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Summary

In this note we discuss the PUM, which is a demand system consisting of
polynomials in income of degree N with coefficients being functions of
prices. In particular, we derive the general forms of these coefficients
for arbitrary wvalue of N, when the system should display wutility

maximization under a budget restriction.

1. Introduction

If a polynomial demand system can be written as:

(1.1) g (P,¥) = o (P) + ¢  (BYY + ¢, (PIY? + ... + (DY
with %k=1,...,K,
where q, = quantity consumed of commodity k,
P, = price of k,
p = vector of all prices p,,...,p; and
= "income" to be allocated to goods 1,... K,

and the ¢, (p) are functions of prices such that the conditions of addi-
tivity, homogeneity and utility maximization are satisfied, we call it a

PUM system (Polynomial demand system based on Utility Maximization).



Additivity requires

K
(1.2) % Pl = V-
k=]

For homegeneity the coefficients ¢ (p) should be homogeneous of degree -
n for all n = 0,1,...,8 and all k. Utility maximization requires that the
K& (N+1) matrix G(p)={c,_ (p)] is such that the Slutsky matrix S=[s, ]
with s, =dq, /dp,+q, .9¢, /0y is symmetric and negative semi-definite. Below
we will show the implications of the conditions of additiviey,
homogeneity and symmetry for the functions ¢, (p). The implications of

the negative semi-definitiveness are not analyzed here.

Our line of reasoning is as follows:

First, we prove that for all n,x = 2,...,N the ratio o =c, (p)/c,,.(p) is
independent of k. This means that the last N-1 columns of C(p) are
proportional, given p. Hence C(p) has a ramk that is at most 3. This
strong result is derived by Gorman [1981l] in a more general context. For
our special case {1.1) a much simpler proof is available.

Second, we simplify (1.1) in assuming, that all functioms ¢, are zervo.
For this simplified system we shall derive the implications of the
symmetry condition for functions ¢, . The K*N matrix of coefficients of
the simplified system will be called " (p).

Third, noticing that the matrix ¢* (p) contains at most two independent
columms, the first, called c!(p), and, say, the last one, called cN(p),
we provide a lemma (lemma 2) which gives us the specifications of these
two columns.

Fourth, we specify the remaining columns of G“(p), i.e. we specify the
factors of proportionality a , between each of these columns and M p).
Eiggh, we return to the system (1.1).

In the next section we state the above-menticned lemma, preceded by lemma
1 that helps to simplify our presentation. In section 3 we present our

result; we end with a short discussion in section 4.

2. Two lemmas

In analyzing Slutsky symmetry lemma 1 appears to be useful.



Lemma l; (Inverse Young theorem.) If £ .fk are functions of the

100"

vector p=(p,,-..Pg) Wwith continuous first derivatives such that for each
function £ with k=1,...,K and for all vectors p from a certain domain D
and for all k,m=1,.,.,K.

af (p) _ 4f (p)
(2.1) 5 =,

ki

then there exists a function F of p,,...,p; such that for all p € D and
all k=1,...,K

_ 3F(p)
(2.2)  £,(p) = “géf—-

Proof: see Van Daal and Merkies (1984, pp 137-139].
The announced second lemma is:

Lemma 2. The demand system

{2.3) g = 9 (DY + B (P

with h = 2,3,..., is compatible with utility maximization if and enly if

the ¢, and the ¥ are such that (2.3) can be written as:

Ol o

da ) !
(2.8) @ =35 * @ G- T

where a(>0) and H are functions of prices that are homogeneous of degree
1 and 0 respectively and, furthermore, a and H are such that the corre-

sponding cost of utility function

1

(2.5)  c(p,u) = a(eH-u)® ,

with ¢ = 1-h, is concave.



For ease of exposition we omitted the arguments p of the functions a and
H, just as we will do helow for the functions v, and ﬁk. Note that,
because of the budget restrietion, the case that all functions ®, are

zero cannot occur; this means that the function a cannot be a constant.
Proof: The Slutsky element s, of (2.3) is a polynomial in y of the form
(2'6) T + ﬁkmyh + Tem y2h-1’

it is symmetric in k and m if symmetry holds for all three coefficients.
It turns out that v, 1is equal to h¢k¢m and, therefore, is symmetric in k
and m. Symmetry of the other two coefficients requires the fulfilment of
the following two identities:

7 S, _ S,
(2.7) 5p. = B,

ad a
2.8) e+ (e = Pt oD g g,

for all k and m.

Because of (2.7) and lemma 1, there is a function F of prices such that

for all Kk =1,...,K the functions ®,,.--,9 can be written as:

(2.9) @ = Q%éﬁl
k

L

or, taking F(p) = log a(p) with a(p) > 0 for all p,

(2.10) o, =9i0g8 _ %



-5 .

hence a is homogeneous of degree 1 in prices. Inserting (2.10) into (2.8)

and multiplying the result with aP ! yields:
. n-1 9%, . n-2 8a_ . _ _n-1 8% _1yoh-2 da_
(2.12) a = + (h-1) a 5, ¥ = a 55: + (h-1)a 35y By

oxr

(2.13) 5%— (a1 y ) = % (a9 ).

Hence, because of lemma 1, there is a function H such that for all

k=1,...,K the functions #, obey:

o

h-1 -
(2.16) &7y = G

For this function H the budget restriction implies:

(2.15) S pa* Tty =T p 3 =0,
k Py

hence H is homogenedus of degree zero. This leads to (2.4),

Shephard’s theorem applied to (2.53) gives also (2.4).

Remarks

1. Note that (2.4) and (2.5) are not violated if we transform H first by
some arbitrary differentiable function ¥ of only one variable. Then we

write 8H/3p, .f(H) instead of 3H/dp, where f = F', or, more explicitly,
Pr k Y

(2.16) ¥ = 51];—r % £(H).

Although this does not entail more generality we shall need it in the

next section.

2. In fact (2.4) holds for each h € R that is unequal to 1. The cost of

utility function is, more general,



1l

(2.17)  o(p,y) = a(eH + sgn «.0)°

where sgn ¢ = + 1 1f ¢ > 0 and -1 if ¢ < 0. If ¢ > O then H is the

minimum level that u can attain and if £ < 0 then ¢H is 'blisgs-level’.

3. Three theorems

Theorem 1. The rank of the matrix C(p) of coefficients of the system
{(L.1) is at most 3.

Proof. Omitting the arguments of all functions from now on and indicating
differentiation with respect to a price p, by an additional index m

preceded by a comma, we can express the Slutsky element s, of (1.1) as
£ollows

3.1 Sem = (Cxa.m * C%1,m Y- tCyn ¥+

+ [cmn + cm1y+...+cmHyN][ck1 + 2¢,, y+...+Negy yN'l).

This is a polynomial of degree 2N-1. Slutsky symmetry requires that all
coefficients are separately symmetric in k and m for all k,m = 1,...,K.
For the proof of theorem 1 we only need the last N-1 coefficients.

Therefore, we write s, as follows



K
skm - E qkm: yx +
£=0

+ " (Negy cp, +(N-1)ey (y-1, Cpat---+3%; Cuen-1) +2¢y 00y )+

' H-n-1
+n s
+ 3" L (N-1) 4oy Cp(n+r+ir T

i=p

. 2N-4 ) A
+ v (Wey Coen-2) T F-1)ep w1y Cuem-2y tE-2I¢ (gonyCan-15t

(3.2) + (N-3)cy y-3, cmN)J+

¥-3

+ ¥ (Ney Coem-2y t N-1)eg w1y Cpey-ry FF-2)0 oy, oyt
2N-2

+y (Ney Cacn-1y F-L)ey (yoq, Cap) ¥

+ 7T Moy cpy

The coefficients of y2"°! are always symmetric. Symmetry of the
coefficients of y2¥ 2 requires

(3.3) WNegy ¢ug-1y + (V-1 yo1y Cqy = Negy Spqy-1y + (N-1dep yoyy &y

or

(3.4) ¢y Cuen-1) = Cax Ck(n-1)-

This identity.implies that we always must have, for all k=1,...,K,
(3.5 eiy-1) ™ Fw-1r)ukn>

where X y-138 is a function of prices that is independent of k.
The coefficient of yzN'3 of (3.2) consists of three terms of which the
middle one is symmetric; hence the sum of the other two terms has to be

symmetric which leads to the requirement Cry Cm(m-27 = CuuCk(n-2)r ©OF

(3.6) Sy (n-2) = %(x-2)8n>

for all k=1,...,K with e N-23N another function of prices that is



independent of k. Inserting (3.5) and (3.6) into the coefficients of y?¥~
“ leads to the conclusion that only the first and the last term of these
coefficients are non-symmetric. This leads to a ratio between the c  y_,,
and c,, that is a function e y_,,y of prices independent of k. Continuing

this process of substitution until the term with ¥"*' leads to

(3.7) E:? - a_y
for all k-=1,.,..,K and all n = 2.

Alternatively written, we have for all n=2,...,N-1

C1a 1y
(3.8) . = o,y .,
cy —

Kn KN

which shows that all columms of the matrix C(p) exXcept the first two are
dependent wupon he last one. This means that each row k of C(p) is
determined aftex Cpr Ccgs Gy and a , have been cheosen, i.e. C(p) has a

rank that is at most 3.

Theorem 2. The most general form of a utility consistent demand system

that is a polynomial in income without a constant term is

1 3a T _1 ¢H
(G.9) @Y= 5V * L @ 5pm LAY,

where a is homogeneous of degree 1 in prices, H of degree 0, and where
the fn(n=-2,...,N) are arbitrary functions of H; in addition, all these
functions have to be such that the second-order conditon of negative
semi-definiteness of the Slutsky matrix is fulfilled.

ggggfz Because of theorem 1 we can write Cyn = % yuCyy for k=2,...,N-1;
hence (1,1) with Co = 0 becomes

(3.10)  q(P.,y) = ¢y ¥+ @y %Nyh'%ucm'f+””mw-nﬂ%uw-”

+ ooy



JLf all functions e, are zero (3.10) coincides with (2.3) and according

to lemma 2 also with the special case of (3.8) with £ (H)=0 for

n=2,...,N-1, provided the ¢,, and the ¢, are:
1l da
(3.1L) Cr1 —EEE;
and
1 @&H

(3.12) oy -;r-'rafn(ﬂ),

for all k=l,...,K, where a (non-zero) and H are functions of prices,
homogeneous of degree 1 and 0 respectively and £, is ar arbitrary
function of only one argument with Fy, as a primitive function; see remark
1 after lemma 2, So (3.9) cannot hold in general unless (3.11) and (3.12)
can be satisfied. We will now show that, if this is the case, the wvalues

of a , must satisfy

(3.13) ® uCen ™ -ef‘—'l_ggxfn(ﬂ)
for n=2,...,8-1, or, in view of (3.12)

£, (H)

= ¥-n

{3.14) a = a _f;ﬁ)

In elaborating the Slutsky coefficient we will write a, instead of «

from now om. As from (3.7) ¢ maackn/apm=3(anckn)/apm=anc
we may write:

H

xi,m T % .o Sy

R . R N
Skm - z Ckn,myn * Z cmnyn z n ckn yn t
n=1 n=1 n=1l

. 2
™ Cy,aY * E“zckn,m t %o CkN}Y oot

+ [“u-1 Cen,m ¥ %-1,n ) YO A Ckn_mYN + (ep,7 + aye yvi+.. .+

1

N- i
T Oy CunY T Cun¥ ).
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ep 1t 2o, gyt AM-Dag_ e,y F + Ve v} =
= ¥(e1,0 * Cx1Car)¥

(3.15) + Yz[azckn,m +oay o Oy F 2, Sy Cpy F oA, Oy ) F

3 - 2
¥ (aackN,m ooy g Sy ¥o3ag Gy epy + 2(@)" gy ey * ooy Sy ckl) *

) n-2
+ ynEanckN,m R T T R o 121 (n-1) @,y o )cy Sy +

* an cmN ckIJ *

) N-2
+ ¥ [ckN,m+ NeewCny +121 (N-D)ey ., 2410y Son

28-1
+ cmchl) % Z okmr yx_
r=l+1
Note that for all k.,m and xr=N+l,...,2N-1 we have Oy me=Cnrr Pecause of

theorem 1, hence we now only need to establish the symmetry of the first
N terms, because the last N-1 are already symmetric. The first term of
the last member, that with v, is symmetrie in k and m because of (3.11).
It can easily be seen that the terms with ¥° for n=2,...,N-1 are

symmaetric if and only if for all these values of n

(3.16) &, ey o * O Oy F D@ Gy Sy F &, Cuy Gy

= X CaN,k + @,k Can tna, Con S e Gy Cpy
Rearranging this and using (3.11) gives

dla,c o) , n-1 da _d(a.cy)  n-l da
(3.17) 5o+ B o (@) e =y

(ancmn) .

Multiplying this with a® ! we see that (3.17) implies:

n-1 n-1
(3.18) d(a - @ ¢ ) _ d(a ; & C..)
P Py

This means, according to lemma 1, that there are some functions G of
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prices such that for-all k-l,...,K and n=2,...,/N-1:

1 aG

n ]
(3.19) a” e ey 55: .

Combining this with (3.12) gives

(3.20) at"lq —pep w95,

a N~ T Py Py
Hence for all n=2,...,N-1 we have
aF, (H) aF, (1) aF, (H)
dp dp apy
(3.21) 1 - Z =,,.= .
3G, 3G, 3G,
ap, ap, 3pg

Consequently, Fy(H) and G are functionmally dependent, i.e there

functions-@n and LR such that

(3.22) G =@ (F,(H)) = ¥_(H);

see, e.g. Burkill an Burkill (1970). Let ¥ be the derivative of ¥ with

respect to H. Relatioms (3.20) then become

an_
apyg

¥

(3.23)  fex £, () 2—;‘: - »_(H)
for all k=Ll,...,K. Hence

(3.24) o =a"""f (H)/£, (H)
with fn(H)- ¢n(H).

This proves the theorem.

are

The general case (l.l1), with a constant term, can now easily be treated,

Because every polynomial in y can also be written as a polynomial in y-z,

where z is arbitrary, we can prove:
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Theorem 3. The most general form of a utility consistent demand system

whose equationms are polynomials in income y is

ad 1 3a i 1 @8H
3.25 = S = = (y-0)+ — f (H -H)®,
(3.25)  qu= G-+ I WO L o FHpm R (-0

where a and # ave linear-homogeneous functions of prices, H is a zero
homogenous function of prices and the f are functions of only ome
argument; all these functions have to be such that the matrix of Slutsky

elements is negative semi-definite.

Proof

As  (3.25) appears to satisfy additivity, homogeneity and the
integrability conditions it is PUM. In order to prove the necessity of

(3.25) consider the system

N
(3.26) g =P + ) o (y-0)7,
n=1

where k = 1,...,K, with ¥ , ¢, and ¢ functions of p only. First, we
shall show that for (3.26) being PUM it is necesary that # is linear-

homogeneous in p. Then we apply theorem 2 to show that the ¢, have to
have the forms found in (3.25) and, subsequently, we show that each Y

has to be the derivative of § with respect to p, .

Applying Euler's theorem on homogeneous functions to (3.26) yields the
following identity in p and y:

19 K H )
m-gl pm }bk,m +m§1 ngl pm cku,m (Y'E)n*'
(3.27>
§ 99, § r-1 3 n-1
-2 Pn 3p ne, (v +yYne, (y-H)P =0,
m=1 m n=1 n=1

where, again, differentiation of the ¥,  and the Cyn with respect to p, is

indicated by an index m preceded by a comma. The left-hand side of (3.27)
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can be considered as a polynomial in y of degree N. The identity can,
therefore, only be fulfilled if all coefficients of this polynomizl are
zero. The coefficient of ¥' is equal to

(3.28) L P, Sy.m * Negy = 0.

This implies that ¢ , is homogeneous of degree -N and, because ¢, ,; may be
identically zero, c; y_,, must be homogeneous of degree -(N-1) and so on.

About the coefficient of y' ! we can state:

38
(3.29)  -NO L Py Sy, - N oy L Py ap- - ML) boyy + L PuCrcN-1).m F
m m m m

+ (N-1) ¢y (y-1y = 0.

Due to the homogeneity of ¢,y and ¢, ,_,, this is equivalent to

a8
(3.30) -Ney, Lo, Fp- t N fog = 0,
m m

or

a8
3.31 8. -y,
( ) Epm 3o,

Hence & is homogeneous of degree 1 in p.

As (3.26) is also PUM for #=0 and all ¢k=0 (identically) we infer from
theorem 2 that

1 da
(3.32) c = = —
Tl a dp,
and, for n=2,...,N,
H
(3.33) ckn =anL_r‘g‘E fn(H).

To prove that ¥ = 38/dp, we need Slutsky symmetry. The Siutsky element
Skm LOT (3.26) obeys
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(3.36) s =g b, gHom vy + T, -0+

- o Ime (y-0)°7 4+
n

+ (P, * L e (y-0)") Y one (y-6)°7E =
n n

- as -
= Sgm T ¢k,m + (wm - apm)'g nckn(y-ﬁ)n L,

Note that sy, equals the second member of (3.13) with y replaced by (y-

). Because of theorem 2 we must have 5,,=85,,: Hence the remainder of

(3.34) must also be symmetric in k and m. This remainder is a polynomial

in v of degree N-1, hence all its coefficients have to be symmetric. For

the coefficient of y* ! this means for all k and m = 1,...,K:
aé N gH as N 3dH
(3.35) (ﬁ‘m = apm) aN'l apk fN (H) [Tbk - apk aN-l apm fN (H)

where we substituted for ¢, the form that it must have according to
(3.33). From this we get

88 5 oH

(3.36) (¥, - 35 oo,

a6 dd
[ % apk) apm

This identitiy has to hold for any funetion H that is homogeneous of

degree zero. This is only possible if for all m = 1,...,K
a4
(3.37) Wy = G

This proves the theorem,

&, Goncludiqg remarks

According to Welerstrasz’ theorem every function can be approximated
uniformly close by a polynomial. The advantage of the polynomial choice
is that it satisfies the theorem of Nataf on aggregation. Above we have

derived the constraints that should be imposed upon a polynomial demand
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function if it must sétisfy the requirements of utility maximization. The
pelynemials are not the only functions that satisfy Nataf. The functions
of the Nataf class are of the form; see wvan Daal and Merkies [1984,
p.331.

(4.1) Qi ™ hjk [Z Prm (xjkm)]

where j refers to the individual, k to the commodity and m to the kind of
input, whereas h,, 1is an arbitrary monotonic function of one variable. A
subclass of (4.1) 1is the Gorman class, where h..jk is the identity
function, which may result after transformations h'jk(qjk) of the

outputs. From this Gorman [198l] derived the integrable c¢lass as the
class of funections that are generated by utility maximization and
therefore restricted to be integrable. Gorman also presented all possible
specifications of these integrable functions, see Gorman (1981, p.l6). If
homogeneity 1is also adopted, some of these functions drop out, see
Merkies and Van Daal [1987]. The relation between the various

possibilities is clarified in scheme 1 below.

. Cr T T T T T 1
| | oLal o
| | : s —
Nataf | Gorman { poly [ PUM L_fl J__ Gormans approximated
Class { class | nomialsl—— { | D | Integrable by
e = s - - - - e Finl
| | | & | class _ 3
| A
U I
| ® |
—
SCHEME 1

From the scheme the following relations appear:

Set of all functions ; A+B+C+D+E+F+G+H
Nataf’s class ¢ A+B+C+D+E+F+G
Gorman'’s class : A+B4+CH+D+E+F

Polynomial class . A+B+G+D
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PUM : C+D
Gorman’s integrable class : C+D+E
Weierstrasz-class 1 A+B+G+D

Welerstrasz-Gorman sub-c¢lass: B+C

Heineke and Shefrin class B

We have conjectured that the inverse of Weierstrasz' theorem ('any
polynomial can act as an approximation of some non-polynomial’) is true.
If this is not the case.we must split set A into two subsets one having
and one missing this property and the latter is then not contzined in the
Weierstrasz' class. The Weierstrasz-Gorman sub-class is obtained after
approximating each member of class E by a polynomial.

It should be stressed that we have imposed integrability requirements
upon our functions after we have selected a polynomial. Hence the PUM
class is a subset of the pelynomial class, but as this in its turn is a
subset of Gorman'’s class, the PUM is also a subset of Gorman’s integrable
class. We could also have started from the latter and derive from this
with reference to Weierstrasz theorem the polynomial class B + C + D,
Heineke and Shefrin {1986) show why we c¢annot guarantee to find an
integrable member of the polynomial class that is sufficiently close to
our demand function. In other words they show that the class, indicated
by (B) is not necessarily empty. So if our PUM demand is only an
approximated polynomial it may happen that it is not sufficiently close
to our actual demand function. Therefore to complete the set of demand
functions that are based upon utilitcy maximization, we need te look for
class B arising from non polynomial members of Gorman’s Integrable class,
that -if approximated by a poelynomial- end up in Heineke and
Shefrins’class.
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