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ABSTRACT

In this paper we discuss the finite capacity queueing model G*¥/G/L/N with
batch-arrivals, a single server and having room for only N customers. For
this model two different rejection strategies are conceivable: a batch
finding upon.arrival not enough space in the buffer is rejected completely

ot the buffer is filled up and only a part of the batch is rejected. For

_either strategy we are interested in the rejection-probabilities hoth for a

batch and for an individual customer. Also we want to investigate the
walting-time distribution for an accepted customer. In general we carmot
find amalytical solutions for this model. However by specifying the
service-time distribution to be an Erlang-k distribution, a Markov-chain
approach is possible and exact results can be obtained. The next step is to
get approximate results for the general case via interpolation with respect
to the squared coefficient of variation of the service-time. We give
approximations for the waiting-time percentiles and for the minimal
bufferspace such that the rejection-probability is below a prespecified
level, Also numerical results are given to illustrate the quality of the

approximations.






0. INTRODUCTION

In modern telecommunication-technology and computer networks we are
confronted with the phenomenon that messages are sent in batches over a
communication-line and must be buffered at their destination-node before
they can be handled. The messages are handled one at a time in order of
arrival and within a batch in random order. Batches which upon arrival find
not enough space in the buffer are, at least partly, lost. So a natural
design problem arises with respect to the buffersize required to assure a
reasonable behaviour of the system, given the probability-distribution of
the batchsize, the interarrival-time of the batches and the service-time of
a message. The service level can be measured in terms of an upperbound for
the rejection-probability of a message or batch, or in terms of the
waiting-probability for an accepted message. This design problem motivates
the study of the GX/G/1/N model for which we present approximative results
using the exact solutions of the Gx/Ek/l/N model, where E, stands for an
Erlang-k distributed service-time. In this special case we can interpret
the service-time as the sum of k independently identically distributed
exponential phases. Thus the total nmumber of uncompleted phases seen by an
arriving batch forms a sufficient state-description to enable an embedded
Markov-chain approach.

A simpler analysis is possible in case of Polsson arrivals (MX/E, /1/N)
because under this specific arrival process the total number of uncompleted
phases at an arbitrary epoch forms a continuous Markov-chain,-Then we can
find a recursive solution for the steady-state probabilities., In section 1
we shall discuss the MX/E, /1/N model and derive the formulae for the
rejection-probabilities for a batch and an individual customer. Also the
waiting-time distribution for an accepted customer will be given.

In section 2 we give the exact solution for the above mentioned GX/E /1/N
model. In section 3 we discuss the general GX/G/1/N case and use the exact
results for the special case of the GX*/E,/1/N model to get approximative
results for both the waiting-time percentiles and the minimal buffersize
for which the rejection-probability does not exceed a given value. The
approximations involve Interpolation with respect to the squared

coefficient of variation of the service-time.



-2 .

In section 4 at last we give some comparisons between approximate values and

exact values for models which also allow an analytical approach.

1. The MX/E, /1/N queueing model

For the MX/E /1/N model we can give a recursive solution for the steady-
state probabilities of the total number of uncompleted phases at an
arbitrary epoch via a continuous Markov-chain analysis. We describe the
model and this analysis in subsection 1.l. Once these probabilities are
known we can derive the rejection-probabilities for a batch and an
individual customer for each of the following two rejection/acceptance
strategies, If an arriving batch does not fit completely in the remaining
capacity of the buffer, then

a, under the whole batch acceptance strategy (WBAS) the whole batch is
rejected.

b. under the partial batch acceptance strategy (PBAS) the remaining places
in the buffer are filled up and only the customers for whom there is no
place left are rejected.

Note that under the PBAS strategy every customer of a partially rejected
batch has the same probability to be rejected because of the random order
of customers within a batch. Under the WBAS strategy this probability
aquals one independent of the service order.

In the second subsection we discuss the waiting-time distribution of an

accepted customer.

1.1. Description of the model and its Markov-chain analysis.

Batches of customers arrive at a service-facility acceording to a Poisson
process with rate A. The batch size X has a general discrete probability
distribution: P{(X = k} =g (k =1, 2, ..). The service-time § for an
individual customer has an Erlang-r distribution with parameter u, so E(8)
= r/p. The service-facility can handle one customer at a time and works at
unity rate. The batch size distribution is independent of the arrival
process and the service-times,

For customers who cannot be taken into service immediately there is a
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buffer of N-1 walting-places. As soon as the server becomes free 2 new
customer 1s taken into service. Here we assume a first-come-first-served
(FCFS) queue discipline for customers from different batéhes and a random
selection for service (RSS) queue discipline for customers from the same
batch. If no new customer is present the server becomes idle.
If an arriving batch contains too many customers to fit into the remaining
places of the buffer we make a distinction between the two already
mentioned rejection/acceptance strategies: WBAS and PBAS. So we have to
deal with two different models, which we will discuss separately. Using
that the Erlang-k distributed service-time can be interpreted as a sum of k
identically, independently exponentially distributed phases, we can
describe for both strategies the state of the system at an arbitrary epoch
t as

X(t) = the total number of uncompleted phases present

in the system at time t,
We now have that {X(t), t>0} is a continuous Markov-chain, where the steady-
state-probabilities can be calculated via the standard technique of
equating the rate at which the.process {X(t)) leaves any state to the rate
at which the process enters that state, The state-space of [(X(t)) is (0, 1,
., Nr).

Let f; denote the time-average probability of having i uncompleted phases in

the system at an arbitrary time i.e.

£, = lim P{X(t) = i}

ta

By the property ‘Poisson arrivals see time-averages’ (PASTA) we have that
f; can also be interpreted as the probability that a batch sees 1 uncompleted
phases in the system upon its arrival.

Next we define

pP; = lim P{at epoch t there are i customers in the system).

t—+wo
So {p;)} is the time-average distribution for the number of customers in the
system at an arbitrary time. Clearly, we have

jr

Py = Z £,
k=(i-1)r+l

By the PASTA property p;is also the probability that a batch finds upon
arrival j other customers already present in the system.

Our first task is now to give the balance equations and the rejection-
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probabilities for the two different strategies WBAS and PBAS.

A recursive equation for the state probabilities is obtained by applying the
balance principle,

the rate at which the process leaves a set A of states =

the rate at which the process enters that set of states
to an appropriately chosen set A of states rather than to a single state.

If we take A = {(j, ..., Nr} (j =1, 2, ..) we get in case of a WBAS strategy
the following equations:

i-1 [(N-i})/r]
B ¥ fj -k Z £, * Z
i=0 k=(j-1)/t
Here [x] stands for the integer part of x. Under a PBAS strategy the balance
equations show only a minor difference:
il @
po¥ £y o=k Y £, *
i=0 k=(j-1)/r
In either case we can solve the given system of equations recursively by

starting with f§ = 1. The steady-state probabilities £; can subsequently be
found by using the normalizing equation

Nr
L £5=1
j=0
We now consider the rejection-probabilities under the WBAS strategy.
First we look at the probability that a batch is rejected. This can be done

easily by conditioning on the number of customers present upon arrival of the
batch: '

P{batch rejected) =

N

Y. P{batch rejected | batch sees k customers upon arrival)#*p, -
k=0

N

Y P{batch consists of more than N-k customers}*p, =
k=0

N N-k

) p-k*[l‘z -ai] (1)
k=0 i=1- -

For the calculation of the probability that a customer is rejected we need the
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following renewal-theoretic result [BURKE]:
Pf{an arbitrary customer belongs to a batch of size i} = i /E(X). (2

Now we can deduce

P{customer rejected) = ) i:?;g?zg
k=0 .

customer sees Kk customers ”
already present upon arrival P

N
~ )} P{customer belongs to a batch of size more than N-k}¥%p, =
k=0
N N-k -
- 2 Px*[l' ) i“i/E(K)]- (3)
k=0 i=1

Next we look at the rejectiom-probabilities under PBAS. Under this strategy we
prefer to speak of 'batch overflow’ when an arriving batch does not find space
enough for all its customers, because under PBAS we have only partial batch-
rejection. Apart from this change 1n name the formula for the probability of
batch-overflow is exactly the same as formula (1) for the probability of
batch-rejection under WBAS, where of course the probabilities p, are different.
Then

N N-k
P{batch overflow) = } pk*[l -3 ai]
k=0 i=1
To find the rejection-probability for an individual customer we define:
n; = Pf{an arbitrary customer takes the j-th position in his bateh}. (4)
From the formula (2) we get:

P{an arbitrary customer takes the j-th position in his batch} =

1]

Y o; /E(X), j=1
i=j

Mow we can deduce

N customer belongs to a bateh
P{customer rejected} = } P{pustomer rejected| which sees k customers }»*pk =
k=0 already present upon arrival
N
7. P{customer takes a position greater than N-k in his batch}#*p, =
k=0
N N-k
Z Pk*[l - 2 ﬂi]- (3)
k=0 i=1
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1.2. The waiting-time distribution for an accepted customer

Let Wy be defined as the waiting-time of an accepted customer.
Te find the probability distribution of W,, we define the random variable
F = the total number of uncompleted phases in front of an arbitrarily
accepted customer just after his entrance into the system.
Using the fact that the waiting-time of a customer having j phases in front of

him has an Erlang-j distribution, we have for either strategy:

(N-1)r
P(Wy >x) = 3 P{Wg >x | F=j) % P(F=j} =
j=1
(N-L)r i-1
TOR(F=i) * 3 M umyt/i ' (6
j=1 im0

S0 it remains to calculate the distribution of F for either of the two
strategies. To compute the probability distributien of F, let us define the
following events:
A = the event that an arbitrary customer is accepted
Ay = the event that an arbitrary customer is accepted and has j
uncompleted phases in front of him just after his entrance
into the system.
Then, by the defintion of conditional probability,
P{F = j} = P{A;} / P{A). (7>
For the two strategies WBAS and PBAS the rejection probability 1-P{A} is
given by the respective formulae (3) and (5). To find P{Aj}, let By, denote
the joint event that an arbitrary customer belongs to a batech of size k and
that i uncompleted phases are in the system just prior to the arrival of his

batch. Using (2) we have,

P{Bes} = (koy/E(X)) * £, . , (8)
By the law of total probability, we have for any fixed j
P{A;) = Ju,; P{Aj] By ) * P(By,}. (9

Noting that each newly arriving customer represents exactly r phases, it
follows that for fixed j the probability P{A;| By;)} cannot be positive
unless 1 and k satisfy 1 = j and j-1 € {0, r, ..., kr} and k < u,;, where

u { [(Nr-1)/r] for the WBAS strategy
i ®

for the PBAS strategy (10)

In case i and k satisfy the above characteristics we have P(A;[By;} = 1/k,
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otherwise P{A;|By;} = 0. Together the formulae (8) - (10) yield for both
strategies the result
1,

P{a;} = % Z‘ P{A, | Bki} * fi * c:k/ E(X). (1)
1=0 k=[(j-i)/r]+1 I

Substituting (11) in (7) gives the desired probability P(F =~ j}.

2. The G*/E, /1/N queueing model

For the GX/E, /1/N model we can also give a Markov-chain analysis if we look
only at the arrival epochs. This so called embedded Markov-chain approach
leads to a system of equilibrium equations for the steady-state
probabilities that an arriving batch sees j uncompleted phases in the
system (} = 0, 1, ..). Once these probabilities are known we can use the
same formulae as deduced in section 1 for the rejection-probabilities and
the waiting-time distribution. Thus we can confine ourselves to the
description of the model and its Markov-chain analysis. This will be done
in subsection 2.1, where we will alsc give the results for some specific

interarrival-time distributions.

2.1. The description of the model and its Markov-chain approach

The only difference with the model discussed in section 1 lies in the arrival

process: here we consider a genmerally distributed interarrival-time with

density-function g(t). For the other characteristics of the model we refer to
the previous section.
Now define

X, = the total number of uncompleted phases in the system just prior

to the arrival of the n-th batch.

Then {X,, n =1, 2, ..} is a discrete aperiodic Markov-chain with a finite
state-space {0, 1, ..., Nr}. Let

z; = %;g P{Xn - i} (i=0,1,..)

be the steady-state probability that an arriving batch sees i uncompleted

phases in the system. Them we know that the z; tan be determined as the
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unique solution of the lineair equations

Nr

z, = 3 2z, *Pp,., j=0,1,.. (12)
I o4 P T4

together with the normalization equation

Nr

Y oz, =1,

j=0

Here the Pi; stand for the one-step transition probabilities of the Markov-chain
{(X,, n=1, 2, ..}. So it remains to calculate the p;; = P(X 41 = j| X, = i}.

It suffices to do this for j=0, sgince

Let D, be the size of the n-th batch and let T, stand for the interarrival-
time between the (n-1)-th and the n-th batch. Then by conditiening on the
number of customers in the n-th batch and the interarrival-time we get the

following formula,

o8

pij - E PX_ 4=~ 31 X =1, D=k T .=t} % g(thdt * a,. (13)

Next we must calculate the conditional probability

= t).

P{X’n+l-' jl Xn - i, Dn = k, Tn+1

To do this put for abbreviation

POIS(t, h) = e #t (ut)h /h!,
Note that POIS(t, h)} represents the probabllity of h service-phase completions
during a time interval of length t when the server would be continuously busy
during this time. Using this observation it is not difficult to see the
following results:

(i) WBAS strategy. Then for j = 0,

POIS(t, i+kr-j}) if
max((j-i)/r, 1) = k s [(Nr-i)/r]
P(X =3l ¥=1, D=k, T ,=t) =14 POIS(t, i-j) if

i=3jand k > [(Nr-1i)/r]
0 otherwise.



(i1) PBAS strategy. Them for j = O,

POIS(t, i+kr-j) if
max((3-i)/r, 1) <= k < {(Nr-i)/r]
P(X =-j|X=1i, D=%k, T = t} = POIS(t, i+[(Nr-i)/r}r-j) if
n+l n n n+l k > [(Nr-i)/r]
0 otherwise.

Now we have to plug in these formulae into (13) to get the transition
probabilities p; ;. For completeness we give the results:
1) strategy is WBAS
la) j > 1

[(Nx-i)/r]

8

P..= [ POIS(t,i+kr-j)*g(t)dt * a . (l4a)
Y @i 0 "k

ib) 1 £ jsi
[(Ne-1i)/r] o

P, .= Y. J POIS(t,i+kr-j)*g(t)dt * o+
H k=l 0
w [(Nr-i)/r]
J POIS(t, i-j)*g(t)dat * (1 - ) o). (14b)
0 k=1
2) strategy is PBAS '
2a) 1 » 1
[(Nr-1)/x] =
Py~ J POIS(t,i+kr-j)*g(t)de * o, +
M ke Gonse 0
o [(Nr-1)/r]
[ POIS(t, i+[(Nr-1)/r]r-j)*g(t)de * (1 - ¥, ). (15a)
0 kel
%) 1<j=<i

[((Nr-1)/r] =

Pyi™ J PoIs(t,i+kr-i)*g(t)dc * a+
] k=1 0
@ [(Nr'i)/r]
f POIS(t, i+[(Nr-1)/rlr-j*g(t)de % (1 - 3 @) (15b)
0 k=1
Nr
At last, for j = 0 we can write p,, =1 -jél Pyj

Now that we have calculated the one-step trangition probabilities P;jy we can
solve the system (12) to get the desired steady-state probabilities z; .

In their turn these probabilities should replace the probabilities f; in the
formulae discussed in section 1.

Next we show how the formulae for the p;; can be easily evaluated for a

constant interarrival-time and an Erlang-s distributed interarrival-time.
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First let the interarrival-time be a constant D. Then the integrals
[+ 3
J POIS(t, n)*g(t)dt
0

become simply POIS(D, n). Substitution of this result in the formulae (l4a)
to 15b) gives the transition probabilities for the deterministic case. Next
we consider an Erlang-s distribution with scale parameter X for the
interarrival-time, i.e. the density function g(t) haé the form

g(t) = et A8 t8°1 / (g-1)1,
Now we can easily derive the following equality

-]
[ POIS(E, n)*g(t)dt = [“:fil] " DAY (16)
0

Substitution of (16) in the formulae (l4a) to (15b) gives the Pi; when the
interarrival-time has an Erlang-s distribution with scale parameter ).

In case the interarrival-time density is a mixture of Erlangian densities
the integrals evaluate to a mixture of formulae of the form as in (16). So

also for this type of arrival process we have simple formulae for the p, ;.

3. The approximative approach for the GX/G/1/N queueing model

So far we have been succesful in analyzing the MX/E, /1/N and the GX/E,/1/N
model. Things get worse if we allow the service-time te have a general
distribution because then a Markov-chain amalysis is not possible anymore.
Nevertheless we can approximate performance measures such as the rejection
probability and the waiting-time probabilities. This cannot be achieved
direetly, but should be done indirectly via percentiles. Much empirical
evidence is given in [TIJMS] that the percentiles of queue size and
waiting-time distribution can often be accurately approximated by interpolating
the corresponding percentiles for simpler queueing systems.

It is well known that a polynomial interpolation of degree m with support

points (x;, £;,), i =0, 1,.., n, is given by
n n
F(x) =}, £, M&-x /&%), (17
=0 k=0

ki
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We are mostly interested in linear interpolation (n = 1):
F(x) = £5 * (x-%¢) / (Xg-%¢) + £y * (x-%35) / (%1-%q).
In our case we approximate the percentiles for the Gy /G/Ll/N queue by
interpolating the percentiles for two models Gy /Ey/1/N and Gy/E,/l/N,
where the interpolation is with respect to the squared coefficient of wvariation
cg of the service-time. Denote by §, the p-th conditional waiting-time
percentile for the GX/G/1/N model i.e. P(Wy < £, | Wy > 0] = p, O<p<l.
It is more convenient to consider the conditional waiting-time percentiles
than the unconditional percentiles, since the former omes are defined for all
O<p<l. Then &, can be approximated by '
§(k,p) * (c§ - L/m)/(1/k - 1/m) + é(m, p) * (c§ - 1/K)/(1/m - 1/k). (18)
Here £(r,p) stands for the p-th conditiomal waiting-time percentile of the
GX/E,/1/N model. Usually we can take k=1 and m=2 to get reasonable results,
An analogous approach is possible with respect to the minimal buffersize
needed to assure that the rejection-probability for a customer (or a batch)
does not exceed a prespecified value 8. Again we can obtain the exact wvalues for
‘the models GX/E, /1/N and G*/E,/1/N and use the same type of interpolation
as for the waiting-time percentiles. The approximated buffersize becomes:
wik,B) * (c§ - 1/m)/(1/% - 1/m) + v(m,B) * (e - 1/k)/(1/m - 1/k). (19)
Here v(r,B8) stands for the minimum buffersize for which the rejection-
probability in the GX/E./1/N model does not exceed a prespecified value 8.
The next question is how good these approximations are. To check this
simulation is not necessary, but we can simply test the approximation for
models which also allow an exact solution.

In the next section we will discuss this item,

4. Numerical results

To get a good idea of the quality of the approximation method outlined in the
previcus section we start with calculating the exact values of the
conditional waiting-time percentiles for the following models:

MX /M/1/N, MX/E, /1/N and MX /Eg /1/N. In all cases we took E(S) = 1,

Next we used formula (17) with k = 1, m = 2 and ¢ = 1/8 to get the proposed
approximative percentiles for the MY /Eg/1/N model. In table la we show the
results both for a constant and a geometric batch size distribution, where

in either case we have taken E(X) = 3. Further, the buffersize N = 25 and the
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rejection strategy 1s WBAS. We have included the results for exponential
service-times to show that the first moment is not sufficient.

Notice that the batch size distribution has a considerable effect on the
percentiles, This can also be seen from the values of the rejection
probability of an arbitrary customer. For the respective values of p = 0.5,
0.8, 0.9, 1.0 and 1.4 these values are (0.00004 (0.00779), 0.00851 (0,04378),
0.02682 (0.07049), 0.06340 (0.10628) and 0.28678 (0.29306), where the wvalues
between brackets correspond to the case of a geometric batch size. To get

an even better idea of the quality of the approximation we also calculated
the conditional waiting-time percentiles for the MX/E;,/1/N model and

we compared these with the approximations which result from formula (18)

if we use the exact results of the MX/M/1/N and the MX/E,/1/N model,

It turned out that better approximations are obtained if we use a three-point
approximation in this case (n = 2 in formula (17)). We used the percentiles of
the MX/E3;/1/N model besides the percentiles of the earlier mentioned models.
To show thé differences between the two approximations we list some results
in table 1b. Agaln the buffersize N has been taken 25 and the mean batch size

E(X) = 3. We only give the results for a geometric batch size distribution and
a WBAS strategy.

table la,
two-peint approximation for the conditional waiting-time percentiles
of the MX/Eg/1/N model; N = 25; E(X% )

constant geometric

p| 0.80 | 090 | 0.95 | 0.99 || 0.80 | 0.90 | 0.95 | 0.99
0.5
exa | 4.612 6.353 8.109 12.16 8.223 11.35 14,20 19,30
appr| 4.624 6.380 8.133 12.21 8.236 11.37 14.20 19.26
ngo 5.745 8.209 10.67 16.27 9.137 12.74 16,02 22.32
exa | 11.03 14.83 17.89 22.09 13.48 16.90 19.29 22.66
appr| 1ll.15 14.97 17.92 22.16 13.50 16.88 19.26 ) 22.85
ngo 12.83 17.03 20.40 26.32 14.42 18.31 21.39 26,96
exa | 15.14 18.61 20.77 23.62 15.46 18.48 20.49 23.37
appr| 15.20 18.56 20.75 23.97 15.45 18.44 20,50 23.69
%xgo 16.18 20.06 23.07 28.46 _ 16.22 19.90 22.82 28.13
exa | 18.49 20.85 22.33 24.56 17.16 19.72 21,42 | 23.94
appr| 18.38 20.83 22.49 25.16 17.12 13.70 21.50 24,39
?xgo 18.84 22.27 24.99 30.01 17.80 21.25 24.02 29.13
exa | 22.30 23.47 24,38 26.02 || 20.82 22.33 23.43 25.31
appr| 22.50 23.90 25.02 27.07 20.86 22.55 23.84 26.12
expo| 23.46 26.17 28.46 32.95 21.79 24.67 27.08 31.73
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table lec.
two-polnt approximation for the conditiomal waiting-time percentiles
of the DX/Eg/1/N model; N = 25; E(X? =3

constant geometric

#| o.80 | o0.90 | o0.95 | 0.99 || o0.80 | 0.90 | 0.95 | 0.99
0.5
exa | 2.095 2.407 2,663 3.156 5.250 | 7.308 9.343 13.8¢9
appr| 2.070 2.433 2.729 3.270 5.242 | 7,285 9.307 13.82
gxgo 2.546 3.485 4,396 6.455 6.018 | 8.581 11.11 16.73
exa | 2.126 2.456 2.749 3.325 9.086 | 12.29 15,02 19.57
appr| 1.790 2.045 2.278 2.818 9,148 12,37 15.07 19,58
ngo 4,546 6.407 8.271 12.60 10.92 14.70 17.90 23.82
exa | 2.356 2.824 3.271 4,310 12.23 | 15.47 17.86 21.48
appr| 2.106 2.706 3.438 5.876 12.34 | 15,54 17,90 | 21.s6l
ixgo 8.309 11.69 14 .90 21.33 13.89 | 17.63 20.65 26.15
exa | 17.62 19.90 21.39 23.70 15.76 18.33 20.13 22.93
|appr| 17.62 20.00 21.64 2436 15.78 18.37 20,23 23.26
%xgo 18.31 21.70 24 .40 29.42 16.79 | 20.21 22.96 28.09
exa | 23.58 24 .49 25.24 26.68 21.31 | 22.57 23,55 25.31
apprj 24.10 25.25 26.20 28 .02 21.52 | 22.96 24 .11 26,23
expo| 25.35 27.84 29.99 34.27 22.64 | 25.32 27.61 32.10

Now we will look at the minimal buffer size for which the rejection probability
of an individual customer is below a prespecified value 8. Exact wvalues can bhe
obtaiﬁed for the MX/E, /1/N model, so we can get approximations for the minimal
buffer sizes of the MX/G/1/N model via the results of the MX/M/1/N model and
the MX/E, /1/N model. So we calculated minimal buffer sizes with respect to the
values 8 = 0.01, 0.001, 0.0001 and 0.00001l for either model and we used the
results to get approximative minimal buffer sizes for the MX/Es/1/N model.

The two point interpolations were rounded upward to the nearest integer.

In table 2a we give a comparison between the approximative and the exact values

for both a geometric and a constant batch size distribution. We give only the

results for the WBAS strategy.
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table 2a
two-point approximation for the minimal buffer sizes in the
M?/Esjl/N model; E(X) = 3; strategy is WBAS

constant batch size geometric batch size
e | 0.01 | 0.001 |0.0001 |0.00001[] 0.0L | 0.001 | 0.0001 { 0.00001

0.5 -

exa 12 18 23 29 24 36 47 59
app 13 18 23 30 26 37 48 60
eXp 14 21 28 35 25 38 51 63
exa 18 29 39 50 33 52 72 91
app 19 | 29 490 s1 | 33 53 72 93
exp 22 | 35 48 61 36 58 80 101
exa 24 41 57 | 74 | 43 72 101 130
app 25 42 58 | 75 4h 72 101 130
2xp 30 50 71 92 47 80 114 147
exa 38 | 72 107 | 141 65 122 180 239
app 38 73 107 | 142 | 66 122 181 239
exp 48 90 134 178 | 74 139 207 275
exa 57 | 123 193 264 | 95 205 | 322 440
app 57 123 | 195 266 96 206 323 441
exp 72 156 245 335 109 237 | 373 510

At last we consider the minimal buffer sizes for the GX/G/1/N model. As for
the waiting-time percentiles we take a constant interarrival-time and an
Erlang-8 service-time distribution. Exact results have beéen calculated for
exponential service-times and Erlang-2 service-times and these have been used
to get approximations for the minimal buffer sizes of the DX /E;/1/N model.

In table 2b, we give a comparilson between these approximations and the exact
results for the DX/Eg/1/N model. We give only the results for constant batch
sizes aﬁd a WBAS strategy. We also include the minimal buffer sizes for

the case of exponential service to show that the exact results for the case of
exponential service camnot be used as first-order approximations for the case
of general service. Note also from table 2b. the empirical finding that the
rejection probability decreases exponentially as function of the capacity of
the buffer size. It is remarked that approximations of a comparable quality
were obtained when a PBAS strategy was followed. Finally we remark that for

practical purposes a two-peint approximation 1s sufficient,
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. table 2b
gyo-point approximation for the minimal buffer sizes in the
JEg/1/N model; E(X) = 3; strategy is WBAS

constant batch size

p | 0.01 I 0.001 | 0.0001 | 0.00001 | 0.000001 ] 0.0000001

10.7

exa 4 4 5 5 5 6

app 4 5 7 6 7 7

ng 7 10 13 16 19 22 . -
exa 4 5 5 6 7 7

app 4 6 6 7 9 8

ng 9 14 19 24 29 34

exa 5 7 8 9 11 12

app 6 7 8 10 1l 13
gxgs 14 24 35 46 56 67

exa 6 9 11 14 17 : 20

app 7 8 11 15 18 20

exp 20 41 63 85 107 130
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