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1. Introduction 

In recent years a wide var ie ty of dynamic models has been devel-
oped for analyzing the evolutionary pat tern of spa t ia l systems. Both 
in the f i e ld of d iscre te choice theory (see Fischer and Nijkamp, 1987) 
and of spa t i a l in teract ion analysis (see Nijkamp and Reggiani, 1987) 
and in the f i e ld of urban and regional modeling (see Rima and van 
Wissen, 1987) many advances have been made in the l a s t decade. 

A new development has emerged in the analysis of dynamic evolu-
tions of spa t ia l systems, based on the competition between various 
places in space (see among others Dendrinos and Sonis, 1984, Griff i th 
and Haining, 1986, and Johansson and Nijkamp, 1987). In t h i s context, 
various models based on Volterra-Lotka dynamics or predator-prey 
dynamics have been developed (see among others Goh and Jennings, 1977, 
Je f f r i es , 1979, Pimm, 1982, and Wilson, 1981). ' 

The present paper i s devoted to a further analysis of the relevan-
ce of predator-prey models in the context of dynamic spa t i a l in te rac­
t ion ana lys is . The assumption wi l l be made that inflows and outflows 
re la ted to a cer ta in work place re f l ec t e ssen t ia l ly pull and push 
forces that may be in terpreted as predator-prey phenomena. Then an 
optimal control model wil l be developed in order to study the s t a b i l i -
ty conditions of the spa t i a l systems concerned. The analysis will be 
carried out on the basis of a simple conventional u t i l i t y function. 

2. A Predator-Prey Model for Spatial Interact ion 

The predator-prey model has or ig ina l ly been developed by Lotka and 
Volterra e a r l i e r t h i s century. In the two species case (with only one 
prey and one predator, represented by x-j and X2 respec t ive ly) , a 
typical Volterra-Lotka model becomes: 

x . = x , (b . - a - . x . - a , „ x „ ) 
1 1 1 1 1 1 12 2 

x 2 = x 2 ( - b 2 + a 2 1 X l ) 

(2 .1 ) 

The coefficients b-j and b2 are related to the endogenous 

dynamics of each corresponding variable, while the parameters a-]-|, 

a-|2 and a2i reflect the interaction between species. Model (2.1) 

has two equilibrium solutions, a trivial one (viz. x̂  = X2 = 0) 

and a more complicated one: 
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Va21 

V a i 2 

(2 .2 ) 

3 1 1 / a i 2 X1 

The Volterra-Lotka equations (2.1) cannot be solved in an analy-

tical way due to their non-linearity, but solutions can be found for 

the linearized approximations (see Brouwer and Nijkamp, 1985). 

However, if we restrict ourselves to the exploration of the opti-

mal trajectories in a phase space diagram, we can plot the solution 

lines of model (2.1) for one given configuration of the coefficients 

(see Fig. 2.1). 

t 

Fig. 2.1 Stable equilibrium for prey-predator equations. 

It is well known that in this case (i.e., b-j/a-| 1 >b2/a2i) 

the equilibrium is stable (see e.g. Hirsch and Smale, 197*1, Wilson, 

1981, and Wilson and Kirkby, 1980). But by varying the sign of the 

coëfficiënt a-j i (in particular by supposing a-| •] to be negative), 

we may obtain an unstable solution (see Fig. 2.2). 
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x 2 = 0 - Jö 

Fig. 2.2 Unstable equilibrium for prey-predator 

equations 

Therefore it is clear that the coëfficiënt a-j i =0 represents a 

critical value at which a bifurcation may eraerge - from stability 

(a-|i>0) to instability (a-n<0). In particular it can be shown that 

when a-i^O the solutions to the system of differential equations 

(2.1) are closed orbits (see also Haken, 1983; Hirseh and Smale, 197*0 

as depicted in Fig. 2.3. 

x, 

(§) 
x 

Fig. 2.3 Closed orbits as solutions 

This particular case will be the object of our study, where in the 

context of a dynamic spatial interaction analysis we will assume here 

a predator-prey model of the following form: 

and 

W. = (a.- 6.D.) W. 
J J J J J 

> J=1 , • • •»«J 

D. = (e .W. - <j>-.) 0. , j=1 , ...,J 
J J J J J 

(2.3) 

(2.4) 

Equation (2.3) states that the number of vacancies on the labour 

market in place j , Wj, exhibits a growth pattern upon which the 
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momber of inflows of people into place j, Dj, exerts a (multiplica-

tive) negative impact. Thus this equation is typically related to a 

prey phenomenon. Similarly, equation (2.4) assumes that the growth of 

inflows is positively influenced by the momber of vacant workplaces, 

so that this equation is related to a predator phenomenon. 

It should also be noted ..that aj in (2.3) indicates the growth 

rate of the vacant work places, in the absence of inflows. For example 

aj might depend on new technological regimes. Analogously, <j>j in 

(2.4) represents the decline rate of inflows in the absence of work 

places. It is interesting to observe that models of the form (2.3) and 

(2.4) bear some resemblance to the economie cycle model formalized by 

Goodwin (1967). In fact this author analyzes a system of non-linear 

differential equations (of the (2.3) and (2.4) type) which describes 

the motion of the employment rate (prey) and of the workers' income 

share (predator). Despite some criticism on the realism of this model 

approach, it still remains the base for many theoretical contributions 

and empirical applications (see, among others, Maresi and Ricci, 1976, 

Balducci et al., 1984). 

However, predator-prey models of the (2.1) type (i.e., with limi-

ted growth) occur much more frequently in the economie literature, 

mostly in fishery and other renewable resources (see, e.g. Chauduri, 

1987, and Ragozin and Brown, 1985). A reason for this popularity (see 

Hannesson, 1983) is that eqs. (2.1) are capable of producing a stable 

equilibrium while the system described by eqs. (2.3) and (2.4) exhi-

bits oscillating behaviour, as it has been illustrated previously. 

Since we are also interested in an optimal control policy, we 

prefer to use in our analysis specifications of the (2.3) and (2.4) 

type which are certainly simpler from a mathematical viewpoint, even 

though they may present the so-called 'neutral' stability. 

3. A Simple Optimal Control Predator-Prey Model 

In recent publications (see among others Nijkamp and Reggiani, 

1988) the use of optimal control theory for dynamic spatial interac-

tion analysis has been advocated. Given the non-linear nature of the 

predator-prey model, it is clear that fairly complicated mathematical 

expressions may emerge in this framework. Therefore, we will' start 

here with a simple optimal control model based on a frequently used 

(concave) logarithmic utility function: 
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1 

max 

s . t , 

u = J E Y. (In g.D. + In e. W.) dt 
J J o . J 3 3 

(3 .1 ) 

W. - ( a j - B j D j ) W. 

D. = ( e . W . - é . ) D. 
3 J J 1 J 

We wil l assume here that Wj (j = i , . . . , J ) and Dj (j=1 
s t a t e var iables , while gj and ej are control var iab les . 

, J) are 

The parameters Bj and ej may be interpreted as accessibility 

measures. In our paper we will analyze the optimal control problem of 

selecting gj and ej in order to maximize utility function u (i.e., 

a maximum interaction between places of inflows and workplaces). 

The Hamiltonian H related to (3.1) is equal to: 

H ( V £ j ' V V V V - Y J ( l n e J DJ + l n " V + 

•J 

+ ]X3 ' V V V ' j + J*J (eJ W V (3 .2 ) 

Where X. and é. are the costate variables re la ted to the W. con-
J ; j J 

s t r a i n t s and D. constraints respect ively . 

Therefore the f i r s t -o rder (necessary) conditions for the control 
variables become: 

3H_ 

3 B J 

3H_ 

3 e j 

= 0 

= 0 

(3.3) 

or: 
Y . / & . - X.D.W. = 0 

J J 3 3 3 

Y . / e . + IJJ.W.D . = 0 
J J 3 3 3 

(3.1) 
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or : 
Y. 

J 
J X.D.W. 

J J J 

- Y. 
J 

j i b . D . W . 
r J J J 

5 j - r V V D j > 0 (3.5) 

(3.6) 

From (3-5) we can also derive that the optimal values g. are a 

deereasing function of the shadow prices A. (—i <0). 
J dX. 

Next we find from (3.6) t ha t , since e j , Dj, Wj, Yj are posi-
t i ve , the shadow prices ijjj are negative and also that ej i s an 
increasing function of the corresponding shadow price 

*J ( ^ 7 > 0 ; V 0 K 

Next a link between the shadow prices Aj and ty* can be found. 

In fact by dividing eq. (3-5) by eq. (3.6) it follows that: 

e . 
(3.7) 

In other words: thé r a t i o of the shadow prices of the Wj and Dj 
constra ints i s inversely re la ted to the corresponding optimal control 
variables ( i . e . the in terac t ion terms Bj and ej) in the predator-
prey model (3 .1 ) . 

Then subs t i tu t ion of (3.5) and (3.6) into the predator-prey r e l a t i on -
ships gives: 

W. ( o . 
Y. Y. 

Hr-) W. = a.W. - - i 
X.W. j j J X. 

> (3.8) 

-Y . 
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In case of a s t a t i o n a r y s o l u t i o n the fo l l owing ' cond i t i ons a l s o hold 

s i n c e W. = D. = 0) 
J J 

T. 
W. = r - ^ -

j X .a. 
3 3 

- Y . 

o- - r4" 

f o r W. = 0 

fop Dj - 0 

(3 .9) 

(3 .10) 

Therefore e q s . (3 .9 ) and (3-10) r e p r e s e n t the opt imal paths of Wj 

and Dj . We observe t h a t in p a r t i c u l a r (3 .9) and (3-10) dep ic t two 

hyperbolas in the planes (Wj; X j ) and ( D J ; \\> j ) as fo l lows : 

A. 
J 

* i 

Fig. 3-1 The optimal paths consistent with the differential 

equations (3.8). 

Next we will deal with the costate equations. Here the following 

conditions hold (see, e.g., Kamien and Schwartz, 1981, and Miller, 

1979): 

or 

j -3Wj 

; - 3H 

•J-5BJ 

*J " ~ « J ~ l j ° j * J j 6 j D j " * j £ j D j 

Y . 
V3 D V j j p J J v3 3 3 

( 3 . 1 D 

(3.12) 

Then i f we s u b s t i t u t e the opt imal values (3-5) and (3 .6) in ( 3 . 1 2 ) , 

we o b t a i n : 



and 

Y. 

Y. 
i|). = =r- + è . \ ï ) . 

(3.13) 

(3.14) 

It is surprising that (3.13) is only a function of A j , W j, while 

(3.14) is only a function of ij)j, Dj. Therefore the final system: 

W. = a.W. - -^— 
J J J A j 

Y. 
A . - J- - 0 . X . 
J W. j j 

Y. 
D . = -<fr. D . - - i 
J J J îj 

Y. 
VJ Dj VJ

 vj 

(3.15) 

can easily be divided into two independent subsystems, as follows: 

and 

Y. 
W. = a.W. - ^-

Y. 
A. « -i - o . A . 
3 W. j j 

Y. 
D. = -(().D. - -i 

Y. 
4,. = JL + A .,h 

(3.16) 

(3.17) 

We will now first analyze systera (3.16)i The steady state is 

defined by W. = A. =0. The optimal path W. = 0 has been defined 
J J J 



in (3 .9) . The optimal path X . = 0 i s deflned by: 

Y . 
X. = ^ — 

J 
°JWJ 

(3.18) 

It is clear that (3.18) represents the same hyperbola as the one 

defined in (3.9) and depicted in Fig. 3-1. This means that all points 

of (3.9) (being equal to (3.19)) are steady states! It is straight-

forward to see that the same happens regarding the eondition ijjj=0,or 

Y. 

J Vj 
(3.19) 

Henee: all points of (3.10) (being equal to (3.20)) are steady 

states in the plane (Dj, i|> ,•). 

To catalogue the nature of these steady states, we will take the 

linear terras of Taylor series expansion of the right hand side (around 

all steady states) to obtain the approxiraate linear differential 

equation system: 

Y. 
W. = a. + -r̂ r J J A2 

-Y. 
X = - i 
j W2 

y 

The characteristic equation of (3.20) is the following: 
Y. . 

X2~ 
J 

a. - r 
J 

Y. 
J 
W2 
J 

- a.-r 
J 

= 0 

or 

with 

p r + q = 0 

(3.20) 

(3-21) 

(3-22) 

p = r1 + r2 = 0 (3.23) 

3 1 
J J 

> 0 (3.24) 
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Now, the emerging result is indeed interesting: as q>0 and p=0 (i.e., 

the tracé of the coëfficiënt matrix equal to zero), every point of eq. 

(3-9) (or of eq. (3-19)) is a center. (For a further exposition on the 

classification of singularities, see, e.g., Hirsch and Smale, 1979, 

Kaplan, 1958, and Ku, 1958). 

Therefore, the motion of W j, Xj is perriodic around the center, so 

that it has the same qualitative properties as the original model 

Wj, Dj defined in (2.3) and (2.4). 

We can then depict the time variation of Wj, Xj, corresponding 

to a closed orbit as follows (see Fig. 3.2). 

W.,A. 
1 J 

Fig. 3.2. Time variations of Wj, Xj 

Fig. 3.2 shows that an increase of workplaces leads to a decrease of 

the corresponding shadow prices Xj. But this depreciation will bring 

about a decrease of workplaces, so that Xj will increase again, and 

so forth. 

Next it should be noted that since the center describes a curve 

(and in particular a hyperbola) in the phase plane, system (3-17) 

generating closed orbits represents some sort of persistent cyclicity 

which however is not constant (see Balducci et al., 198M). 

Obviously the same pattern will result in the plane Dj, ̂ j. It 

can easily be seen from (3-18) that for the relative linearized system 

the tracé of the coëfficiënt matrix is equal to zero. Next, since also 

here the product of the eigenvalues is positive, it is straightforward 

to see that we have again a situation where the center describes the 

hyperbola (3.20) and where we consequently face cyclical motions. 
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