by reference
£o its definition).

Definition of the Link

Form/Report { readeonly)

o J
Parent _
Group { Bl

= l Child
Group

Breakup Set

Parent 1 Child
Breakup- { PBreakup-
DSD psD

Base-DSD

Relation

Figure 5

23

! User 1 |

1

enti'y point

dain Menu
1 cm————
2 mmmm———
P ——
R
1
Form
B—)
- ————— - point '
f
Form
o ﬁ
- m———— Sub entry
e
+ Menu point
Report e - ——
--------- entry | User 8 |
——— e —— - point
Figure 6

24

Mair-task “taska? taska?

mair-menu

|
| | | 1

menu-set ADL-proc, form/rep. task
packet

form/report-packet

I after-action

form

I
group
|

D3D

REB=irelations

Figure 7

25

13811

1981-2
1981-3

1981-4

1981-5

1961-6

1981-7

1981-8

1981-9

1981-10

1981-19

1981-12

1981-33

1981 -34

1981-15
1981-16

198117

E. Yogelvang

H.P. Smit

R. Vos

F.C. Palm

P. Hijkamp in co-op.
with H. v. Handenho-
ven and R. Jenssen

R. Rubdben

D.A. Kodde

B. Out

P. van Dijek and

H. Yerbvruggen

F. Nijkamp, H. de
Graaff and E. Sigar
P. Nijkamp

4.J. Mathot

3.P. van Duin en
P.A. Cornelis

W. van Llsrop and
P. Nijkamp

Hidde P. Smit
F.C. Falm

F.C. Palm and
Th.E. Nijman

A quarterly econometrie model for the Price
Formation of Coffee on the World Market

Demand and Supply of Natural Rubber, Part I

The political Economy of the Hepublic of
KEorea; A proposal for a model framework af
an open economy in the ESCAP-reglon, with
emphasis on the Role of the State

Structural Econometr{c Modeling and Time
Series Analysis - Towards an Integrated Ap-
proach

Urban Impact Analysis in a Spatial Context:
Methodologle and Case Study

Primalire exporten en ekcnomlese ontwikke-
1ing

Bet genereren en evalueren van voorspel-
lingen van comzet en netto winst: een toege-
past Kwantitatieve denadering

Financi&ie vraagstukken onder onzekerheid

A Conatant-Market-Shares Analysis of ASEAN
Manufactured Exporta to the Eurcpean Commu-
nity

A Multidimensional Analysis of Regicnal In-
frastructure and Econemic Dewelopment

International Confilct Analyais

L'Utilisation du Crédit lors de l'Achat d°
une Yolture

Onderzoek naar levensomstandigheden en op-
vattingen over arbeild bij mensen zonder
werk, deel I

Disaggregate Models of Choise in a Spatial
Cantext

The World Vehicle Markset

Structural Econometric Modeling and Time
Series fnalysis: An Integrated Approach

Linear Regression Using Both Temporally Ag-
gregated and Temporally Disaggregated Data

198118

F.C. Palm and

H. Blommesteln and

Piet van Helsdingen

Ruerd Ruben (ed.)

J.M, Sneek
1981-19 P. Nljkamp and

P. Bietveld
198t-20
: P. Hiikamp
1981-21 P. Nijkamp and

P. Rietveld
19481-22 F. Brouwer and

F. Nijkamp
f981-23 A. Kleinknecht
1981-28 Hidde P. Smit
1982-1 Peter Hijxamp
1982-2 J.M. Sneek
1982-3 F.E. Schippers
1982~-4

maart 1982
1982-5 Peter Nijkamp
: Jaap Spronk
1982-6
1982-7 H.W.M. Jansen
’ mei 1982
1982-8 4. Klaassen and
me i B. Schreuder
1982-9 F. Brouwer and

P. Kijkamp

Some econometric Applicaticns of the exact
Pigtribution of the ratio of Two Quadratie
Forma in Normal Variates

Soft Econometrics as a Tool for Reglonal
Discrepancy Analysia

Soft Spatial Ffconometric Causality Models

Ordinal Econometrics in BRaglonal and Urban
Modeling

Categorical Spatial Data Analysis

Prosperity, Crises and Innovation Patterns:
Some more Observations on peo-Schumpeterian
Hypotheses

World Tire and RAubber Demand

Long waves or catastrophes in Regional De-
velopment :

Some Approximatlons to the Exact Distribu-
tion of Sample Autocorrelaticns for Autore-
gressjve-moving Average Models

Eapiriasme en eampirische toetsing In de we-
tenschapafiloscefie en in de skonomische we-
tenachap

Mantelprojekt 'Management & Politlek': Pro-
duktiebelaid en overheid; een onderzoek
naar de invleed van de overheid op het pro-
guktbeleid In de verpakkingamiddelenindu-
atrie

Integrated Policy Analysis by means of In-
teractive learning Models

The Transition Strategy of Nicaragua

Een alternatieve modellering van het gedrag
van £en beslujtvormer: ‘'satiaficing' i.p.v.
‘tmaximizing'

Confidential revenue and Profit Forecasts
by management and financial analysts: some
first results

Multiple Rank Correlation Analysis

26

