Jan van Daal
Arnold H.Q.M. Merkies

VRIJE UNIVERSITEIT
FACULTEIT DER ECONOMISCHE WETENSCHAPPEN
EN ECONOMETRIE
AMSTERDAM

DEMAND SYSTEMS THAT ARE POLYNOMIAL IN INGOME

by

Jan van Daal (Erasmus Universiteit, Rotterdam) and

Arnold H.Q.M. Merkies (Vrije Universiteit, Amsterdam)

Summary

In this note we discuss the PUM, which is a demand system consisting of polynomials in income of degree N with coefficients being functions of prices. In particular, we derive the general forms of these coefficients for arbitrary value of N, when the system should display utility maximization under a budget restriction.

1. Introduction

If a polynomial demand system can be written as:
$q_{k}(p, y)=c_{k 0}(p)+c_{k I}(p) y+c_{k 2}(p) y^{2}+\ldots+c_{k N}(p) y^{N}$
with $k=1, \ldots, k$,
where $q_{k}=$ quantity consumed of commodity k,
$p_{k}=$ price of k,
$p=$ vector of all prices p_{1}, \ldots, P_{K} and
y - "income" to be allocated to goods $1, \ldots, K$,
and the $c_{k n}(p)$ are functions of prices such that the conditions of additivity, homogeneity and utility maximization are satisfied, we call it a PUM system (Polynomial demand system based on Utility Maximization).

Additivity requires

$$
\begin{equation*}
\sum_{k=1}^{K} p_{k} q_{k}=y \tag{1,2}
\end{equation*}
$$

For homogeneity the coefficients $c_{k n}(p)$ should be homogeneous of degree n for all $n=0,1, \ldots, N$ and all k. Utility maximization requires that the $K *\langle N+1)$ matrix $C(p)=\left[c_{k n}(p)\right]$ is such that the Slutsky matrix $S=\left[s_{k m}\right]$ with $s_{k m}-\partial q_{k} / \partial p_{m}+q_{m} \cdot \partial q_{k} / \partial y$ is symmetric and negative semi-definite. Below we will show the implications of the conditions of additivity, homogeneity and symmetry for the functions $c_{k n}(p)$. The implications of the negative semi-definitiveness are not analyzed here.

Our line of reasoning is as follows:
First, we prove that for all $n, r=2, \ldots, N$ the ratio $\alpha_{n r}=c_{k n}(p) / c_{k r}(p)$ is incependent of k. This means that the last $N-1$ columns of $C(p)$ are proportional, given p. Hence $C(p)$ has a rank that is at most 3. This strong resul.t is derived by Gorman [1981] in a more general context. For our special case (1.1) a much simpler proof is available.
Second, we simplify (1.1) in assuming, that all functions $c_{k 0}$ are zero. For this simplified system we shall derive the implications of the symmetry condition for functions $c_{k n}$. The $K * N$ matrix of coefficients of the simplified system will be called $C^{*}(p)$.

Third, noticing that the matrix $c^{*}(p)$ contains at most two independent columns, the first, called $c^{1}(p)$, and, say, the last one, called $c^{N}(p)$, we provide a lemma (Iemma 2) which gives us the specifications of these two columns.
Fourth, we specify the remaining columns of $G^{*}(p)$, i.e. we specify the factors of proportionality $\alpha_{n N}$ between each of these columns and $c^{N}(p)$. Fifth, we return to the system (1.1).

In the next section we state the above-mentioned lemma, preceded by lemma 1 that helps to simplify our presentation. In section 3 we present our result; we end with a short discussion in section 4.

2. Two lemmas

In analyzing Slutsky symmetry lemma 1 appears to be useful.

Lemma 1. (Inverse Young theorem.) If $f_{1}, \ldots f_{k}$ are functions of the vector $p=\left(p_{1}, \ldots p_{K}\right)$ with continuous first derivatives such that for each function f_{k} with $k=1, \ldots, k$ and for all vectors p from a certain domain D and for all $k, m=1, \ldots, K$.
(2.1) $\frac{\partial f_{k}(p)}{\partial \mathrm{P}_{\mathrm{m}}}=\frac{\partial \mathrm{f}_{\mathrm{m}}(p)}{\partial \mathrm{p}_{\mathrm{k}}}$,
then there exists a function F of p_{1}, \ldots, p_{K} such that for all $p \in D$ and all $k=1, \ldots, K$
(2.2) $\quad f_{k}(p)=\frac{\partial F(p)}{\partial p_{k}}$.

Proof: see Van Daal and Merkies [1984, pp 137-139].

The announced second lemma is:

Lemma 2. The demand system
(2.3) $\quad q_{k}=\varphi_{k}(p) y+\psi_{k}(p) y^{h}$
with $h=2,3, \ldots$, is compatible with utility maximization if and only if the φ_{k} and the ψ_{k} are such that (2.3) can be written as:
(2.4) $\quad q_{k}=\frac{1}{a} \frac{\partial a}{\partial p_{k}} y+\frac{1}{a^{a-1}} \frac{\partial H}{\partial p_{k}} y^{h}$,
where $a(>0)$ and H are functions of prices that are homogeneous of degree 1 and 0 respectively and, furthermore, a and H are such that the corresponding cost of utility function
(2.5) $c(p, u)=a(\varepsilon H-u)^{\frac{1}{\varepsilon}}$,
with $\varepsilon=1-h$, is concave.

For ease of exposition we omitted the arguments p of the functions a and H, just as we will do below for the functions φ_{k} and ψ_{k}. Note that, because of the budget restriction, the case that all functions φ_{k} are zero cannot occur; this means that the function a cannot be a constant.

Proof: The Slutsky element $s_{k m}$ of (2.3) is a polynomial in y of the form

$$
\begin{equation*}
\alpha_{\mathrm{km}} \mathrm{y}+\beta_{\mathrm{km}} \mathrm{y}^{\mathrm{h}}+\gamma_{\mathrm{km}} \mathrm{y}^{2 \mathrm{~h}-1} \tag{2.6}
\end{equation*}
$$

it is symmetric in k and m if symmetry holds for all three coefficients.
It turns out that $\gamma_{k m}$ is equal to $h \psi_{\mathrm{k}} \psi_{\mathrm{m}}$ and, therefore, is symmetric in k and m. Symmetry of the other two coefficients requires the fulfilment of the following two identities:
(2.7) $\quad \frac{\partial \varphi_{\mathrm{c}}}{\partial \mathrm{p}_{\mathrm{m}}}=\frac{\partial \varphi_{m}}{\partial \mathrm{p}_{\mathrm{k}}}$
(2.8) $\quad \frac{\partial \psi_{k}}{\partial \mathrm{p}_{\mathrm{k}}}+(\mathrm{h}-1) \varphi_{\mathrm{m}} \psi_{\mathrm{k}}=\frac{\partial \psi_{m}}{\partial \mathrm{p}_{\mathrm{k}}}+(\mathrm{h}-1) \varphi_{\mathrm{k}} \psi_{\mathrm{m}}$
for all k and m.

Because of (2.7) and Lemma 1, there is a function F of prices such that for all $\mathrm{k}=1, \ldots, \mathrm{~K}$ the functions $\varphi_{1}, \ldots, \varphi_{\mathrm{K}}$ can be written as:
(2.9) $\quad \varphi_{k}=\frac{\partial F(p)}{\partial p_{k}}$,
or, taking $F(p)=\log a(p)$ with $a(p)>0$ for all p,
(2.10) $\quad \varphi_{k}=\frac{\partial \log a}{\partial p_{k}}=\frac{1}{2} \frac{\partial a}{\partial p_{k}}$.

Because of (2.3) and the budget restriction (1.2) we have:
(2.11) $\sum_{k} p_{k} \varphi_{k}=\sum_{k} \frac{p_{k}}{a} \frac{\partial a}{\partial p_{k}}=1$,
hence a is homogeneous of degree 1 in prices. Inserting (2.10) into (2.8) and multiplying the result with a^{h-1} yields:

$$
\begin{equation*}
a^{h-1} \frac{\partial \psi_{k}}{\partial p_{m}}+(h-1) a^{h-2} \frac{\partial a}{\partial p_{m}} \psi_{k}=a^{h-1} \frac{\partial \psi_{m}}{\partial p_{k}}+(h-1) a^{h-2} \frac{\partial a}{\partial p_{k}} \psi_{m}, \tag{2.12}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial}{\partial p_{m}}\left(a^{\mathrm{h}-1} \psi_{\mathrm{k}}\right)=\frac{\partial}{\partial \mathrm{p}_{\mathrm{k}}}\left(\mathrm{a}^{\mathrm{h}-1} \psi_{\mathrm{m}}\right) \tag{2.13}
\end{equation*}
$$

Hence, because of lemma 1 , there is a function H such that for all $k=1, \ldots, K$ the functions b_{k} obey:

$$
\begin{equation*}
a^{\mathrm{h}-1} \psi_{\mathrm{k}}=\frac{\partial \mathrm{H}}{\partial \mathrm{P}_{\mathrm{k}}} \tag{2.14}
\end{equation*}
$$

For this function H the budget restriction implies:

$$
\begin{equation*}
\sum_{k} p_{k} a^{h-1} \psi_{k}=\sum_{k} P_{k} \frac{\partial H}{\partial p_{k}}=0 \tag{2.15}
\end{equation*}
$$

hence H is homogeneous of degree zero. This leads to (2.4).
Shephard's theorem applied to (2.5) gives also (2.4).

Remarks

1. Note that (2.4) and (2.5) are not violated if we transform H first by some arbitrary differentiable function F of only one variable. Then we write $\partial H / \partial p_{k} . f(H)$ instead of $\partial H / \partial p_{k}$ where $f=F^{\prime}$, or, more explicitly,

$$
\begin{equation*}
\psi_{k}=\frac{1}{a^{h-1}} \frac{\partial H}{\partial p_{k}} f(H) \tag{2.16}
\end{equation*}
$$

Although this does not entail more generality we shall need it in the next section.
2. In fact (2.4) holds for each $h \in R$ that is unequal to 1 . The cost of utility function is, more general,

$$
\begin{equation*}
\frac{1}{\varepsilon} \tag{2.17}
\end{equation*}
$$

where $\operatorname{sgn} \varepsilon=+1$ if $\varepsilon>0$ and -1 if $\varepsilon<0$. If $\varepsilon>0$ then εH is the minfmum level that u can attain and if $\varepsilon<0$ then εH is 'bliss-level'.

3. Three theorems

Theorem 1. The rank of the matrix $C(p)$ of coefficients of the system (1.1) is at most 3.

Proof. Omitting the arguments of all functions from now on and indicating differentiation with respect to a price p_{m} by an additional index m preceded by a comma, we can express the slutsky element $s_{k m}$ of (1.1) as follows

$$
\begin{aligned}
& \text { (3.1) } \quad s_{k m 0}=\left(c_{k 0, m}+c_{k 1, m} y+\ldots+c_{k N, m} y^{N}\right)+ \\
& +\left(c_{m 0}+c_{m 1} y+\ldots+c_{m N} y^{N}\right)\left(c_{k 1}+2 c_{k 2} y+\ldots+N c_{k N} y^{N-1}\right) .
\end{aligned}
$$

This is a polynomial of degree $2 \mathrm{~N}-1$. Slutsky symmetry requires that all coefficients are separately symmetric in k and m for all $k, m=1, \ldots, K$. For the proof of theorem I we only need the last $N-1$ coefficients. Therefore, we write $s_{k m}$ as follows

$$
\begin{aligned}
& s_{k m}=\sum_{m=0}^{N} \eta_{k m F} y^{r}+ \\
& +y^{N+1}\left(N c_{k N} c_{m 2}+(N-1) c_{k(N-1)} c_{m 3}+\ldots+3 c_{k 3} c_{m(N-1)}+2 c_{k 2} c_{m N}\right)+ \\
& \vdots \\
& +y^{N+n} \sum_{i=0}^{N-n-1}(N-i) c_{k(N-i)} c_{m(n+1+i)}+ \\
& \vdots \\
& +y^{2 N-4}\left(N c_{k N} c_{m(N-3)}+(N-1) c_{k(N-1)} c_{m(N-2)}+(N-2) c_{k(N-2)} c_{m(N-1)}+\right. \\
(3.2) \quad & \left.+(N-3) c_{k(N-3)} c_{m N}\right)+ \\
& +y^{2 N-3}\left(N c_{k N} c_{m(N-2)}+(N-1) c_{k(N-1)} c_{m(N-1)}+(N-2) c_{k(N-2)} c_{m N}\right)+ \\
& +y^{2 N-2}\left(N c_{k N} c_{m(N-1)}+(N-1) c_{k(N-1)} c_{m N}\right)+ \\
& +y^{2 N-1} N c_{k N} c_{m N} .
\end{aligned}
$$

The coefficients of $y^{2 N-1}$ are always symmetric. Symmetry of the coefficients of $y^{2 N-2}$ requires
(3.3) $N c_{k N} c_{m(N-1)}+(N-1) c_{k(N-1)} c_{m N}=N c_{m N} c_{k(N-1)}+(N-1) c_{m(N-1)} c_{k N}$, or
(3.4) $c_{x N} c_{m(N-1)}=c_{m N} c_{x(N-1)}$.

This identity implies that we always must have, for all $k=1, \ldots, k$,
(3.5) $c_{k(N-1)}=\alpha_{(N-1) N} c_{K N}$,
where $\alpha_{(\mathbb{N}-1)}$ is a function of prices that is independent of k, The coefficient of $y^{2 N-3}$ of (3.2) consists of three terms of which the middle one is symmetric; hence the sum of the other two terms has to be symmetric which leads to the requirement $c_{k N} c_{m(N-2)}=c_{m N} c_{k(N-2)}$, or
(3.6) $c_{k(N-2)}=\alpha_{(N-2) N_{N}} c_{k N}$,
for all $k=1, \ldots, K$ with $\alpha_{(N-2) N}$ another function of prices that is
independent of k. Inserting (3.5) and (3.6) into the coefficients of $y^{2 \mathrm{~N}-}$ 4 leads to the conclusion that only the first and the last term of these coefficients are non-symmetric. This leads to a ratio between the $c_{k}(N-3)$ and $c_{k N}$ that is a function $\alpha_{(N-3) N}$ of prices independent of k. Continuing this process of substitution until the term with y^{N+1} leads to
(3.7) $\quad \frac{c_{x n}}{c_{x N}}=\alpha_{n N}$
for all $k=1, \ldots, k$ and all $n \geq 2$.
Alternatively written, we have for all $n=2, \ldots, N-1$

$$
\left[\begin{array}{c}
c_{1 n} \tag{3.8}\\
\cdot \\
\cdot \\
c_{X n}
\end{array}\right]=\alpha_{n N}\left[\begin{array}{c}
c_{1 N} \\
\cdot \\
c_{K N}
\end{array}\right]
$$

which shows that all colunms of the matrix $C(p)$ except the first two are dependent upon he last one. This means that each row k of $\mathcal{C}(p)$ is determined after $c_{k N}, c_{k 0}, c_{k 1}$ and $\alpha_{n N}$ have been chosen, i.e. $C(p)$ has a rank that is at most 3 .

Theorem 2. The most general form of a utility consistent demand system that is a polynomial in income without a constant term is

$$
\begin{equation*}
q_{k}(p, y)=\frac{1}{a} \frac{\partial a}{\partial p_{k}} y+\sum_{n=2}^{N} \frac{1}{a^{n-1}} \frac{\partial H}{\partial p_{k}} f_{n}(H) y^{n}, \tag{3.9}
\end{equation*}
$$

where a is homogeneous of degree 1 in prices, H of degree 0 , and where the $f_{n}(n=2, \ldots, N)$ are arbitrary functions of H; in addition, all these functions have to be such that the second-order conditon of negative semi-definiteness of the Slutsky matrix is fulfilled.

Proof: Because of theorem 1 we can write $c_{k n}=\alpha_{n N} c_{k N}$ for $k=2, \ldots, N-1$; hence (1,1) with $c_{\mathrm{k} 0}=0$ becomes

$$
\begin{align*}
q_{k}(p, y)= & c_{k 1} y+\alpha_{2 N} c_{k N} y^{2}+\alpha_{3 N} c_{k N} y^{3}+\ldots+\alpha_{(N-1) N} c_{k N} y^{N-1}+ \tag{3.10}\\
& +c_{k N} y^{N} .
\end{align*}
$$

If all functions $\alpha_{n N}$ are zero (3.10) coincides with (2.3) and according to lemma 2 also with the special case of (3.9) with $f_{n}(H)=0$ for $n=2, \ldots, N-1$, provided the $c_{k I}$ and the $c_{k N}$ are:
(3.11) $\quad c_{k 1}=\frac{1}{a} \frac{\partial a}{\partial p_{k}}$
and
(3.12) $\quad c_{k N}=\frac{1}{a^{N-1}} \frac{\partial H}{\partial P_{k}} f_{N}(H)$,
for all $k=1, \ldots, K$, where $a(n o n-z e r o)$ and H are functions of prices, homogeneous of degree 1 and 0 respectively and f_{N} is an arbitrary function of only one argument with F_{N} as a primitive function; see remark 1 after lemma 2. So (3.9) cannot hold in general unless (3.11) and (3.12) can be satisfied. We will now show that, if this is the case, the values of $\alpha_{n N}$ must satisfy
(3.13) $\quad \alpha_{n N} c_{k N}=\frac{1}{a^{n-1}} \frac{\partial H^{\partial}}{\partial P_{K}} f_{n}(H)$
for $n=2, \ldots, N-1$, or, in view of (3.12)
(3.14)

$$
\alpha_{n N}=a^{N-n} \frac{f_{n}(H)}{f_{N}(H)}
$$

In elaborating the slutsky coefficient we will write α_{n} instead of $\alpha_{n N}$ from now on. As from (3.7) $c_{k n, m} \neq \partial c_{k n} / \partial p_{m}=\partial\left(\alpha_{n} c_{k N}\right) / \partial p_{m}=\alpha_{n} c_{k N, m}+\alpha_{n, m} c_{k N}$ we may write:

$$
\begin{aligned}
& \quad s_{k m}=\sum_{n=1}^{N} c_{k n, m} y^{n}+\sum_{m=1}^{N} c_{m n} y^{n} \sum_{n=1}^{N} n c_{k n} y^{n-1} \\
& =c_{k 1, m} y+\left(\alpha_{2} c_{k N, m}+\alpha_{2, m} c_{k N}\right) y^{2}+\ldots+ \\
& +\left(\alpha_{N-1} c_{k N, m}+\alpha_{N-1, m} c_{k N}\right) y^{N-1}+c_{k N, m} y^{N}+\left(c_{m 1} y+\alpha_{2} c_{m N} y^{2}+\ldots+\right. \\
& \left.+\alpha_{N-1} c_{m N} y^{N-1}+c_{m N} y^{N}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \cdot\left(c_{k 1}+2 \alpha_{2} c_{k H^{\prime}} Y+\ldots+(N-1) \alpha_{N-1} c_{k N} y^{N-2}+N c_{k N} Y^{N-1}\right)= \\
& =y\left(c_{k 1, m}+c_{k_{1}} c_{m 1}\right)+ \\
& \text { (3.15) }+\mathrm{y}^{2}\left(\alpha_{2} c_{\mathrm{kN}, \mathrm{~m}}+\alpha_{2, \mathrm{D}} \mathrm{c}_{\mathrm{kN}}+2 \alpha_{2} \mathrm{c}_{\mathrm{kN}} \mathrm{c}_{\mathrm{m} 1}+\alpha_{2} \mathrm{c}_{\mathrm{mH}} \mathrm{c}_{\mathrm{k} 1}\right)+ \\
& +y^{3}\left(\alpha_{3} c_{k N, m}+\alpha_{3, m} c_{k N}+3 \alpha_{3} c_{k N} c_{m 1}+2\left(\alpha_{2}\right)^{2} c_{k N} c_{m N}+\alpha_{3} c_{m N} c_{k 1}\right)+ \\
& +y^{n}\left(\alpha_{n} c_{k N, m}+\alpha_{n, m} c_{k N}+n \alpha_{n} c_{k N} c_{m 1}+\sum_{i=1}^{n-2}(n-i) \alpha_{n-i} \alpha_{i+1}\right) c_{k N} c_{m N}+ \\
& \left.+\alpha_{\mathrm{n}} \mathrm{c}_{\mathrm{mN}} \mathrm{c}_{\mathrm{x} 1}\right)+ \\
& +y^{N}\left(c_{x N, m}+N c_{x N} c_{m 1}+\sum_{i=1}^{N-2}(N-i) \alpha_{N-i} \alpha_{i+1}\right) c_{x N} c_{m N} \\
& \left.+c_{m N} c_{k 1}\right)+\sum_{\mathrm{z}-\mathrm{N}+1}^{2 \mathbb{N}-2} \sigma_{\mathrm{k} \cdot \mathrm{~m} \mathrm{~F}} \mathrm{y}^{\mathrm{r}} .
\end{aligned}
$$

Note that for all k, m and $\mathrm{r}=\mathrm{N}+1, \ldots, 2 \mathrm{~N}-1$ we have $\sigma_{\mathrm{kmr}}=\sigma_{\mathrm{mkr}}$ because of theorem 1, hence we now only need to establish the symmetry of the first N terms, because the last $\mathrm{N}-1$ are already symmetric. The first term of the last member, that with y, is symmetric in k and m because of (3.11). It can easily be seen that the terms with y^{n} for $n=2, \ldots, N-1$ are symmetric if and only if for all these values of n

$$
\begin{align*}
& \alpha_{n} c_{k N, m}+\alpha_{n, m} c_{k N}+n \alpha_{n} c_{k N} c_{m 1}+\alpha_{n} c_{m N} c_{k 1}= \tag{3.16}\\
= & \alpha_{n} c_{m N, k}+\alpha_{n, k} c_{m N}+n \alpha_{n} c_{m N} c_{k 1}+\alpha_{n} c_{k N} c_{m 1} .
\end{align*}
$$

Rearranging this and using (3.11) gives

$$
\begin{equation*}
\frac{\partial\left(\alpha_{n} c_{k x N}\right)}{\partial p_{m}}+\frac{n-1}{a} \frac{\partial a}{\partial p_{m}}\left(\alpha_{n} c_{k N}\right)-\frac{\partial\left(a_{n} c_{m \Delta}\right)}{\partial p_{k}}+\frac{n-1}{a} \frac{\partial a}{\partial p_{k}}\left(\alpha_{n} c_{m N}\right) . \tag{3.17}
\end{equation*}
$$

Multiplying this with a^{n-1} we see that (3.17) implies:

$$
\begin{equation*}
\frac{\partial\left(\mathrm{a}^{\mathrm{n}-1} \alpha_{n} c_{k v 1}\right)}{\partial \mathrm{p}_{\mathrm{m}}}=\frac{\partial\left(\mathrm{a}^{\mathrm{n}-1} \alpha_{\mathrm{n}} \mathrm{c}_{\mathrm{m} \Delta}\right)}{\partial \mathrm{p}_{k}} . \tag{3.18}
\end{equation*}
$$

This means, according to lemma 1 , that there are some functions G_{n} of
prices such that for all $k=1, \ldots, K$ and $n=2, \ldots, N-1$:
(3.19)

$$
a^{n-1} \alpha_{n} c_{k N}=\frac{\partial G_{a}}{\partial p_{k}}
$$

Combining this with (3.12) gives

$$
\begin{equation*}
a^{n-1} \alpha_{n} \frac{1}{a^{N-1}} \frac{\partial F_{v}(H)}{\partial p_{k}}=\frac{\partial G_{n}}{\partial p_{k}} \tag{3.20}
\end{equation*}
$$

Hence for all $n=2, \ldots, N-1$ we have

$$
\begin{equation*}
\frac{\frac{\partial F_{N}(H)}{\partial \mathrm{p}_{1}}}{\frac{\partial \mathrm{G}_{n}}{\partial \mathrm{P}_{1}}}=\frac{\frac{\partial \mathrm{F}_{n}(H)}{\partial \mathrm{p}_{2}}}{\frac{\partial \mathrm{G}_{n}}{\partial \mathrm{p}_{2}}}=\ldots=\frac{\frac{\partial \mathrm{F}_{v}(H)}{\partial \mathrm{p}_{\mathrm{K}}}}{\frac{\partial \mathrm{G}_{n}}{\partial \mathrm{P}_{\mathrm{K}}}} . \tag{3.21}
\end{equation*}
$$

Consequently, $F_{N}(H)$ and G_{n} are functionally dependent, i.e there are functions Φ_{n} and Ψ_{n} such that

$$
\begin{equation*}
G_{n}=\Phi_{n}\left(F_{n}(H)\right)=\Phi_{n}(H) ; \tag{3.22}
\end{equation*}
$$

see, e.g. Burkill an Burkill (1970). Let ψ_{n} be the derivative of Ψ_{n} with respect to H. Relations (3.20) then become

$$
\begin{equation*}
\frac{\alpha_{n}}{a^{N_{n}}} f_{\mathrm{N}}(\mathrm{H}) \frac{\partial \mathrm{H}}{\partial \mathrm{p}_{\mathrm{k}}}=\psi_{\mathrm{n}} \text { (H) } \frac{\partial \mathrm{H}}{\partial \mathrm{P}_{\mathrm{K}}} \tag{3.23}
\end{equation*}
$$

for all $k=1, \ldots, K$. Hence
(3.24) $\quad \alpha_{n}=a^{N-n} f_{n}(H) / f_{N}(H)$
with $f_{n}(H)=\psi_{n}(H)$.

This proves the theorem.
The general case (1.1), with a constant term, can now easily be treated, Because every polynomial in y can also be written as a polynomial in $y-z$, where z is arbitrary, we can prove:

Theorem 3. The most general form of a utility consistent demand system whose equations are polynomials in income y is

$$
\begin{equation*}
q_{k}=\frac{\partial \theta}{\partial p_{k}}+\frac{1}{a} \frac{\partial a}{\partial p_{k}}(y-\theta)+\sum_{n=2}^{N} \frac{1}{a_{n}-1} \frac{\partial H}{\partial p_{k}} f_{n}(H)(y-\theta)^{n} \tag{3.25}
\end{equation*}
$$

where a and θ are linear-homogeneous functions of prices, H is a zero homogenous function of prices and the f_{n} are functions of only one argument; all these functions have to be such that the matrix of Slutsky elements is negative semi-definite.

Proof

As (3.25) appears to satisfy additivity, homogeneity and the integrability conditions it is gUM. In order to prove the necessity of (3.25) consider the system

$$
\begin{equation*}
q_{k}=\psi_{k}+\sum_{n=1}^{N} c_{k n}(y-\theta)^{n} \tag{3.26}
\end{equation*}
$$

where $k=1, \ldots, k$, with $\psi_{k}, c_{k n}$ and θ functions of p only. First, we shall show that for (3.26) being PUM it is necesary that θ is Linearhomogeneous in p. Then we apply theorem 2 to show that the $c_{k n}$ have to have the forms found in (3.25) and, subsequently, we show that each ψ_{k} has to be the derivative of θ with respect to p_{k}.

Applying Euler's theorem on homogeneous functions to (3.26) yields the following identity in p and y :

$$
\begin{equation*}
\sum_{m=1}^{X} p_{m} \psi_{k, m}+\sum_{m=1}^{K} \sum_{n=1}^{N} p_{m} c_{k n, m}(y-\theta)^{n}+ \tag{3.27}
\end{equation*}
$$

$$
-\sum_{m=1}^{K} p_{m} \frac{\partial \theta}{\partial p_{m}} \sum_{n=1}^{N} n c_{k n}(y-\theta)^{n-1}+y \sum_{n=1}^{N} n c_{k n}(y-\theta)^{n-1}=0
$$

where, again, differentiation of the ψ_{k} and the $c_{k_{n}}$ with respect to p_{m} is indicated by an index m preceded by a comma. The left-hand side of (3.27)
can be considered as a polynomial in y of degree N. The identity can, therefore, only be fulfilled if all coefficients of this polynomial are zero. The coefficient of y^{N} is equal to
(3.28) $\quad \sum_{m} p_{m} c_{k N, m}+N c_{k N}=0$.

This implies that $c_{k N}$ is homogeneous of degree $-N$ and, because $c_{k N}$ may be identically zero, $c_{k(N-1)}$ must be homogeneous of degree $-(N-1)$ and so on. About the coefficient of y^{N-1} we can state:
(3.29) $-N \theta \sum_{m} p_{m} c_{k N, m}-N c_{k N} \sum_{m} p_{m} \frac{\partial \theta}{\partial p_{m}}-N(N-1) \theta c_{k N}+\sum_{m} p_{m} c_{k(N-1), m}+$ $+(N-1) c_{k(N-1)}=0$.

Due to the homogeneity of $c_{k N}$ and $c_{k(N-1)}$ this is equivalent to
(3.30) $-N c_{k N} \sum_{m} p_{m} \frac{\partial \theta}{\partial p_{m}}+N \theta c_{k N}=0$,
or
(3.31) $\quad \sum_{m} p_{m} \frac{\partial \theta}{\partial p_{m}}=\theta$.

Hence θ is homogeneous of degree I in p.

As (3.26) is also PUM for $\theta=0$ and all $\psi_{k}=0$ (identically) we infer from theorem 2 that
(3.32) $\quad c_{k 1}=\frac{1}{a} \frac{\partial a}{\partial \mathrm{P}_{k}}$
and, for $n=2, \ldots, N$,
(3.33) $\quad c_{k n}=\frac{1}{a^{n-1}} \frac{\partial H}{\partial p_{k}} f_{n}(H)$.

To prove that $\psi_{k}=\partial \theta / \partial p_{k}$ we need Slutsky symmetry. The Slutsky element $s_{k m}$ for (3.26) obeys

$$
\begin{align*}
& \text { 4) } \quad s_{k m}=\frac{\partial q_{k}}{\partial p_{m}}+q_{m} \frac{\partial q_{k}}{\partial y}=\psi_{k, m}+\sum_{n} c_{k n, m}(y-\theta)^{n}+ \tag{3.34}\\
& -\quad \frac{\partial \theta}{\partial p_{m}} \sum_{n} n c_{k n}(y-\theta)^{n-1}+ \\
& +\quad\left\{\psi_{m}+\sum_{n} c_{m n}(y-\theta)^{n}\right\} \sum_{n} n c_{k n}(y-\theta)^{n-1}= \\
& =\quad \bar{s}_{k m}+\psi_{k, m}+\left(\psi_{m}-\frac{\partial \theta}{\partial p_{n}}\right) \cdot \sum_{n} n c_{k n}(y-\theta)^{n-1} .
\end{align*}
$$

Note that $\bar{s}_{k m}$ equals the second member of (3.15) with y replaced by (y θ). Because of theorem 2 we must have $\bar{s}_{s_{m}}-\bar{s}_{m k}$. Hence the remainder of (3.34) must also be symmetric in k and m. This remainder is a polynomial in y of degree $N-1$, hence all its coefficients have to be symmetric. For the coefficient of y^{N-1} this means for $a l l k$ and $m=1, \ldots, K$:
(3.35) $\quad\left(\psi_{\mathrm{m}}-\frac{\partial \theta}{\partial p_{m}}\right) \frac{N}{a^{N-T}} \frac{\partial H}{\partial p_{k}} f_{N}(H)=\left(\psi_{k}-\frac{\partial \theta}{\partial p_{k}}\right) \frac{N}{a^{N-T}} \frac{\partial H}{\partial p_{m}} f_{N}(H)$
where we substituted for $c_{k N}$ the form that it must have according to (3.33). From this we get

$$
\begin{equation*}
\left(\psi_{\mathrm{m}}-\frac{\partial \theta}{\partial \mathrm{p}_{\mathrm{m}}}\right) \frac{\partial \mathrm{H}}{\partial \mathrm{p}_{\mathrm{k}}}=\left(\psi_{\mathrm{k}}-\frac{\partial \theta}{\partial \mathrm{p}_{\mathrm{k}}}\right) \frac{\partial \mathrm{H}}{\partial \mathrm{p}_{\mathrm{m}}} \tag{3.36}
\end{equation*}
$$

This identitiy has to hold for any function H that is homogeneous of degree zero. This is only possible if for all $m=1, \ldots, K$

$$
\begin{equation*}
\psi_{\mathrm{m}}=\frac{\partial \theta}{\partial \mathrm{p}_{\mathrm{a}}} \tag{3.37}
\end{equation*}
$$

This proves the theorem.

4. Concluding remarks

According to Weierstrasz' theorem every function can be approximated uniformly close by a polynomial. The advantage of the polynomial choice is that it satisfies the theorem of Nataf on aggregation. Above we have derived the constraints that should be imposed upon a polynomial demand
function if it must satisfy the requirements of utility maximization. The polynomials are not the only functions that satisfy Nataf. The functions of the Nataf class are of the form; see van Daal and Merkies [1984, p.33].

$$
\text { (4.1) } \quad q_{j k}=h_{j k}\left[\sum_{m} \varphi_{k m}\left(x_{j k m}\right)\right]
$$

where j refers to the individual, k to the commodity and m to the kind of input, whereas $h_{j k}$ is an arbitrary monotonic function of one variable. A subclass of (4.1) is the Gorman class, where $h_{j k}$ is the identity function, which may result after transformations $h_{j k}^{-1}\left(q_{j k}\right)$ of the outputs. From this Gorman [1981] derived the integrable class as the class of functions that are generated by utility maximization and therefore restricted to be integrable. Gorman also presented all possible specifications of these integrable functions, see Gorman (1981, p.16). If homogeneity is also adopted, some of these functions drop out, see Merkies and Van Daal [1987]. The relation between the various possibilities is clarified in scheme 1 below.

SCHEME 1

From the scheme the following relations appear:
Set of all functions : A $+B+C+D+E+F+G+H$
Nataf's class : A+B+C+D+E+F+G
Gorman's class : A+B+C+D+E+F
Polynomial class : $A+B+C+D$

```
PUM : C+D
Gorman's integrable class : C+D+E
Weierstrasz-class : A+B+C+D
Weierstrasz-Gorman sub-class: B+C
Heineke and Shefrin class : B
```

We have conjectured that the inverse of Weierstrasz' theorem ('any polynomial can act as an approximation of some non-polynomial') is true. If this is not the case. we must split set A into two subsets one having and one missing this property and the latter is then not contained in the Weierstrasz' class. The Weierstrasz-Gorman sub-class is obtained after approximating each member of class E by a polynomial.
It should be stressed that we have imposed integrability requirements upon our functions after we have selected a polynomial. Hence the PUM class is a subset of the polynomial class, but as this in its turn is a subset of Gorman's class, the PUM is also a subset of Gorman's integrable class. We could also have started from the latter and derive from this with reference to Weierstrasz theorem the polynomial class $B+C+D$. Heineke and Shefrin (1986) show why we cannot guarantee to find an integrable member of the polynomial class that is sufficiently close to our demand function. In other words they show that the class, indicated by (B) is not necessarily empty. So if our PUM demand is only an approximated polynomial it may happen that it is not sufficiently close to our actual demand function. Therefore to complete the set of demand functions that are based upon utility maximization, we need to look for class B arising from non polynomial members of Gorman's integrable class, that -if approximated by a polynomial- end up in Heineke and Shefrins'class.

References

[1] Burki11, J.C. and H. Burkill, A second course in mathematical analysis, Cambridge University Press, Cambridge (U.K.), 1970.
[2] Daal, J. van and A.H.Q.M. Merkies, Aggregation in economic research, D. Reidel Pub1. Cy., Dordrecht, 1984.
[3] Deaton, A.S. and J. Muelibauer, Economics and consumer behaviour, Cambridge University Press, Cambridge (U.K.), 1980.
[4] Gorman, W.M., On a class of preference fields, Metronomica 13 (1961), pp. 53-56.
[5] Gorman, W.M., Some Engel Curves, Chapter 1 in: Deaton, A.S. (1981). Essayes in the theory and measurement of consumer behaviour in honour of Sir Richard Stone, Cambridge University Press, Cambridge (U.K.), 1981.
[6] Heineke, J.M. and H.M. Shefrin, On an implication of a theorem due to Gorman, Economics Letters 21, 1986, pp. 321-323.
[7] Howe, H., R.A. Pollak and T.J. Wales, Theory and Time Series Estimation of the Quadratic Expenditure System, Econometrica, 47 (1979), pp. 1231-1248.
[8] Merkies, A.H.Q.M. and J. van Daal, "Nataf's Theorem, Taylor's Expansion and Homogeneity in Consumer Demand," in W. Eichhorn et al. (eds.), Theory and Measurement in Economics, Physica Verlag, Heidelberg-Vienna, 1987.
[9] Somermeyer, W.H., Delimination of the Class of Budget-Constrained Utility Maximizing Partially Linear Consumer expenditure Functions, an Alternative Approach, Zeitschrift fur Nationalokonomie, 34 (1974), PP. 309-326.

1986-48	I. Evers, M. Fischer P. Nijkamp	A cross-national comparative analysis of regional labour markets
1986-49	E.J. Davelaar P. Nijkamp	Spatial dispersion of technological innovan tion: the Incubator hypothesis
1986-50	W. Barentsen P. Nijkamp	Modelling non-lInear processes in time and space
1986-51	P. Nijkamp A. Reggiani	Analysis of dynamic spatial interaction models by means of optimal control
1986-52	J. de Groot	Dominicaanse republiek Landhervorming in de suikersector
1986-53	H. Clemens	Modernisering van de landbouw in socialistische perifere economieën
1986-54	A.J. Vermat	Groepsvorming bif rationeel gedrag
1987-1	P. Rietveld	On Multidimensional Inequality Comparisons
1987-2	H.J. Blerens	A consistent Hansman-type Model Speciflcation Test
1987-3	H. Visser	A Survey of Recent Developments in Monetary Theory
1987-4	E. Eeftink D. Kore	Externe versiaggeving van beleggingsinstel11ngen
1987-5	Pitou van Dijek	Cransforming the trade and industrialization regime in developing countries
1987-6	Pitou van Dijek	The strong factor-intensity assumption reconsidered
1987-7	P. van Dijek en H. Verbruggen	The gains from trade for developing countries reconsidered
1987-8	H. Visser	Nacroeconomische aspecten van bedrijfs-ecoromisch toezicht
1987-9	$\begin{aligned} & \text { F. van der wel } \\ & \text { Th. de Wit } \end{aligned}$	Stelselwijzigingen in de jaarrekening: verslag van een empirisch onderzoek
1987-10	J. de Groot H. Clemens	Agrarian labour market and technology under different regimes: a comparison of cuba and the Dominican Republic
1987-11	I.J. Steyn A.F. de Vos	Structural time serles models for trends

1987-12	3.P. de Groot	Collective Ride-Farms in the Dominican Republie
1987-13	R.W. Veldhutzen	Valuta Management en Management Control
1987-14	J. Koelewijn	De achtergronden van het verdwijnen van de zelfstandige hypotheekbanken in de jaren tachtig
1987-15	H.C. Tijms	A quick and practical apporximation to the waiting time distribution in the multi-server queue with priorities
1987-16	H.C. TIJms	Educatieve Operations Hesearoh Software: Wis en Waarachtig
1987-17	F.c. Palm and C.C.A. Winder	The life cycle consumption model under structural changes in income and oroving planning horizons
1987-18	H.J. 8ierens	Basic probability theory
1987-19	H.J. Bierens	Convergence
1987-20	H.J. Blerens	Introduction to conditioning
1987-21	H.J. Bierens	Nonlinear parametric regression analysts
1987-22	H.J. Blerens	Tests for model misspecification
1987-23	T. van der Meer	New perspective on price indices
1987-24	S. Flejterski	Theoretische Aspecten van de Exportdiversificatie
1987-25	J. Rouwendal	A note on discrete cholee under uncertainty
1987-26	P.H.M. Ruys en G. van der Laan	Computation of an industrial equilibrium
1987-27	H.G. Eijgenhuijsen J. Koelewijn H. Visser	Groelbelemmerende factoren en de rol van fintanciele instellingen blf de financiering van Investeringen
1987-28	J.C.W. van Ommeren	Asymptotically exponential expansion for the walting time probability in the single server queue with batch arrivals
1987-29	R.D. Nobel	Practical approximations for finite-buffer queueing models with bateh-arrivals
1987-30	H. Linnemann C. van Beers	Measures of export-import similarity, and the linder hypothesis once again
1987-31	W. van Lierop H. de Neef	Dynamic Analyseg with loglinear and disaggregate choice models

