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1. Introduction

In recent years a wide variety of dynamic models has been devel-
oped for analyzing the evelutionary pattern of spatial systems. Both
in the field of discrete choice theory (see Fischer and Nijkamp, 1987)
and of spatial interaction analysis (see Nijkamp and Reggiani, 1987)
and in the field of urban and regional modeling (see Rima and van
Wissen, 1987) many advances have been made in the last decade.

A new development has emerged in the analysis of dynamiec evolu-
tions of spatial systems, based on the competition between various
places in space (see among others Dendrincs and Scnis, 1984, Griffith
and Haining, 1986, and Johansson and Nijkamp, 1987). In this context,
various models based on Volterra-Lotka dynamics or predator-prey
dynamics have been developed (see among others Goh and Jennings, 1977,
Jeffries, 1979, Pimm, 1982, and Wilson, 1981).

The present paper is devoted to a further analysis of the relevan-

ce of predator-prey models in the context of dynamic spatial interac-
tion analysis. The assumption will be made that inflows and outflows
related to a certain work place reflect essentially pull and push
forces that may be interpreted as predator~-prey phenomena. Then an
optimal control medel will be developed in order to study the stabili-
ty conditions of the spatial systems concerned. The analysis will be
carried out on the basis of a simple conventional utility function.,

2. A Predator-Prey Model for Spatial Interaction

The predator-prey model has originally been developed by Lotka and
Volterra earlier this century. In the two species case (with only one
prey and one predater, represented Dby X1 and Xp respectively), a
typical Velterra-Lotka model becomes:

X = xy by - @y x, = a, X))

(2.1)
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The coefficients by and bp are related to the endogencus

dynamics of each corresponding variable, while the parameters aqq,

atp and apy reflect the interaction between species. Model (2.1)

has two equilibrium solutions, a trivial one (viz. xy = x» = 0)
and a more complicated one: '
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The Volterra-Lotka equations (2.1) cannot be solved in an analy-
tical way due to their non-linearity, but soclutions can be found for
the linearized approximaticns (see Brouwer and Nijkamp, 1985).

However, if we restrict ourselves to the exploration of the opti-
mal trajectories ln a phase space diagram, we can plot the solution
lines of model {2.1) for one given configuration of the coefficients
(see Fig. 2.1).
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Fig. 2.1 Stable equilibtrium for prey-predator equations.

It is well known that in this case (i.e., Dy/agy>bn/apy)
the equilibrium is stable (see e.g. Hirsch and Smale, 1974, Wilson,
1981, and Wilson and Kirkby, 1980), But bty varying the sign of the
coefficient agq (in particular by supposing aqjt{ to be negative),
we may obtain an unstable seclution (see Fig. 2.2}.
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Fig. 2.2 Unstable equilibtrium for prey-predator
equations

Therefore it 1is c¢lear that the coefficient a91=0 represents a
eritical value at which a bifurcation may emerge - from stability
(211>0) to instability <{(aq1<0). In particular it can be shown that
when aq=0 the solutions to the system of differential equations
(2.1) are closed orbits (see also Haken, 1983; Hirsch and Smale, 1974)
as depicted in Fig. 2.3.

N

X9

L
ra

X

Fig. 2.3 Closed orbtits as solutions

This particular case will bte the object of our study, where in the
context of a dynamic spatial interaction analysis we will assume here
a predator-prey model of the following form:

W, = (a,-8.D )W : J=2t, ..., d 2.3)
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Equation (2.3) states that the number of vacancies on the labour
market in place j, wj, exhibits a growth pattern upon which the



number of inflows of people into place j, Dj, exerts a {multiplica-
tive) negative impact. Thus this equation is typically related to a
prey phenomencn. Similaﬁly, equation (2.4) assumes that the growth of
inflows 1is positively influenced by the number of vacant workplaces,
80 that this equation is related te a predator phenomenon.

It should also be noted .that aj in (2.3) indicates the growth
rate of the vacant work places, in the absence of inflows. For example
o} might depend on new technological regimes. Analogously, ¢ in
{2.4) represents the decline rate of inflows in the absence of work
places. It is interesting tc observe that models of the form (2.3) and
(2.4) bear some resemblance to the economic cycle model formalized by
Goodwin (1967). In fact this author analyzes a system of non-linear
differential equations (of the (2.3) and (2.4) type) which describes
the motion of the employment rate (prey) and of the workers' income

share {predator). Despite some criticism on the realism of this model -

approach, it still remains the base for many theoretical contributions
and empirical applications (see, among others, Maresi and Ricci, 1976,
Balducci et al., 1984).

However, predator~-prey models of the (2.1) type (i.e., with limi-
ted growth) ococur much more frequently in the economic literature,
mostly in fishery and other renewable resources (see, e.g. Chauduri,
1987, and Ragozin and Brown, 1985). A reason for this popularity (see
Hannesson, 1983) is that egs. (2.1) are capable of producing a stable
equilibrium while the system described by eqs. (2.3) and (2.4%) exhi-
bits oscillating behaviour, as it has been illustrated previocusly.

Since we are also interested in an optimal control pelicy, we
prefer to use In our analysis specifications of the (2.3) and (2.4)
type which are certainly simpler from a mathematical viewpoint, even
though they may present the so~called 'neutral! stability.

3. A Simple Optimal Control Predator-Prey Model

In recent publications (see among others Nijkamp and Reggiani,
1988) the use of optimal control theory for dynamic spatial interac-
fion analysis has been advocated. Given the non-linear nature of the
predator-prey model, it is clear that fairly complicated mathematical
expressions may emerge in this framework. Therefore, we will start
here with a simple optimal control model based on a frequently used
(concave)} logarithmic utility function:



1
max u = g ? Yj {1n Bij + 1n €, wj) dg

s.t. > (3.1)
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We will assume here that Wy (j=i,...,J) and Dj (j=1,...,J) are
state variables, while Bj and £j are control variables.

The parameters Bj and €j may be interpreted as accessibility
measures. In our paper we Will analyze the optimal control problem of

selecting Bj and ¢j in order to maximize utility function u (i.e.,

a maximum interaction between places of inflows and workplaces).
The Hamiltonian H related to (3.1) is equal to:
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Where AJ and wj are the costate variables related to the wj con-

straints and DJ constraints respectively.

~Therefore the first-order (necessary) conditions for the control
variables become:

3H
—_—= 0
BBJ

7 (3.3)
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(3.4)
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or:
'
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From (3.5} we can also derive that the optimal values Bj are a
BBJ
decreasing function of the shadow prices AJ (ﬁf_ <0).
J

Next we find from (3.6) that, since €y, Dj, Wy, Y; are posi-
tive, the shadow prices Pj are negative and also that € is an
increasing function of the corresponding shadow price

Bej

(== >0; y,<0).
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Next & link Detween the shadow prices 1y and yj can be found.

In fact by dividing eq. (3.5) by eq. (3.6) it follows that:

™

=
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In other words: the ratio of the shadow prices of the ﬁj and ﬁj
constraints is inversely related to the correspending optimal control
variables {(i.e. the interaction terms BJ and Ej) in the predator-
prey medel (3.1).

Then substitution of (3.5) and (3.6) into the predator-prey relation-
ships gives:
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In case of a stationary solution the feollowing conditions also hold
since W, = B, = 0):
J J

o for W. =
wj = for wj 0 (3.9?
373
‘Yj .
D, = =t for D, = Q {3.10)
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Therefore eqgs. (3.9} and (3.10) represent the optimal paths of Wj
and Dj. We observe that in particular (3.9) and (3.10) depiet two
hypertolas in the planes (W;; ij) and (Dj; Vj) as follows:
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Fig. 3.1 The optimal paths consistent with the differential
equations (3.8).

Next we will deal with the costate equations. Here the following
conditions hold (see, e.g., Kamien and Schwartz, 1981, and Miller,
1879):
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Then if we substitute the optimal values (3.5) and (3.6} in (3.12),

we obtain:



. YJ ‘
and Y
t]Jj = -D?+ ¢j¢j ‘ (3.14)

It is surprising that (3.13) is only a function of Aj, wj, while
(3.14%) is only a function of ¥y, Dj. Therefore the final system:
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YTy s
¢an easily be divided into two independent subsystems, as follows:
- Y-
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We will now first analyze system (3.16). The steady state is

defined by wj = Aj = 0. The optimal path Hj = 0 has Dbeen defined



in (3.9). The optimal path Aj = 0 is defined by:

-
Ay 3w (3.18)

It 1is clear that (3.18) represents the same hyperbola as the one
defined in (3.9) and depicted in Fig. 3.1. This means that all points
of (3.9) (being equal to {(3.19)) are steady states! It is straight-
forward to see that the same happens regarding the condition ﬁjso,or

Y, = = e (3.19)

Hence: all points of (3.10) (being equal to (3.20)) are steady
states In the plane (Dj, wj}.

¢
To catalogue the nature of these steady states, we will take the
linear terms of Taylor series expansion of the right hand side (around
all steady states) to obtain the approximate linear differential
equation system:

q
- Yj
= +
b B B
7 (3.20)
. -Y
- _J .
JLJ Wf aj
The characteristic equation of (3.20) is the following:
Y.
- S
aj r + Ag
=0 (3.21)
Y
-3 -y -
“? o r
or
r2 -pr +q =290 (3.22)
with
p = PI + r2 =0 {3.23)
, ¢
q=r,.r=ar+ >0 (3.24)
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Now, the emerging result is indeed interesting: as >0 and p=0 (i.e.,
the trace of the coefficient matrix equal to zero), every point of eq.
(3.9) (or of eq. (3.19)) is a center. (For a further exposition on the
classification of singularities, see, e.g., Hirsch and Smale, 1979,
Kaplan, 1958, and Ku, 1958).
Therefore, the motion of Wj, X; is periodic around the center, so0
that It has the same qualitative properties as the original model
Wj, Dj defined in (2.3) and (2.4).

We can then depict the time variation of Wj, Aj, corresponding
to a closed orbit as follows (see Fig. 3.2).

N
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L

Fig. 3.2 shows that an increase of workplaces leads to a decrease of
the corresponding shadow prices lj. But this depreciation will bring
about a decrease of workplaces, so that Aj; will increase again, and
so forth.

Next it should bPe noted that since the center describes a curve
(and in particular a hyperbcla) in the phase plane, system (3.17)
generating closed orbits represents some sort of persistent cyclliecity
which however is not constant (see Balducei et al., 1984).

Obviously the same pattern will result in the plane Dj, AL It
can easily be seen from (3.18) that for the relative linearized system
the trace of the coefficient matrix is equal to zero. Next, sinece also
here the product of the eigenvalues is positive, it is straightforward
toe see that we have again a situation where the center describes the
hyperbola (3.20) and where we consequently face cyclical motions.
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