serie researth memoranda

MIXED QUALITATIVE CALCULUS

AS A TOOL IN POLICY MODELING

Floor Brouwer
Peter Nijkamp

Researchmemorandum 1986-8
februari 1986

VRIJE UNIVERSITEIT
 FACULTEIT DER ECONOMISCHE WETENSCHAPPEN
 A M S TERDAM

Floor Broumer ${ }^{1}$
Peter Nijkanip ${ }^{2}$

1 Free University	2 Free University
Institute for Environmental Studies	Department of Economics
P.0. Box 7161	P.O. Box 7161
1007 MC Amsterdam	1007 MC Amsterdam

Paper presented at the American RCA Conference, Philadelphia, November 1985.

This atudy is supported by the Netherlands Organization for the Advancement of Pure Research (zWO), project-number 46-079/46-125.

MESYRTCH

Qualtative calculus of policy models is an appropriate method for poliey Inpact analyeds in case of inpreciee informetion concezning the structural modial parameters. the conditions of the so called sign-solvability analysis of a linear equation systan - with information represented by a positive (t), negative (-) or sero (0) inpect $=$ are strict, however.
In this peper, the relevance of gualitative calculus for urban policy modelling is ditacused.
In extension of the sign-solvability approach (with purely qualitative infor mation) will be dealt with in case of a mixture of qualitative and guantitative information. we will introduce the use of matrix decomposition methods, of theoreticaliy plausible parameter restrictions and of a topmown/ bottomup appronch fox sign-solvability. the ifgn-solvability approach is applied to a dynamic poliey simulation model of urban decline in the ketherlands, developed for the city of The Bague. Given the ingufficiently reliable data base for estimating the model in a conventional econcmetric way, qualitative calculus was used in order to infer conclusions regarding the direction of impacts of policy variables.

1. Inryopucrion

In recont yeart gualitative calcuivs has becom an increaringiy important tool in policy impact analysis. the analysis of qualitative relations in econcoic models has been originated by samulson in 1947 in order to examine - in a comparative tetic context - the effect on an equilibrium mituation due to changes in one or more of the exogencus variables (policy controls, e.g.). This analyeis, usualiy called gunlitative calculus; deale with policy impact models in which the relations between variables are anniyeed in a gualitative way, $1 . e$. when information on the \quad gign of the impact on some response variable is obtained from prior knowledge concerning the signs of the structural parameters in a model. In other words, only qualitative information about the directional relationships between variables in a model represented by a positive (+), negative (-) or sero (0) impact - is used without quantitative information about the values of the variables. \mathbf{A} gero impact denotes then abeence of prior theoretical relationship between a pair of variables. There are at least three main reasons for the develogment of qualitative calculus and its treatment of qualitative information in ecom nomic policy malyais.

- "Ordinarily, the economist is not in possession of exact quantitative knowLedge of the partial derivatives of his equilibrive conditions" (Samselson, 1947, $p \cdot 26$), because of the limited amount of suitable quantitative data.
- The gualitative information about the various jmpacts may have a more solid empirical basis than the functional model structure (or model specification) (see Lancaster, 1962).
- There may be difficulties in empirical practice to obtain precise or exactIy quantified information because of measurement problems to get the highlevel information, lack of time or simply lack of money to collect data (see also Nijkamp et al., 1985).

The main developments in the field of qualitative calculus took place in mathematics (see among others, Greenberg and Maybee, 1981; Maybee, 1980; Maybee and guirk, 1969), economics (see among others, Lady, 1983; Lancaster, 1962: Fdtschard, 1983) and ecology (Jeftries, 1974).

In many situations, the data base for policy impact analysis is moatisfactory in order to estimate the inpact parameters in an adequate way for instance, due to lack of appropriate time-series). Especially in case of dynamic behaviour of a complex system various livetuations may occur, which rellect anatimes asymetric behaviour during different time phases (for instance,
npowing and domewing phases in situations with structural changen). this 1nplies that conventional econcmetric techniques are not always appropriate tools, at ther usually astume tetble behspicur of parimeters. In order to deal with lack of reliable time sories, often airalation models are noed in order to analye various trajectorie of a ayetm (for inctance, an a responet to policy stiunius). An evident dieadvantage of this approach is the lack of falsifiabllity of the parameter values.

An alternative way of dealing with wak database is qualitative calcains. gaalitative methodological tools my be uned to "quantify" the impact of policy inftruments in teras of poeitive, negative or sero impacts. For axpple, the fmpacte variables on like demand for consumption goods and entrepreneurial atractivenes解 caused by a change in the eupply of intermediate services and in the supply of infrastructural facilities may be dancted in qualitative texms by meana of poaitive, negative or zaro changes. the firet ati of the present paper is to provide a concite introduction to sign-solvability analysis of model which is represented by atructural relationship $h(x, y)=0$ (see section 2). The structural relations encompass a vector I of endogenous variables and a vector x of exogenous variables. The information about the model (called the gualitative structure of the model) consists of two elemants, ∇ iv.z

- the causal structur determined by the first order derivatives of $h(x, y)=0$ with respect to variables x and y.
- the sign of the non-zero elements of the matrix of first order derivatives. Consider now a set of linear equations $A x+b=0$. Both matrix A and vector b contain gualitative information with cell-elements + , or 0 . The get of equations can be solved for the unknown vector x, given matrix A and vector b. This systen is called full sign-solvable when the cell-entries of the solution $x=-A^{-1} b$ (with cell-elements $t,-\infty x$) are defined in a unique way. In the past years necessary and sufficient conditions for full sign-solvability have been formalated in the literature (see, for example, Bassett et al., 1968) .

Theae conditions can also be interpreted in a graph theoretical way by means of signed directed graphe (or, shortiy digraphs) (see for example, yaybee and Greenberg, 1969). The reason to use a graph representation of the inpacts betmeen variables is that the conditions of sign-Boivability make use of graph-theoretic tools.

The sign soivability approach can be interpreted wa kind of overall sensitivity analysis as follows. If it is possible that the system ean be solved for x in a unique way whe a pector of eigis as the solution, this molution
will hold for all possible eardinal velues of the matriz a and vector b up to tholr tigns.

On of the major probleme in practical applications with porely qualitative information is caused by the severe restrictions inherent in identifying unimbiguous solutiont for the full signmsolvability proble. In this regard, adiftional informetion meatured on an ordinal or eardial seale my lend to partial sicpmalvable systens which are otherwise not oolvable in a purely qualitative sense. therefore, the second aim of the paper is an analysis of sign-solvability with mixed ievels of information. This approach makes uee of a mixture of qualitative and quantitative information. Various matrix decom position and permatation methods have recently been developed in the context of large and couplex economic tystems (aee for a discusion, Greanberg and Maybee, 1981). It will be shown that the approach with matrix parmatations is elso fruitevi for problems with mixed informetion. in extenalon of the Eignsolvability analysis with purely qualitative information is preaented in section 3 and is based on four points:
(1) a matrix decomposition and permutation procedure for sign-solvability analysis.
(ii) the use of a mixture of qualitative and quantitative information by means of a 80 called top-down and bottom-up approach.
(iii) the use of plausible parameter restrictions for signesolvability analysis in policy modeling.
(iv) same recently developed computer programs for sign-solvability analysif.

An application of sign-solvability analysis is presented in section. 4 for a dynamic urban planning model developed for the city of the thgue in the Netherlands.

2. SIGN-SOLVABILITY ANALYSIS

Sign-solvability analysis may be regarded as a specific form of a qualitative impactanalysis in policy modelling.

Consider a general economic impact model represented by n structural relations $h(x, y)=0$ with y vector of endogenous variables and x a vector of exogenous variables (including policy instruments). The atructural relations may be static ox dynaic in nature with elther linary or non-linear compo nents. The analysts of sign-solvability mans the identification of changes in endogenous variables in a qualitative way. (denoted by $t, \infty, 0$) due to ehanges in exogencus variables. Inis can in principle be obtained by totally
dieferontiating the above mentioned gystem:

$$
\begin{equation*}
\frac{\partial h}{\partial x} d x+\frac{\partial h}{\partial y} d y=0 \tag{1}
\end{equation*}
$$

or, equivalentiys

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{\partial h / 0 x}{\partial h / t y} \tag{2}
\end{equation*}
$$

The right-hand side of formia (2) conalete of two parts, Fiz. the inverea of $\partial \mathrm{h} \partial \mathrm{y}$ and thit inverse faltipliad with $\partial \mathrm{h} / \partial \mathrm{x}$. When both parts are naiquely deternined in a qualitative way, formia (2) is ealled tign-solvable.
A set of itnear equations, at apecific example of the abowe mentioned gene eral form of etructural relations, can be written in matrix notation as:

$$
\begin{equation*}
\Delta x=-b \tag{3}
\end{equation*}
$$

with a atrix of order nan with elements a (if,jwi,..an) while both x. and b are vectors of order nxi. The aolution of (3) 1s given by:

$$
\begin{equation*}
x=-A^{-1} b \tag{4}
\end{equation*}
$$

provided astrix a is non-tingular.
As anme matrix A and vector b contain qualitative information concerning the signs of the cellentries. Equation (3) is called full sign-solvable if the signs of the elements of vector x in (4) can be identified in andque way, and it may be interpreted in a way analogous to (2).

Full elgn-aolvability holds if and only if both the inverse of matrix a and the inverse maltiplied with vector b are detezmined uniquely. There is a number of matrix operations wich do not affect the analysis of full signsolvability (see also Iancaster, 1962), viz.:
(1) permatation of any two rows of both matrix A and vector b. This operation only changes the order in which the equations are written.
(ii) permatation of any two columns of either matrix A or vector b. In is operation only changes the order of the variables.
(iii) reversement of all signs in any row of both A and b. This operation multiplies both sides of an equation by a factor -1 .
(iv) reversement of all signs in any column of either A or b. this operation multiplies a variable by -1 .

The row and colum manipulations (i), (ii) and (iii) can be carried out without affecting the solution vector, while the final operation implies the sign-revergement of particular variable.

Necessaty and mufficient conditions for full mign-solvability of (3), with A non-singular, have been formilated by gassett at al., 1968. The conditions nake use of graph theoretic methode, with trpact: between variables represented by signed digraphe (directed graphe with oither a positive or a negative sign). Systom (3) is full sign-soivable if and oniy 12 the following
conditions hold.
(a) the diagonal eleants of A be all negative, $1 * 0_{1,}<0$ for all 1.
(b) if $i_{1}{ }^{申} 1_{2}{ }^{\circ} \neq \ldots 1_{k}(k>1)$ then

this condition means that all cycles in the matrix A of length at least two need to be nonopositive.
(c) $b<0$: the elements of vector b need to be non-positive.
(d) if bk <0, thon every path srom i tok is non-negative for ity. The row and colum operations (i) to (iv) are uetur for a diacussion of the conditions of sign-solvability. The first condition of sign-solvability may hold after one or nore row or colum permatations and ign reversements.
Conditions (a) and (b) are neceseary and sutiticient to deternine the inverse of the matrix A in a unique way, while conditions (c) and (d) guarantee a unique sign of the cell-antries from $A^{-1} b$ when conditions (a) and (b) hold. Conelder for example the following analytical representetion Erom a set of three Iinear equations with qualitative information about the impacts between variables:

$$
\left[\begin{array}{ll}
- & + \\
- & - \\
+ & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
- \\
0
\end{array}\right]
$$

The impacts of this system are presented in an equivalent way in pigure 1 by mieans of graphs with elements ($A,-b$).

Figure 1. A Graph Representation of a qualitative Model

All conditions for tull sign-aolvability hold in this example and the solution (4) becomes:

The change in the variables $x_{1} s x_{2}$ and x_{3} becona positive, givon the model structure regresented by matrix A and the signe of the exogenous variable in vector b.

Other applications of sign-solvability (in the field of, for example, regional econcmic and meromecononic modeling) can be fownd in moumer and vilkam, 1985; Lady, 1983; Lancaster, 1962; Maybee and guirk, 1969; idtechazd, 1980; Voogd. 1983.
The next section deals with sowe recent advances in the area of bign solvability with different levels of information (e.g. a mixture of purely qualitative and quantitative information about the impacts between variables).

3. FXYNSIOA OF THE SIGY SOLVABLLITY APPROACH FOR PURE GUALIYNTIVE
 mirormation

shi condttions for sign-solvability discussed in the previous section originated from meheanties. They have - in the framework of econonic modeling bean further exarined among othera for Mein's modol for the UBN (sece aleo Broumer ot al., 1985). shgnmolvability did even not hold for mon a mall dynanic national econcuic model for the USA with six equatione we will discues theretore some adjusted tools and research directions of the sign-solvability approach for policy modeliing, vis.:
(1) the use of matrix decomposition and matrix permatation procedures;
(ii) the use of plausible paraneter restrictions which may be inferred on theoretical groendsy
(1ii) the use of a tepwise procedure to include partmeter values from one or more equations which are based on prior information. this stepwise procedure makes a distinction between a socalled tog-down and bottonup approach;
(iv) the use of recently developed computer algorithns for gualitative İnear mysteme.
A number of matrix decomposition and matrix permutation procedures are developed for the analysis of sign-solvability (see also Maybee, 1981). A matrix A is called reducible if a permatation matrix P exists, to reverse rows and colums of the matrix A, such that A will be transformed in to A* with

$$
\mathbf{A}^{*}=\left[\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \tag{5}\\
0 & \mathbf{A}_{22}
\end{array}\right]
$$

with both matrices A_{11} and A_{22} are square matrices and 0 is a reromatrix. The transformation of λ into A^{*} is obtained by

$$
\begin{equation*}
A^{*}=P A P^{T} \tag{6}
\end{equation*}
$$

A matrix decomposition procedure makes a decomposition of matrix A into submatrices, just like for example in Formula (5).
When the matrix A is reducible, the sign-solvability approach can be dealt with in two steps, becauses

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \tag{7}\\
0 & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

©r:

$$
\begin{align*}
\lambda_{11} x_{1}+\lambda_{12} x_{2} & =b_{1} \tag{8}\\
\lambda_{22} x_{2} & =b_{2}
\end{align*}
$$

The necesanry and sufficient conditions for sign-solvability of vector x_{2} can be analyred independentiy from vector x_{1}. Vector x_{2} may be eign-solvable irrespective of whether vector x_{1} is sign-molvable (see also Giliy, 1984). The condftions of aign-solvability make nse of only qualitative information. Bowever, in empirical modeling situations additional cardinal informetion may often be available which can be used as well. sach plaurible information may be based on either logical. empirical or theoretical evidence. in oxmmple of plausible information is the share of coneumption in national incom which is not only positive but it should be also maller than one. As the signsolvability conditions make use of the signs of winors in the coefficient matrix, this information may be highiy relevant.

When such additional guantitative information will be used, it may be possible that an originally not sign-solvable aystem of equations becomes at least partially sign-solvable (see also Brouwer et al., 1985).
When limited information - in quantitative terms - is available about the 1mpacts between variables so-called top-down or bottom-up aproach may lead to interpretable modelling results. Both approaches are stepwise proce dures so as to assure that a qualitative system is sign-solvable in a number of steps.

The topmdow (or forward selection) approach implies that all equations are assumed to be represented in qualitative terms, so that we then may identify which and how many equations have to be estimated in a quantitative way in order to make the system sign-solvable.

The bottum-up (or backward elimination) approach starts with a couplete estimated model and attempts then to identify which and how many equations may be specified in qualitative terms in order to still guarantee sign-solvability. A main advantage of both the top-down and bottom-up approach is that policy models may become sign-solvable when a mixture of qualitative and quantitative information is used.

A FORTRAN computer algorithn to solve qualitative innear systems by means of a block recursive decomposition procedure has been developed and operationalized at the university of Geneva by gitschard (1980). The procedure however may become problematic for computational reasons, eapecially in case of complex dynamic economic models.

The qualitative analysis discussed in this aection will be now applied in the next section to a dynamic model of urban develorments.

The use of sign-solvability analysis will be iliuntrated in this section by neins of a dynomic mimalation model of urban decilne for the city of the Hegue in the ketherlands. Like many other citie in indnetrialised counteries, this city is exhibiting procest of decilne, in terms of population and jobe. It is however a major problem to select the appropriete (packages of) policy instrments needed to steer the urban evolution into a desired stable direction. Insight into the effects of policies for urban rencwal in also hompred due to the lack of an operational urban model, mainly caused by the underdeveloped state-of-thenart in the area of urban econometrics (see also Hutchinson et ai., 1985).
the fiuctuating pattern of this urban syeten since Norld war II makes it unfortunately almost imposaible to develop and estimate a satisfactory econo mptric model, as data on relevant key variables are not available and as there is no guarantee for a symetric behaviour during the upawing and downswing phases of urban development. This explains also the limited use of integrated urban models in policy practice; urban evolution is still a poorly understood phenomenon.

Conseguently, many urban policy models are not based on solid econometric procedures but on similation experiments. Forrester (1971), For example, developed a simalation model with five major state variables, viz. non-agrieultural investment, population, natural resources, pollution and agricultural investment. The policy impact model which will be discussed here is also a simulation model for urban dynamics. this model will be used as the basis for a qualitative calculus approach to urban dypamics.

Parameter and model validation in a conventional econcmetric way is problematic because of the a-symmetric pattern of urban evolution and the lack of sufficiently quantitative information.

In this context, sign-solvability analysis may be extremely relevant, as this method may be able to predict the qualitative (sign) impact of a policy variable, even if reliable cardinal values of impact coefficients are not available.

The model presented in this section has been used to assess the impact of public policy measures in the long-term evolution of the city. Orban develogment in time is mainly governed by attractiveness and dianttractivenean factore wich play essentially the role of pseudoprices in the model.

The atructure of the model is prenented in Pigure 2.

Figure 2. Structural Representation of an Wrban Development Process

This model, with first-order time lags which is linear in nature, is denoted in matrix terms as follows:

$$
\left[\begin{array}{ccccccccccc}
1 & -\alpha_{3} & -\alpha_{2} & 0 & 0 & 0 & 0 & 0 & a_{3} & \alpha_{1} & -a_{1} \tag{9}\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\gamma_{1} & -\gamma_{2} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -\delta_{3} & -\delta_{4} & -\delta_{1} & \delta_{3} & 0 & -\delta_{2} & \delta_{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\pi_{1} & 0 & 1+\eta_{3} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -x_{2} & 0 & x_{3}-x_{1} & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda_{1} & 0 & 0 & 1-\lambda_{1} & 0 & 0 & 0 \\
0 & \mu_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 1-\mu_{1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -v_{1} & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -\xi_{1} & 0 & 0 & 0 & 0 & -\xi_{3} & -\xi_{2} & 0 & 1
\end{array}\right]\left[\begin{array}{l}
a^{b} \\
\nabla^{a} \\
T \\
\lambda^{n} \\
c^{d} \\
p \\
\alpha^{a} \\
c_{s}^{s} \\
v_{s}^{s} \\
c^{s} \\
c^{d}
\end{array}\right]_{t-1}
$$

The model consists of 11 equations with endogenous variables characterized in the ffollowing way (see also Nijkamp and soffer-Beitman, 1979).

```
\(1=\) urban entrepreneurial attractiveness ( \(\mathrm{A}^{\mathrm{b}}\) );
\(2=\) demand for services ( \(\mathrm{v}^{\mathrm{d}}\) ),
3 = growth of economic base sectors (T),
4 = residential attractiveness ( \(\mathrm{A}^{\mathrm{N}}\) ),
\(5=\) total demand for consumption goods ( \(C^{d}\) ),
\(6=\) growth of the population size (migration incluced) (p);
7 = demand for housing ( \(w^{d}\) );
\(8=\) total supply of consurntion goods ( \(C^{9}\) );
\(9=\) supply of intermediate services ( \(v^{6}\) ),
\(10=\) supply of 1 abour ( \(\left(\mathrm{I}^{8}\right)\) )
11 : demand for labour ( \(L^{d}\) ).
```

The 11 equations represented in matrix form in (9) are explained briefly below.

The development of urban entrepreneurial attractiveness will be stimulated by a rise in the suppiy of labour and intermediate services, the growth of economic base sectors as well as entrepreneurial stimulation measures (equation 1 in (9)). The development of economic base sectors (equation 3) is determined by a growth of urban entrepreneurial attractiveness and the demand for services. The simulation model also describes the development of residential attractiveness which is related to the situation of the housing market, the urban labour market, the balance between demand and supply of consumption goods and the growth of population (equation 4). Total demand for consumption goods in equation 5 is related to the population size. The growth of population size (equation 6) is related to the supply of housing and is determined axogenously. The aupply of consumption goods will rise when the discrepancy between demand and supply becomes larger. The supply of intermediate services is a function of the difference between demand and eupply of auch services with a lag of one period (equation 8). The mupply of labour is determined by
the growth of population and the increase in the nober of eommears. FinalII, the demand for labour in equation 11 . is a function of the develognent of the growth of economic base sectors, the mupply of intermalate services and the mupply of consumption goods.

The paramoter values used in the simlation stage of wrom modeling for the city at hand are presented in Thble 1.

Table i. Parmeter values of an Urban Sinulation Model

	α	β	γ	6	ε	n	χ	λ	μ	v
1	1.0	0.9	0.4	1.0	0.9	0.2	1.8	0.5	0.5	0.75
2	1.0		0.5	1.0		0.9	0.5			0.2
3	0.75			0.75		0.02	0.02			0.2
4	2.0			2.0					0.5	

we will now analyze sign-solvability of the linear simatation model, viz: whether modelling results will be obtained which can be interpreted when only qualitative information or a mixture of qualitative and quantitative information is available. The colums of the matrix A are maltiplied by -1 , so that all main diagonal elements of the matrix sign (A) are negative, and the first condition of sign-solvability holds. This is one of the matrix operations mentioned in section 2 which do not affect the analysis of sign-solvability. The equations of the model represented above can be denoted by a matrix decomposition into subnatrices, viz.:

$$
\left[\begin{array}{ll}
\mathbf{A}_{11} & 0 \tag{10}\\
\mathbf{A}_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]_{t}=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]_{t-1}
$$

The matrices are denoted in qualitative torms by
$\operatorname{sign}\left(A_{11}\right)=\left[\begin{array}{llllll}- & 0 & + & 0 & 0 & 0 \\ 0 & - & + & 0 & 0 & 0 \\ + & + & - & 0 & 0 & 0 \\ 0 & 0 & 0 & - & 0 & + \\ 0 & 0 & 0 & 0 & - & + \\ 0 & 0 & 0 & + & 0 & -\end{array}\right], \quad \operatorname{sign}\left(\lambda_{21}\right)=\left[\begin{array}{llllll}0 & 0 & 0 & + & 0 & + \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \cdots & 0 & 0 & & 0 \\ 0 & 0 & 0 & 0 & 0 & + \\ 0 & 0 & + & 0 & 0 & 0\end{array}\right]$
and

$$
\operatorname{aign}\left(\lambda_{22}\right)=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & - & 0 & 0 & 0 \\
0 & 0 & - & 0 & 0 \\
0 & 0 & 0 & - & 0 \\
0 & + & + & 0 & -
\end{array}\right]
$$

8ign-solvability of the ilnear syaten of equations in (9) can be analysed in two stops, because of the matrix decomposition procedrre represented in (10), i.e. the variables 1 to 6 in the firat step and the other variables in the second atep.

A graph representation of the impacts between the variables ito 6 is given in Figure 2. The variables y_{1} to Y_{6} denote the endogenous variables for period t and b_{1} to b_{6} denote these variables with a lag of one period.

Figure 3. Graph Representation of gualitative Impacts between Variables.

The matrix \mathbf{A}_{11} can be partitioned into two independent seta of variables, Viz. a get with the variables (A^{b}, V^{d}, T) and a get with the variables (A^{*}, C^{d}, P). We will discuss now the four conditions of sign-solvability. The first condition holds for all variables in Figure 3, viz, all main aiagonal elementa of the matrix A_{11} are negative.
The second condition, $v i z$. that all cycles of length at least two are nonpositive, does not hold tor anyone of the two graphe.

We may conclude from these two conditions of sign-solvability (one of them doas not bolaj, that the inverse of the matrix A_{11} with only qualitative information, is not uniquely defined. The conditions three and four do not hold
for the graph reprecentation and wo may conclude fron this that the 11noar eysten wich corresponds to Figure 2 with only qualitative informetion is not siga-001vable.

In the above we discugsed that the dynmic simiation model is not aign-solve able. Hownver, a sytem which is not ign-aolvable with pure qualitative infozmetion, may become Eign-solvable when a matere of qualieative and quantitative information is available. The quantitative information may be ob tained frow theoretical evidence, prior knowledge or an estimation procedure. Conaider for example the parameter values of the equations 1 to 6 , prosented in whie i. The ign-values of the reduced form for these variables then becomest

$$
\left[\begin{array}{c}
\lambda^{b} \tag{11}\\
\nabla d \\
T \\
A^{w} \\
C^{d} \\
P
\end{array}\right]_{t}=\left[\begin{array}{llllll}
+ & - & + & 0 & 0 & 0 \\
0 & - & + & 0 & 0 & 0 \\
0 & - & + & 0 & 0 & 0 \\
0 & 0 & 0 & + & - & + \\
0 & 0 & 0 & + & - & - \\
0 & 0 & 0 & 0 & - & +
\end{array}\right]\left[\begin{array}{l}
\lambda^{b} \\
\nabla d \\
T \\
A^{w} \\
C d \\
p
\end{array}\right]_{t-1} .
$$

The signs are defined uniquely because of the guantitative information about the parameters. the second part of formula (10) then becomes:

$$
\begin{equation*}
A_{21} x_{1 t}+A_{22} x_{2 t}=\mathbf{B}_{21} x_{1, t-1}+B_{22} x_{2, t-1} \tag{12}
\end{equation*}
$$

and

$$
x_{2 t}=-A_{22}^{-1} A_{21} x_{1 t}+\vec{A}_{22}^{-1} B_{21} x_{1, t-1}+\mathbf{A}_{22}^{-1} B_{22} x_{2, t-1}(13)
$$

with $x_{1 t}$ and $x_{2 t}$ the variables i to 6 and 7 to 11 successively, for period t. The right-hand side of formia (13) consists of three parts and will be solved with the help of the reduced form representation in (11) and the qualitative impact values for the other variables. The sign-values for these variables then become:

The results from equations (11) and (14) show, for example, that positive aign for the demand for consumption goods (c) during period t-i will lead to a negative change in the next period for the variables: residential attractiveness (A^{*}), demand for consumption goods ($C^{(}$), growth of popu lation size (P), supply of consumption goods (C^{6}), and the demand for labour (Id) and it has no effect on the other variables.

We can conclude from the above that the system of linear equations is not Fully sign-solvable when quantitative information about the equations 1 to 6 is available: a number of cell-entries in (14) are stili undetermined with regard to their gign, $\nabla 1 z$. the cell-entries (1,6) with regard to the matrix coresponding to variables 1 to 6 and the cell-entries $(5,2)$ and $(5,3)$ with regard to the matrix corresponding to variables 7 to 11 . The use of a top-down/bottom-up approach will therefore now be discussed to deal with a mixture of qualitative and quantitative information. The inverse of the matrix A_{11} is (10) can be partitioned into

$$
A_{11}=\left[\begin{array}{cc}
\lambda_{111} & 0 \tag{15}\\
0 & \lambda_{112}
\end{array}\right]
$$

with

$$
A_{111}=\frac{1}{1-\beta_{1} \gamma_{2}-Y_{1} \alpha_{2}}\left[\begin{array}{ccc}
1-\beta_{1} Y_{2} & a_{2} \gamma_{2} & \beta_{2} \tag{16}\\
\beta_{1} \gamma_{2} & 1-\alpha_{2} \gamma_{1} & \beta_{1} \\
\gamma_{1} & \gamma_{2} & 1
\end{array}\right]
$$

and

$$
n_{112}=\frac{1}{1-n_{1} \delta_{4}}\left[\begin{array}{ccc}
1 & 0 & \delta_{4} \tag{17}\\
n_{1} \varepsilon_{1} & 1 & c_{1} \\
n_{1} & 0 & 1
\end{array}\right]
$$

The inverse of the metrix λ_{22} in (10) with qualitative information 1s deter mined uniquely and becomea:

$$
A_{22}=\left[\begin{array}{lllll}
-1 & 0 & 0 & 0 & 0 \tag{18}\\
0 & - & 0 & 0 & 0 \\
0 & 0 & - & 0 & 0 \\
0 & 0 & 0 & - & 0 \\
0 & - & - & 0 & -
\end{array}\right]
$$

The decomposition of the matrix A_{11} in (15) shows that the matrices A_{111} and A_{12} can be analyzed separately. This conclusion shows that in the framework of this paper sign-solvability with a mixture of qualitative and quantitative information for the two gets of variables $\left(X^{b}, v^{d}, T\right)$ and $\left(A^{w}, C^{d}, P\right)$ can be analyzed separately.
The reaults for the top-down/bottomup approach are presented in mable 2. We made use of the reduced form model representation as follows:

$$
\begin{equation*}
x_{1, t}=x_{1} x_{1, t-1} \tag{19-a}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{2, t}=M_{2} x_{1, t-1}+M_{3} x_{2, t-1} \tag{19-b}
\end{equation*}
$$

The undetermined signs of the cellentries from the matrices H_{1}, M_{2} and M_{3} are presented in Table 2 in columas 2,3 and 4 successively. Colum in in Table 2 presents the parameter: for which quantitative information is used. plausible parameter information has been used as well, viz. $1-\lambda_{1}<1$ and $1-\mu_{1}<1$, or $0<\lambda_{1}<1$ and $0<\mu_{1}<1$.
the cell-antries of the matrices M_{1}, M_{2} and Ms which are defined for their elgns are the ones presented in equations (11) and (14).
mbie 2. Mued Invel of Information and Sign-solvability

Mnalyais	guantitative information	Unknow tiens of call-antries		
		Matrix M1	Matrix K_{2}	Natrix M3
1		$\begin{aligned} & (4,4),(4,5),(4,6) \\ & (5,4),(5,5),(5,6) \\ & (6,4),(6,5),(6,6) \end{aligned}$	$\begin{aligned} & (1,4),(4,5),(1,6) \\ & (4,4),(4,5),(4,6) \end{aligned}$	$(5,2),(5,3)$
2	$\left\{\begin{array}{l} a_{2}, \alpha_{2}, a_{3}, a_{4}, \\ s_{1}, \gamma_{1}, \gamma_{2}, \xi_{1}, \xi_{2}, \xi_{3} \end{array}\right.$	$\begin{aligned} & (4,4),(4,5),(4,6) \\ & (5,4),(5,5),(5,6) \\ & (6,4),(6,5),(6,6) \end{aligned}$	$\begin{aligned} & (1,4),(1,5),(1,6) \\ & (4,4),(4,5),(4,6) \end{aligned}$	
3	$\left\{\begin{array}{l} \alpha_{1}, a_{2}, \alpha_{3}, \alpha_{4} \\ \beta_{1}, \gamma_{1}, \gamma_{2}, v_{1} \end{array}\right.$	$\begin{aligned} & (4,4),(4,5),(4,6) \\ & (5,4),(5,5),(5,6) \\ & (6,4),(6,5),(6,6) \end{aligned}$	$\begin{aligned} & (1,4),(1,5),(1,6) \\ & (4,4),(4,5),(4,6) \end{aligned}$	$(5,2),(5,3)$
4	$\alpha_{1}, \alpha_{2}, \omega_{3}, a_{4}$, $\beta_{1}, Y_{1}, Y_{2}, X_{1}, X_{2}, X_{3}$	$\begin{aligned} & (4,4),(4,5),(4,6) \\ & (5,4),(5,5),(5,6) \\ & (6,4),(6,5),(6,6) \end{aligned}$	$\begin{aligned} & (1,4),(1,5),(1,6) \\ & (4,4),(4,5),(4,6) \end{aligned}$	$(5,2),(5,3)$
5	$\left\{\begin{array}{l} n_{1}, n_{2}, n_{3}, \\ \delta_{1}, \delta_{2}, \delta_{3}, \delta_{4} \end{array}\right.$	$\begin{aligned} & (1,1),(1,2),(1,3) \\ & (2,1),(2,2),(2,3) \\ & (3,1),(3,2),(3,3) \end{aligned}$	$\begin{array}{r} (1,6) \\ (5,1),(5,2),(5,3) \end{array}$	$(5,2),(5,3)$
6	$\left\{\begin{array}{l} n_{1}, n_{2}, n_{3}, \varepsilon_{1}, \varepsilon_{1} \\ s_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \varepsilon_{1} \end{array}\right.$	$\begin{aligned} & (1,1),(1,2),(1,3) \\ & (2,1),(2,2),(2,3) \\ & (3,1),(3,2),(3,3) \end{aligned}$	$\begin{array}{r} (1,6) \\ (5,1),(5,2),(5,3) \end{array}$	$(5,2),(5 ; 3)$
. 7	$\left\{\begin{array}{l} n_{1}, n_{2}, n_{3}, \delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \\ \varepsilon_{1}, x_{1}, x_{2}, x_{3} \end{array}\right.$	$\begin{aligned} & (1,1),(1,2),(1,3) \\ & (2,1),(2,2),(2,3) \\ & (3,1),(3,2),(3,3) \end{aligned}$	$(5,2),(5,3)$	
8	$\left\{\begin{array}{l} n_{1}, n_{2}, n_{3}, \delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \\ \varepsilon_{1}, \xi_{1}, \xi_{2}, \xi_{3} \end{array}\right.$	$\begin{aligned} & (1,1),(1,2),(1,3) \\ & (2,1),(2,2),(2,3) \\ & (3,1),(3,2),(3,3) \end{aligned}$	$\begin{array}{r} (1,6) \\ (5,1),(5,2),(5,3) \end{array}$.
9.	$\begin{aligned} & n_{1}, n_{2}, \pi_{3}, \delta_{1}, \delta_{2}, \delta_{3}, \delta_{4} \\ & \varepsilon_{1}, v_{1} \end{aligned}$	$\begin{aligned} & (1,1),(1,2),(1,3) \\ & (2,1),(2,2),(2,3) \\ & (3,1),(3,2),(3,3) \end{aligned}$	$\begin{array}{r} (1,6) \\ (5,1),(5,2),(5,3) \end{array}$	$(5,2),(5,3)$
10	$\left[\begin{array}{l} a_{1}, \alpha_{2}, \alpha_{3}, a_{4}, \beta_{1}, \gamma_{1}, \gamma_{2}, \\ n_{1}, n_{2}, n_{3}, \delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \varepsilon_{1} \end{array}\right]$		$(1,6)$	$(5,2),(5,3)$
11	$\left\{\begin{array}{l} a_{1}, a_{2}, \alpha_{3}, \alpha_{4}, \delta_{1}, \gamma_{1}, \gamma_{2}, \varepsilon_{1} \\ n_{1}, n_{2}, n_{3}, \delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \varepsilon_{1} \\ x_{1}, x_{2}, x_{3} \end{array}\right.$			$(5,2),(5,3)$
12	$\left\{\begin{array}{l} \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \beta_{1}, \gamma_{1}, \gamma_{2}, \\ n_{1}, n_{2}, n_{3}, \delta_{1}, \delta_{2}, \delta_{3}, \delta_{4} \\ x_{1}, x_{2}, x_{3}, \xi_{1}, \xi_{2}, \xi_{3} \end{array}\right.$			
13	$\left\{\begin{array}{l} \alpha_{1}, \alpha_{2}, a_{3}, \alpha_{1}, \beta_{1}, \gamma_{1}, Y_{2}, \\ n_{1}, n_{2}, n_{3}, \delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \varepsilon_{1} \\ x_{1}, x_{2}, x_{3}, \xi_{1}, \xi_{2}, \xi_{3} \end{array}\right.$			

an wopt block in trobe 2 mand that the corroaponding matrix hat no cellelemente which are modeternined lor their Eigne.

 mation tor the three first equations frem equation (9) is used. Additional quantitative informetion is mecessery to deternine the signe of these cellelenenta. When the analyses 1 and 2 are compared to atch other, and quantitative informetion about the parmaters ξ_{1}, ξ_{2} and ξ_{3} is introcuced, all cellentries of the matrix M3 mre determined for their signs. This in a result of the so-called top-down appronch.

An originally not sign-solvable simulation model, like the analyses 1 to 11 in mble 2 , becones sign-solvable in analys 12 when quantitative information about the above mentioned parameters in used.

In such a cata the qualitative information about the equation for the varia-
 parameter values, viz. $\epsilon_{1}, \mu_{1}, v_{1}>0,0<\lambda_{1}<1$ and $0<\mu_{1} \leqslant 1$. The opposite approach to a stepwise selection for sign-solvability based on a backward elimination (the top-down approach) takes the cardinally estimated model as the starting point of the analysis. ithis is presented in analyaes 12 and 13 in table 2. Both analyses are aign-solvable. The quantitative informtion about the parameter ε_{1} does not add any information for the aign-solvability analysis.

For that reason we prefer the top-down selection approach with a stepwise selection procedure and with all parameters in the basic model known up to their aign:

5. conctosion

some new resiarch airections in the fiald of mixed gualitative ealeulus, (especially gign-solvability of an urban planning model) have been discusead in the paper.
gasiltetive calcolus can be regarded at anthod to solve (either atatic or dynalic) modele whe qualitative information about the impacts between variam bles. Signsolvablifty is major issue in policy modeling in case of nonmotric informetion regarding parameters. Mixed mignosolvadility analyais and matrix decaposition methods may provide new tools for a qualitative policy impact analysis. A serious disadvantage of a matrix decomposition and matrix permitation agproach, discused in section 3, is the necessity of metrices M_{1} and H_{22} to be squared; the algn-solvability appronch becomes problematic when auch matrices are not square. In this regard, the potential of a genecalized inverse procedure has to be further examined.

Bowever, if a mixture of qualitative and quantitative information about the impact between variables is available, a stepwise selection procedure can be epployed in order to obtain solutions for the sign-solvability approach in dynamic and static policy models.

In relation to efficient decomposition procedures, the use of theoretically plausible quantitative information on parameter values and of non-square metrices, A_{11} and A_{22} is useful as an operational tool in sign-solvability analysis of policy models with mixed qualitative-quantitative information. The previous analyses have demonstrated that qualitative calculus is an extremely useful tool in policy modeling and may be an appropriate complement to conventional econonetric techniques and simulation procedures.

RNTRREMCES
 scope of the Correnpondence Principle. Peopometrion vol. 36, pp. 544-563.
Broaver. F., and F. Mjkamp, 19eS, ganiltative 8tructwre hajuris of Conplex
 Efng the Unmenturable, Martinus Mi Jhoff, Dordrecht, pp. 509-530.
Bronver, Fo, Jos. ginget, Pe Iijkamp and H. Foogd, 19e5, 8igneolvability in Econowic Models through plausible sestrictions, Free Eniversity, Nanterdan (mimeographed).
Forregter, J.W., 1971, Worla Dranicis, Mright-R1en, Candridge, Kas sechusetts.
Gilly, M., 1984, CADSOR, F Program for the Analysis of Pecuredve and Interdependent canal structures, Cahier 84.03, Department of Eonomies, Oniversity of Ganeva.
Greenberg, H.J., and J.S. Kingee (eds.). 1981, Computer-hasisted Analyas and Model stzolification, Rcademic prem, Hew zozk.
Hutchinson, Be_{H} F. Kijkmap, and K. Batty, Advances in Urban Modeling, Epringer Verlag, Berlin, 1985.
Jefiries, C., 1974, galitative Stability and Digraphs in Model Ecosyetens, Ecology vol. 55. pp. 1415-1419.
Lady. G. Mo, 1983, the structure of gualitatively Deterninate Relationshipe, Econcmetrice vol. 51. gp. 197-218.
Lancaster, K_{0}. 1962, The Scope of Qualitative Economics, Feview of Economic Studies vol. 29. pp. 99-123.
 2. Pp. 57-63.

Maybee, J. 8. 1981. Sign Solvability, int Greenberg, H.J., and J.S. Maybee. (eds.). Computer-Aseisted Analysia and Model simplification, Academic Iress, New York, pp. 201-257.
Maybee, J.S., and J. Quirk, 1969, galitative Problems'in Matrix Theory, SIAM Review vol. 11, pp. 30-5 1.
Maybee, J.S., and H. Voogd, 1984, Qualitative Impact Analygis, through Signsolvability: a review, Environment and planning B, Vol. if, pp. 365-376.
Nijkamp, Po, and A.M. Soffer-flettman, 1979. Stadsvernieuwing (Tiown Fenovation), Van Gorcum, Assen.
Nijkamp, P., H. Leitner and N. Wrigiey, eds., 1985, Measuring the Unmeagurable, Martinus Njhoff, Dorirecht.
Ritschard, G., 1980, ANAS = A Program for Analysing and Solving Qualitative Systems, Department of Econometrics, University of Geneva, Geneva.
Ritschard, G., 1983, Computable qualitative Comparative Static Technics, Econometrica vol. 5 1. no. 4, pp. 1445-1168.
Samuelson, Po,1947, Foundations of Econonic Analysig, Harvara university Eress.
Vooga, H., 1983, Qualitative Calculus and Regional Impact Analysis, Paper presented at the $8-t h$ Pacific Regional Science Conference, August 1983, Tokyo.

