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Abstract 

Spatial interaction models have received a great deal of attention 

in the past decade. In recent years, also various approaches have been 

developed to take into account dynamic aspects of spatial interaction 

models, for instance, by means of optimal control theory, bifurcation 

theory or catastrophe theory. 

The present paper deals with new directions in dynamic spatial 

interaction research. It will focus on a general dynamic interaction 

model analyzed in the framework of optimal control theory. The 

objective function used is a bi-criterion utility model, to be 

maximized subject to a set of differential equations which bear some 

resemblance to those used by Wilson in a shopping centre context. 

Next, we investigate the link between our model and a catastrophe 

type of model. It will be demonstrated that catastrophe behaviour may 

emerge as a particular case of this optimal control model. 

Finally, it will also be shown how external influences (e.g., 

stochastic impacts of the Brownian motion type) will affect the optimal 

trajectory. 
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1. Prologue 

In the past decade, regional econornics and geography have exhibited 

an enormous interest in the analysis of dynamic spatial systems. Space-

time patterns have not only been studied at the micro level of 

individual actors, but.al.so at the meso or macro level of groups (or 

regions) in a whole system. And consequently dynamic analysis has 

become. a focal point in migration analysis, residential choice 

analysis, transportation analysis, labour market analysis and 

locational analysis. 

Thé models used range from simple comparative static models to 

continuous space-time models (see Beckmann and Puu, 1985). Their 

contents ranges from exploratory to confirmatory analyses, while their 

statistical properties vary between empirical estimation and 

simulation. 

In recent years, the attention has increasingly been focused on 

dynamic spatial models incorporating multiple equilibria and even 

discontinuities (see also Fischer and Nijkamp, 1987). Following 

Erigogine (1981), the following classification of models may be made: 

(a) macro-phenomenological (in which macro variables represent the 

average dynamic pattern of underlying micro variables), (b) micro-

stochastic (in which the behaviour of a system replicates in a 

stochastic sense the behaviour of micro variables), (c) based on 

dynamic laws (in which the system's trajectory is governed by 

fundamental laws of motion). It is interesting to observe that all 3 

types are present in the wide spectrum of dynamic spatial interaction 

models that have been published in the recent literature. However, the 

use of optimal control theory (especially in combination with multi-

objective analysis and stochasticity) is still underrepresented in the 

field of dynamic spatial interaction analysis. The present paper aims 

at fil1ing to some extent this gap. 

2- Dynamic Spatial Interaction Models: a Brief Survey 

In this section a brief overview of recent developments related to 

Spatial Interaction (S.I.) systems will be presented. First of all, it 

is appropriate to put forward the definition of a dynamical.system as 

« any set of equations giving the time evolution of the state of a 
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system from a knowledge of its previous history » (Ott, 1981). 

Such systems are in many disciplines often modelled in comparative 

static terms (e.g., in economics and ecology). This implies the 

assumption of the existence of equilibrium points without any reference 

to when or how the equilibrium is reached. Discontinuities are 

attributed to random external influences rather than to the structure 

of spatial systems (see, e.g., Varaiya and Wiseman, 1984). 

In this framework we will classify dynamic S.I. models according to 

the principal methodologies (or approaches) used to analyze them, i.e., 

bifurcation and catastrophe theory, the theory of stochastic processes, 

optimal control theory and dynamic programming. 

2.1 Bifurcation and_ Catastrop_he_ Theory 

Significantly important advances in dynamic modelling have been 

achieved by means of Bifurcation Theory (B.T.), which has been 

developed to describe dynamic systems characterized by multiple 

equilibria in which shifts from one equilibrium to another may involve 

discontinuities. Obviously these discontinuities are properties of the 

system rather than the result of external shocks (see again Varaiya and 

Wiseman, 1984). Catastrophe Theory (C.T.) (see among others, Gilmore, 

1981; Boston and Stewart, 1978; Saunders, 1980; Thom, 1975; Zeeman, 

1977) may be considered as a special form of B.T. (see also* Casti, 

1983), so that B.T. seems to offer a general framework for the analysis 

and classification of dynamic systems with structural discontinuities. 

In the context of dynamic S.I. models, we may identify three 

important branches of research using B.T.. The first one arises from 

the modelling framework of Allen et al. (1979) related to the evolution 

of cities on the basis of Erigogine's well-known analysis of self-

organization from bifurcation through fluctuations (Nicolis and 

Prigogine, 1977). It should be pointed out that Allen et al.'s model 

contains stochastic elements (related to the random perturbation of 

exogenous parameters) that affect the simulated behaviour of the system 

(see also Dendrinos, 1980a). 

The second class is the one developed along the lines of the well-

known Harris and Wilson (1978) model of retail location. It should be 

noted that no stochastic aspect appears in this non-linear dynamic 
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model. 

The third type sterns from the approaches of Dendrinos (1978) 

and Dendrinos and Mullally (1980), related to urban development, on the 

basis of Zeeman and Thom's analysis. The main distinguishing feature in 

the work of these authors is the a priori specif ication of 

discontinuity, so that their analysis simply rediscovers the 

hypothesized catastrophe (see also Varaiya and Wiseman, 1984). 

In contrast to the latter authors, (other authors such as Amson 

(1974) and Papageorgiou (1980)), dealing with urban growth, seek the 

equilibrium manifold directly and interpret then the results by means 

of C.T. (see Wilson, 1981). 

We may also regard models based on Volterra-Lotka equations as 

members of the latter class; a prototype is essentially found in 

Dendrinos' model (1980b) on the evolution of cities. 

All above-mentioned models have been so frequently described that 

there is no need to present them again here. We just draw attention to 

some interesting surveys on this field such as Andersson and Kuenne 

(1986); Barentsen and Nijkamp (1986a); Day (1985); Dendrinos (1980c); 

Griffith and Lea (1983); Nijkamp et al. (1985); Rabino (1985); Varaiya 

and Wiseman (1984); Wegener et al. (1986); Wilson (1981). 

I't is worth noting that almost all above-mentioned models involve 

static bifurcations (i.e., bifurcations that refer only to the solution 

of the "static" equation), so that we find hardly any example of 

"dynamic" bifurcations in the literature on urban systems. 

Finally, it is necessary to mention the Chaos Theory (CH.T.) 

approach, closely related to B.T. and C.T., which is receiving a great 

deal of attention at present; CH.T. originates from turbulent-type 

motions in physical systems (for a review see Eckmann and Ruelle, 1985; 

Ott, 1981), while recently it has also been used by Dendrinos (1986) 

to model spatial movements of labour. 

There is no doubt a need for a further elaboration of CH.T., 

especially in order to identify other spatial systems which can exhibit 

chaotic motions associated with strange attractors. 

2.2 T_he_ Theory_of_ Stochastic_ Processes_ 

This category refers primarily to the class of Markov chain 
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analyses that give rise to two different classes. 

The first one is related to the class of the so-called evolutionary 

models based either on compartmental analysis (see, e.g., De Palma and 

Lefèvre, 1984; Leonardi and Campisi, 1981) or on master equation 

analysis (cf. Barentsen and Nijkamp, 1986b; Haken, 1983; Weidlich and 

Haag, 1983). These "evolutionary" models describe the evolution of the 

transition probabilities depending on the state of the system, so that 

the ir dynamics is far richer than the simple dynamics of stationary 

Markov chains (Kanaroglou et al., 1986a). Obviously also here the 

stationary distribution (where the spatial interaction system obtains a 

stable mode of operation) corresponds to the static version of the 

differential equations. 

The second class refers to. the class of discrete choice theory 

established by McFadden (1974). Dynamic discrete choice models have 

been developed so far only by a few authors (see, e.g., Ben-Akiva and 

De Palma, 1986; De Palma and Lefèvre, 1983, 1985; Leonardi, 1985; 

Sonis, 1984) owing to the difficulties involved. The most interesting 

feature of these models is the incorporation into the static logit form 

of social interaction, in addition to time. 

There are also various attempts at combining panel data approaches 

with discrete choice theory, but the resulting methodology is 

essentially more descriptive rather than explanatory (see for some 

arguments, Fischer and Nijkamp, 1987). 

Other appealing approaches link evolutionary models also to 

discrete choice analysis (Haag, 1986; Kanaroglou et al., 1986a, 1986b; 

De Palma and Lefèvre, 1983; Leonardi, 1985); in general, however, these 

contributions are mainly theoretical in nature or based on simulation 

experiments, because the empirical aspects still pose numerical 

problems as well as data problems. 

2.3 Optimal_ Control_ and Dynamic Programming 

Optimal Control Theory (O.C.T.), and in general Dynamic 

Programming, is a very useful and popular tooi in dynamic economie 

systems analysis (see, among others, Kamien and Schwartz, 1981; 

Nijkamp,1980; Miller, 1979; Tan and Bennett, 1984), but only in recent 

years O.C.T. has been applied to S.I. analysis; an example can be found 
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in Wilson (1981) where an 0.C.T. approach has been proposed for 

controlling the evolution of shopping centres. 

In the particular context of a multiperiod cumulative entropy, in 

recent years a fundamental result emerged by means of O.C.T., which 

demonstrated the dynamic connection between S.I. models and discrete 

choice theory (Leonardi, 1983; Nijkamp and Reggiani, 1987a). 

Subsequently it has also been shown how urban decline phenomena may 

originate from a solution of a particular optimal control S.I. model 

(Nijkamp and Reggiani, 1987b). In the context of uncertainty, it has 

also been shown by means of stochastic O.C.T. what the effect is of a 

stochastic white noise process in spatial interaction and input-output 

analysis (Nijkamp and Reggiani, 1986). However, thus f ar a coherent 

blend of the previous approaches has not yet been achieved. At this 

point it might be worth extending the preceding methodology either by 

introducing multiple objective functions for different driving 

mechanisms of a dynamic S.I. system (leading to multi-criteria optimal 

control models) or by linking O.C.T. not only to stochastic processes 

but also to catastrophe and bifurcation theory. An attempt at 

developing such a more "integrated" approach between B.T., O.C.T. and 

stochasticity will be indicated in the next sections with the aim to 

offer new perspectives in the analysis and description of dynamic S.I. 

systems. 

3. A Bi-Criterion Optimal Control Formulation of a Dynamic Spatial 

Interaction Model 

In this section we will design an optimal control model for dynamic 

spatial interactions. The objective function is assumed to be a multi

period cumulative entropy function (cf. Sonis, 1986). This entropy 

function may be regarded as a general utility (or social welfare) 

function for a spatial system through time. Here we use a new 

formulation as a generalization of Wilson's (1981) specification: 

T 1 

max U - ƒ {- -j E T. . (log T. .-1) + E T. . (%• log W.-c. .) }dt 
±,J 1,D (3.1) 

where in this case the following definitions hold: 

T . . - volume of flows of commuters from residence i to labour market i 
xj J 
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c . . = travel costs for commuters frora i to j 

Wj = number of workplaces in labour market j. 

Thus our model is essentially dealing with journey-from-home-to-work 

trips, although it can - without loss of generality - also easily be 

applied to other spatial interaction problems. 

This formulation is essentially a bi-criterion optimal control model, 

where the coëfficiënt 1/|5 is essentially the relative weight attached 

to the first criterion (i.e., the first term in brackets) (see also 

Nijkamp and Reggiani, 1986). This multi-temporal objective function 

maximizes essentially the aggregate consumers' surplus of people living 

in i and working in j within a certain planning horizon T. The 

first term in brackets represents the entropy (interaction) of our 

spatial system, while the second term denotes the aggregate net 

benefits of people living in i and travelling to j . In this bi-

criterion formulation a is in fact a scale parameter. 

The bi-criterion optimal control model will be maximized 

subject to a set of relevant constraints. Here we will assume a single 

(production-) constrained spatial interaction system, i.e., 

ET. = 0 . (3.2) 
ij i 

1 

Next, we assume a simple evolution of the number of workplaces as a 

linear function of the volume of all inflows into j and of the 

initial volume of workplaces in j : 

ft. = e(E T.. - K W.) , (3.3) 

where the parameter e represents the response rate of the system. 

This assumption implies an upward pressure on the number of workplaces 

if the attractiveness of j increases (i.e., if the capacity E T.. 
i x3 

is growing) and a downward pressure if the labour force is growing 

(i.e., if Wj is increasing). The plausibility of this assumption rests 

on the idea that a rise in workplaces in j leads to (both internal 

and external) competition, this competition being stronger if certain 

capacity limits (i.e., E T.,) are reached (thus affecting the growth in 
i iD 

workplaces in a negative way via the accessibility parameter K). In a 

formal way, this assumption is equal to Wilson's (1981) shopping model. 
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Now we assurae that the number of workplaces, Wj, may be regarded as 

state variables, while the transportation flow T " will be conceived 

of as control variables (e.g. via price and tax regulations). 

Finally, we have to impose some boundary conditions: 

W.(o) = W° (3.4) 
J 3 

Given (3.1)-(3.4), we may now solve this bi-criterion optimal control 

model for dynamic spatial interactions. 

4. Solution of the Bi-Criterion Optimal Control Model 

The Lagrangean function associated with (3.1)-(3.4) is: 

L = - i- E T. . (log T. .-1) + E T. . ('£• log W.-c. .) 
P . . i] ij . . ID p :• i: 

i/J X I J 
(4.1) 

+ Z X. (O.-E T. .) + E ¥. ft. 
. x x . X3 . 3 3 . 

where "F. is the co-state variable in our optimal control model. 
: 

The necessary conditions for a constrained maximum are: 

8 L |- log T. . + | log W. - c. . - X. + e ¥.- = 0 (4.2) 
3T. . 6 ij P j ij x j 

or 1-' 

T. . = exp (a log W. - Bc. . - BA. + Beï .). (4.3) 
x: 3 x: x 3 

so that the following solution can be found: 

T.. = A. O. Wa exp (6e¥. - Bc..) , (4.4) 
X3 x x : ^ : x] 

with: 
A. = exp (-B X.)/0. (4.5) 
ï x x 

or - in view of constraint (3.2) - : 

A. = l/E Wa exp (BEY. - Bc. .) (4.6) 
x j 3 3 iD 

It is easily seen that if we impose the boundary condition Y.(T)=0, 

we find for t = T the original Wilson model (analyzed in a shopping 

centre context). 



Now we have to interpret our optimal control outcome. Expression 

(4.4) incorporates essentially a social cost-benefit measure; the term 

|3ef. embodies the imputed (shadow) price of employment growth in 

place j , while the term |3 C. . refers to distance friction costs. In 

this formulation, |3 is related to the sensitivity of commuters for 

bridging the distance between home and workplace. Finally, the 

parameter et occurs as a exponent to Wj , so that it reflects scale 

economies of labour market j (in the form of the elasticity of the 

inflows with respect to the size of the market). 

Next we will try to analyse the equilibrium properties of solution 

(4.4). In previous publications (see Nijkamp and Reggiani, 1987b) it 

has already been shown that the stability analysis of dynamic spatial 

interaction models is far from easy, especially because for the non-

linear dynamic expressions usually no analytical solution can be found. 

It is noteworthy that if the impose the equilibrium condition 

W . = 0 at time period t = T , we f ind as a particular result the 

equilibrium conditions analyzed by Wilson (1981) in the context of a 

retail model. It is well-known that by varying the parameters a, |3 and 

K various types of catastrophic behaviour may emerge. In case of 

W . = 0 at t = T , we f ind: 
3 

and 

or 

ET.. = K W. (4.7) 

± 13 3 

T.. = A. O. Wa exD (- Bc..) (4.8) 

O. Wa exp (- Bc..) 
Z T. . = E {——3 ±3— } (4.9) 
i 1D i E Wa exp (- Bc .) 

j 3 13 

This type of model has been studied quite extensively in the literature 

(see, among others, Beauraont et al., 1981; Chudzynska and Slodkowski, 

1984; Harris and Wilson, 1978; Harris et al., 1982; Rijk and Vorst, 

1983; Wilson and Kirkby, 1980). The stability conditions for this 

particular case in the plane of the control variable T and the state 
ij 

variable Wj , based on variations in a, (3 and ie , will be shown in 

Annex A. 

10 



However, in our general optimal control case it is more complicated 

to derive conditions for the whole time trajectory 0 ̂  t <s T , as will 

be shown now. 

First, we have to add the second necessary condition for our 

optimal control model, viz the co-state conditions: 

£ (E T. .) e K ï. + f. = 0 (4.11) 
B ± iD W. 3 1 

This set of J equations forms together with (3.3) a system of 2 J 

differential equations containing - after substitution of (4.4) - the 

unknowns f. and W* : 
3 J 

O. w? exp (egf. - Bc. .). 
f _ + « E {-Ĵ -J 3 ii_} I - e K ^. = o 

1 B i E Wa exp (eg*. - Bc .) j D 

O. wa exp (e3*. - Sc..) 
ft. - e E {——3 2 ü-} + e K w. = 0 •* (4.12) 
D i E Waexp (eBY. - ¥c..) D 

j D D iD 

System (4.12) is a set of complicated non-linear dynamic equations 

which cannot be solved analytically, so that numerical solution 

procedures are necessary here. However, it is possible to introducé the 

optimality conditions for an equilibrium: 

1. = 0 
3 

ft. - 0 ^ (4.13) 
3 

Then we find on the basis of (4.12): 

VB! * ( 4 - 1 4 > 

as coordinates of the optimal point. The related value of Wj cannot 

be found analytically, but has to be derived from (4.12) in a numerical 

way. Thus, the solution of this problem has a surprisingly simple 

value. Whether or not this is a stable solution, has to checked by 
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means of second-order conditions. 

5. A Stochastic Dynamic Optimal Control Version 

In this section we will introducé some external influences (e.g., a 

stochastic impact of the Brownian motion type), so that our optimal 

control problem (3.1)-(3.3) will incorporate some random components. In 

particular we assume that these stochastic components, representing the 

statistical uncertainty at the supply side of our eq. (3.3), will be of 

the so-called "white noise" type, in the following way: 

d W. = {e (E T. , - K W.)} dt + W. er. dz . (5.1) 
3 i 13 3 3 3 3 

Eq. (5.1), which represents the stochastic version of the deterministic 

eq. (3.3), bears some resemblance to that used by Vorst (1985) in a 

shopping centre context. A further difference here is that we 

incorporate the stochastic differential equation (5.1) in an optimal 

control model. While stochastic differential equations, in the context 

of S.I. models, have been used so far only by Sikdar and Karmeshu 

(1982) and Vorst (1984), we have to notice that their use in an optimal 

control S.I. framework is rather novel (see Nijkamp and Reggiani, 

1986). The last term at the right-hand side of eq. (5.1) represents the 

total stochastic perturbating force which is assumed to be proportional 

to the number of workplaces W.. 

We also notice that the elements o are the diffusion components 

of the stochastic process, while the elements dz are the incremental 

changes (white noise) in a stochastic process Z. that satisfies a 

Wiener process (called also Brownian motion). All other relevant 

properties about stochastic differential equations are discussed in 

Arnold (1974), Kamien and Schwartz (1981), and Malliaris and Broek 

(1982). 

Therefore we may specify the following stochastic optimal control 

model: 

T 
U* = max E ƒ {- j E T±. (log T^-l) + E T (| log Wj-cij)}dt (5.2) 

s.t. 
(5.3) 

ET.. = 0 . 
j 13 i 12 



d W. = g. dt + W. a. dz . (5.4) 
3 3 3 3 3 

where g. = e(E T.. - K w ^ ) - represents the deterministic part of eq. 
i 

(5.4), and where E is the mathematical expectation of the weighted 

objective functions which has to be maximized. 

The solution of (5.2)-(5.4), which follows directly from the well-known 

Bellman's Erinciple of Optimality, will be illustrated in the next 

section. 

6. Solution of the Stochastic Dynamic Optimal Control Version 

According to Malliaris and Broek (1982) the Hamilton-Jacobi-Bellman 

equation associated with (5.2)-(5.4) is the following: 

aü* = max {£- - E T . , (log T. .-1). + E T. . (f log W -e, .)} + 
3t T__ 6 i j ij 13 ±j 13 B 3 xj 

13 2 (6.1) 
^ 3U* ^ 1 9 U* 2 2, K J 

+ ^7 g3 + 2^^TJ *j Wj } 
3 3 3 3 * 

Next, by defming now the co-state variables >p as: 
j 

f * = ^ L (6.2) 
j 3W. 

3 

it is easily seen that eq. (6.1) can also be written as : 

- |HÜ = max { [- I E T (log T -1) + E T (f log W -c > ]• + 
8t T. . S ij 1D *^ ij X1 3 D 1 : 

+ M , g . + ^ Ï — 3 - a. W. } = max { H } (6.3) 
j 3 3 2 3 3 W j

 3 D T. . 

If we introducé now the constraints (5.3) on the control variables we 

get the following Lagrangean L* : 

L* = H* + E \. (O.-E T..) , (6.4) 
. i x 3 iD 

so that we may apply the Pontryagin Stochastic Maximum Erinciple (see 

Malliaris and Broek, 1982). 

It is easily seen that the optimal solution Tij which maximizes the 

Lagrangean (6.4) is the following: 
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T*. = exp (a log W. - 6c . _, 0X. + BE*.) (6.5) 
13 3 iD 1 3 

or 
T*. = A. O. Wa exp (Bef. - Bc..). (6.6) 
13 1 1 3 3 13 

* 
where A. = exp (- BX.)/0. = 

1 1 1 

a * (6.7) 
= l/E W exp (Bef. - Bc. .) K J 

j 3 3 13 

Eq. (6.6), which represents the optimal control solution, is 

formally equivalent to eq. (4.4), but here the f.'s satisfy the 

following stochastic differential equations: 

df = - 2£_ dt + E -r-L- w. o. dz. (6.8) 
j 3W. . 3W. j 3 3 

3 3 3 

and also the following transversality conditions: 
* 

* au 
¥. {W. (T), T} - ~ - {W (T),T> * 0 
3 3 3Wj j . ~ 1 

¥. (Tl W. (T) = 0 -1 (6.9) 
3 3 

* 
so that eq. (6.6) is a stochastic expression owing to the terras ï. . 

5 3 

Obviously the elements f. do not have analytical (explicit) solutions 

because of the difficulties involved in the calculation of (6.8) and (6.9), 

7. Epilogue 

In this paper it has been shown, after a brief survey of studies 

dealing with dynamic S.I. models, that a formal connection between 

catastrophe theory and optimal control theory may exist. In particular 

it has been illustrated how catastrophe theory can analytically emerge 

from particular equilibrium solutions of an optimal control model. 

Furthermore random components of the Brownian motion type have been 

introduced in order to investigate their influence in the previous 

dynamic system. 

The interesting result is a stochastic movement stemming from 

deterministic equations which are formally similar to the usual S.I. 

models. 
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As a next step, it might be worth studying whether this kind of 

system with initial conditions on time could lead to chaotic behaviour 

and consequently to a strange attractor. This latter analysis, which is 

still an underdeveloped field in the class of dynamic S.I. models, 

deserves no doubt in the future full-scale attention in efforts 

analyzing dynamic systems, in order to achieve a better understanding 

of space-time patterns. 
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ANNEX A. Conditions of Stability and Bifurcations Based on Parameters 

a, |3 , K in'the Control Variable/State Variable Plane. 

It is easy to see that the type of model (4.7) and (4.9) is 

formally equal to the one analyzed by Harris and Wilson (1978) for a 

retail trade model. Let us repeat here eqs. (4.7) and (4.9) for the 

sake of convenience: 

E T. 
1D 

K W. 

O. W. exp (- fic..) 
i 3 E T. . = E {• 

i] . „ a , 
i i E W. exp (- Bc..) 

• 3 J-D 
3 

-} 

(A.l) 

(A.2) 

We recall that in our transportation system the elements E T. . (T. . 

are the control variables) represent the total inflows in ,j , the W.'s 

(the state variables) are the number of workplaces in j , and the 0.'s 

are the outflows from i . 

Therefore, by following Harris and Wilson, we can deduce the functional 

form of the inflows E T towards the workplaces W. for different 
i ij 3 

values of a (see Fig. 1). 

3 3 

w.=w. A n 
3 3^,' K-O 

N.B. 

a < 1 

W^ -» stable points 
j 

W. -» unstable points 

a = 1 a > 1 

Fig. 1. The inflow curves and equilibrium points. 

If in a way analogous to the urban retail model of Harris and Wilson, 

we consider the effect of varying < (recall that K is here an 

accessibility parameter which converts inflow units into workplace 

units), we obtain a set of equilibrium points linked to the fold 

catastrophe (see Fig. 2). 
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wA w w^ w. s r w ï w . 
j j D D 3 3 1 

a < 1 a = 1 a > l 

Fig. 2. The equilibrium points as a function of <. 

It is clear that there are critical values of K(KC) t beyond which 

W. will jump from VC to zero (for a > 1). This means that for the 

case a > 1 there is a critical value in the accessibility beyond 

which the number of workplaces jumps to zero. This f act can be 

explained, e.g., through the phenomenon of congestion. Therefore only 

for a < 1, we do not have a catastrophic behaviour, since in this case 

there is a unique positive equilibrium (see also Kaashoek and Vorst, 

1984). It should be noted that also changes of |3 could lead to 

possible jumps in the workplaces (see Wilson, 1981). 

The conclusion is that at time t » T and under the condition that 

eq. (3.2) is in equilibrium, certain smooth parameter changes could 

lead to discrete changes in the state variables W . 
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