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Abstract

This paper deals with the design of general classes of dynamic
gspatial interaction models. On the basis of a general (well-behaved)
multi~period objective function and of a dynamic model representing
the evolution of a spatial interaction system, an optimal control
model is constructed. Particular attention is given to the equilibrium
and stability conditions. It turms out that it is possible to identify
steady~state solutions for a dynamic spatial interaction model. Further-
more, it can also be demomstrated that the entropy model is a specific

case of the above mentioned spatial interaction system.






1. Introduction

In the seventies a great deal of publications in the field of quan-
titative geography and regional sconomics has been devoted to spatial
interaction analysis. This macro (or mese) oriented approach has
evoked many interesting methodological questions, such as the macro
(or meso) behavioural interpretation of .spatial interaction models
(e.g. a generalized cost interpretation) and the micro behavioural
foundation of spatial interaction analysis (e.g. based on a disaggre-
gate <choice theory). 1In a recent paper {see Nijkamp and Reggiani,
1986} it has been demonstrated that spatial interaction models of the
Wilson type are compatible with stochastic discrete choice theory, in
particular with multinomial 1logit models based on random utility
theory both in a static and dynamic sense.

Oniy recently, more attention has been devoted to dynamic spatial
interaction analysis. Examples c¢an be found in Batten and Boyce
(1986), Boyce and Southworth (1979), Clarke and Wilson {1983), Byler
and Gale (1978), Coelho (1977), Griffith and Lea (1983), Haynes and
Phillips (1982), Kahn (1981), Leonardi {1983), Lombardo and Rabino
(1983), Nijkamp and Poot (1986), Nijkamp and Reggiani (1985), Rabino
(1985), Sonis (1984}, Williams and Wilson {(1980) and Wilson (1981).
Various apecifications have been c¢chosen for such dynamic models, for
instance, Markov transition models, synergetic multi-actor models,
Volterra-Lotka type of models, and sco forth.

In the present paper an attempt will be made aft developing an opti-
mal contrel formulation for a spatial interaction model. Instead of
choosing an entropy objective function, we will use here a general
well-behaved objective function {(of which the entropy function is a
specific case). Besides, an additional dynamic equation for push-pull
effects will be added. Hence, the results wilil be more general than
those emerging from a standard entropy approach even if it is, from an
analytical viewpoint, difficult to establish a formal relationship
with the family of discrete choice models.

The paper 1is organized as follows. In section 2 the general dynamic
spatial interaction model will be formulated as an optimal control
model. Next, In section 3 special attention will be given to the
equilibrium conditions and to the stability of the optimal control
solutions. Finally, some concluding remarks will be made.



2. A General Dynamic Spatial Interaction Model

In this section an optimal control vrepresentation of a dynamic
spatial interaction model will be given. For the ease of presentation,
but without loss of generality, we will assume a transport system in
which all origin-destination flows are time dependent. These flows
will be regarded as control variables in the Pontryagin sense.

It will be assumed that the total volume of flows from origin i, i.e.
04, may be regarded as a state variable whose evolution is dependent
- by means of a linear funetion = on the net push out = pull in
effects of place I (see also Nijkamp and Reggiani, 1986. This leads
then to the following dynamic equation:

{

Ty1 = 34 Tiy

0, = a0, + &, (J§1

i ) (2.1)

Equation {(2.1) can also directly be derived from the well-known dyna-
mic migration model developed by Okabe (1979) and Sikdar and Karmeshu
(1982):

PomaP+ f Tyt R T (2.2)

where oy is the natural growth rate of population at the ith place

and Py is the population size. QObviously, in our transportation

system we can derive (2.1) from (2.2) by assuming that O is linear-
ly dependent (through the parameter &;) on the population size in i,
as follows:

0y = §1Py : (2.3)
or;
0, = §;P, (2.4

Finally, instead of a conventional entropy function we assume the
following more general, well-behaved (i.e. concave) objective function
{see also Nijkamp, 1975) reflecting a collective utility function for
all pgints of origin and destination within a given time horizon T:

T
max w*¥ = [ gy (Ti

0 J

, 00" "tat ' (2.5)

where Tjj stands for the whole set of flow variables Tiq,..,T1g.
A cumulative entropy function (see Sonis, 1986) is a special case of
(2.5).



Maximization of (2.5) subject to (2.1) requires the use of first-order
conditions for an optimal control model. The relevant Hamiltonian 1is
then:

t

I .
-r

where ¥; represents a co-state variable.

The first-order c¢onditions for 2z maXimum solution of this optimal
contrel model are:

g g = 0 ¥ 1,j7
Lj

sH _ 4

§ H ;

G_ll'Ji = Oi ¥ i

All variables in (2.7) are provided with a discount rate. According to
Kamien and Schwartz (1981) it is more appropriate to analyze the
first-order conditions in terms of current values at each point £ than
in terms of their equivalent at time 0, as in the first case a set of
autonomous (i.e. non time-dependent) differential equations describing
the optimal solution is obtained.

Then the following adjusted Hamiltonian may be used:

% I

| oot .
H (Tij, Oy wi) e  H=uy (Tij, 01) * 5 ¢§ 0, (2.8)
with

- .
¢§ =e i (2.9)

Next, by differentiating {(2.9) with respect to time, we obtain:

o rt rv
wi re mi + e wi
§ H
- RN o -
r wi e & 0i
(2.10)
rt 8 (e r”"'H*)
= * -
T 50,
5 H¥
= * -
"W T E0




If we substitute (2.8) into (2.10}, we obtain:

. dw (T, ., Oi) 8§ w (Ti., 0.)

1] i
* = ¥ - * = ¥ -
LI 4 50, * 8w} {0+ 6,0 ¥ 570, _{2.11)

The remaining first-order conditions from (2.7) are straightforward,
8o that we arrive at the following system:

§ H* .
= 0 ¥ i,

5T,

¥oe (ers) W - gg ¥ 1 L (2.12)

i
5 H*
. L ¥ i
17 5 ]

where for the ease of presentation the arguments of ¢ are omitted.
By adding also {2.1) to the latter system, an autonomous set of equa-
tions is obtained, where time is not an explicit argument.

3. Equilibrium and Stability Solutions

In this section we will study more carefully the sclution paths of
the above-mentioned system {(either in explicit form or in a2 qualitati-
ve sense). The first necessary optimality condition of (2.12) can be
written as:

& H#

& Tij

. 8
é

- - 8; w? =0 (3.1)

w
T,

£
This condition states that the marginal value of the collective utili-
ty function for the system at hand equals the shadow price of the push

of the dynamic state squation.

If the objective function would be a cumulative entropy function,
subject to some constraints on the origins and on interaction costs,
it can be shown that the optimal values of the control variables can
be ecalculated from the following (generalized) production-constrained
spatial interaction model:

= * -p ¥ .
Tij Ai Oi Dj exp (-8 cij) (3.2) |
where Aj¥ is a generalized balancing factor (see for a formal deri-
vation Annex.A).

Now it may be interesting to analyze the optimal control sclution in



the (0y, ¢3*) plane, as in this plane we do not have an explicit
solution for Tijy {(w 1is also depending on Tij). In this case we
have to analyze more thoroughly equations (2.1) and (2.11}, which
represent a pair of differential equations in 03 and 9*j. In order
to analyze the solution trajectories that are compatible with (2,1}

and (2.11), we will first consider the O, = 0 locus, i.e.,

i
d Jd
0, = - (321 Typ =gk Tygl8i7ey (3.3)
J J
It is noteworthy that _E.T., and .. T., are not a function of * .
Jj=171j j2171j i

Next we consider the points for which ¢§ =0, i.e.,

W= (e sy (3.4)

i 3 Oi i

Assuming a concave objective function w, we have the following second-
order conditions:

2
S$ o ¢ o L (3.5)
2
s T2,
and:
2
LW oo (3.6)
2
5 02

The latter result implies that (3.4) represents a downward sloping
curve (see Figure 1). : '

Now the question arises whether we can infer some conclusions re-
garding the ultimate state equilibrium. As @ is unspecified so far, it
is difficult to provide a precise analytical derivation, but it is
possible to approximate the dynamic state and costate eguations
({2.1) and (2.11), respectively) in a Taylor series around the steady

state solution (for O? and'w*i)of system (3.3) and (3.4},



Fig. 1. Solution trajectories and steady state for Oi and w*?

This leads to the following expressions:

3
0, = =38,(0,~0]) (3.7)
and .
om o (0T 0 s (e k) () (3.8)
o2

Now we have to examine the characteristic roota of (3.7) and (3.8) in
order to study the configuration of the equilibrium point. These
characteristic rocts are:

K=r/2 + (r +2§4)/2 (3.9)

as 1is easily seen by writing the following characteristic equation
(see Kaplan, 1958):

-— Gi— K Q
-8 u (o?) = 0 (3.10)
P+ 61— k
§ Oz
or: K2 = pk +q =0 (3.11)
with: p =k, +k, =r >0 (3.12)
qQ =k, . Ky = =85 (p+85) <0

and:
4 =p*-lgs{(r+x24§;)2>0 (3.13)
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Now it is clear that - given that q < 0 - (1) A is positive and (2)
the roots k, and k, are real and distinct. However, from (3.9) it can
eagily be derived that both roots have an cppesite sign, i.e.,

k, <0<k, (3.14)

Consequently, the steady state reflects a saddle point soluticn, so
- that the equilibrium is compatible with a stable state.

This result c¢ould also be analyzed in a geometric way. For example,
from equation (3.7) and Figure 1, it can be seen that at the right

i o, Oi< 0, while at the left hand side
Oi> 0. Similarly, from equation (3.8) one can easily show that above

hand side of the locus O

Q* L]
the locus wi = 0, w? iz increasing (and hence w? > 0), whereas

below the locus wf = 0 the following situation holds: w? < 0.

In Figure 1 the arrows illustrate the areas of increasing and de-
creasing 04 and y¥*; respectively in the phase plane. This solution
is consistent with an optimal control approaoh. In fact, it appears
that the pair of differential equations (3.7) and (3.8) arising from
system {(2.1), and {(2.5)) does not have a totally stable solution,
that for all paths converges to a steady state (see Kamien and
Schwartz, 1981 and Medio, 1986).

In conclusion, 1t is c¢lear that by considering a general dynamic
spatial interaction model one obtains solution trajectories that
approach an equilibrium point as time goes by, reaching the so-called
saddiepoint stability.

y, Conclusions

In this paper the stability of a spatial flow system emerging from a
general optimal control spatial interaction model has been analyzed,
The optimal paths leading to a steady state have been examined. It
appears that a steady state solution {(reflected inter alia by a sad-
dlepoint) is reached.

The results are, obvicusly, co~determined by the initial assumptions
on state variables and ¢ mtrol variables. The discount rate has only
the function of changing the marginal value of the costate variable
(see (3.4)). For example, from this equation it can easily be seen



that an increase in Fhe discount rate decreases the @? = {3 locus,
while it leaves the Oi = 0 locus unaffected in a downward movement of
the steady state solution.

The same applies if we increase in the spatial interaction model the
parameter ai. Thus an increase in the discount rate, in Gi’ moves the
equilibrium point downward. In this context, it might alsoc be worth

considering the possible movements of the state variables, if the sy-
stem is not fully deterministic, but subject to stochastic disturban-
ces. This would require the use of a stochastic optimal control model
based on e.g. Brownian motion processes), which is still an under-
developed field which no doubt would warrant further investigation.


http://appli.es

ANNEX 4. A Production-Constrained Spatial Interaction Model as a
Solution of an Optimal Control Entropy Model

In this secticon, an optimal control problem will be analyzed in
which the objective function within a given time horizon T is assumed
to be the well-known entropy function which can also be regarded as a
apecific type of welfare function (see e.g. Wilson, 1970, Cocelho,
1977, and Coelho and Williams, 1978): '

S
w= = ¢ £ T, (In(T, ,/0.D,) = 1) (A.1)
=1 j=1 * ot

subject to the standard constraints on origins and costs in a trans-
portation system. Therefore the optimal control problem becomes:

T . J T, . 7
max w¥= - [ e I £ Tij(ln 5 % - 1) dt
0 121 j=1 1¥3
S.t.
Jd
£ET,, =0, ¥ i ‘
g N X
(4.2)
I J
L r ¢, .T. . =¢C
j=1 ga 1N

where c;j 1s the unit transportation cost between i and j, ¢ 1is the
total cost budget, and Dj a certain given atfraction indicator for
place j. The constraints in (A.2) are assumed to hold in each ftime
period, and Tjy is again assumed to be a control variable. The
parameter r reflects a discount rate in order to transform all varia-
bles into their present values. In addition, we have the dynamic
equation (2.1) for the state variable 0j. This specification bears
some resemblance to the cumulative entropy model discussed by Nijkamp
and Reggiani {1985) and Sonis (1986).

Owing to the equality constraints from {(A.2) the problem becomes a
bounded optfimal control model, so that the necessary conditions for

the optimality can be represented by means of the Hamiltonian and of
the Lagrangean function.
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The necessary first-order conditions are now {(in terms of current
values at each point t) (see section 2):

§ L* "
= 0 ¥ i,
§ Tij
- 6 L*
Y¥ = py¥ - ¥ i } (A.3)
1 g C.
i
& H¥
4] - ¥ 1
i s $§ J
where: ‘
* o rt .
Wt o= e Ty, (A.8)

is the current value multiplier associated with (2.1). The adjusted
(current value) Hamiltonian is:

rt 1 J 'I'],_‘j I .
H¥ = ¢ "H=-3% IT, (ln -1) + % ¥ 0, (A.5)
. X i 0.D, i’i
iat j=1 iv3 i=1
while the corresponding adjusted Lagrangean is:
I J I J
L¥ = H* + ¢ A*¥ (0, - ¢ T ) +B*¥(C- I £ ¢, T, .} (A6)
=t 2 g M =1 j=I H
‘where A% and R¥ represent the (current) Lagrange multipliers associ-

i
ated with the constraints 0j and C.

The necessary conditions for a constrained maximum with respect to
Tij are:

§ L* Tij
— = - 1% = % - W =
e 1n 5.D; A -8 oy §,¥F =0 (A.7)
13 J
so that:
Tij
— = -] - * *
OiDj exp( A} Giwi) . exp(p cij) (A.8)
By defining now:
-1 % = ®Y = AW
exp ( Ai Giwi) Ai (ﬁ.9)
expression (A.7) becomes:
a pF -g * .
Tij aioiojexp (-8 cij) (A.10)

This expression is again the usual production—constrained:spatial .



i1

interaction model.

B)
Next if we apply the constraint b Tij = Oi {as defined in A.2) to
equation (A.8), we obtain: J=1
J
= -] - % - %
1 =exp { % siwi) 351 Dj exp (-8 °ij) (A.11)
s0 that:
J
-1 % - *: -p ¥ -_-* ]
exp ( At . Giwi) 1/ 321 DJ exp (=B cij) Ai {(A.12)

By substituting (A.12) into (A.8), we can easily derive the probabi-
1ity pj,

D.exp {(=pg¥*c. .)
- _ 1] _

p'. 0 - J (Ao13)
JE Py (BTeyy)

Expression {A.13) represents a model of the logit type. It is of

course alsc equivalent to the aspatial interactive model obtained in
{A.10),

Because of the general expression in the term A? defined in (A.12),

the spatial interaction model (A.10) or (A.13) is more general than
the standard one. '

Obviously the same result can alsoc be obtained for a doubly-con~
strained spatial interaction model. It is clear that in this case we

will obtalin two balancing factors A? and B; which will be related not
only to the Lagrangean multipliers (as in standard spatial interaction
model (3ee Nijkamp and Reggiani, 1985)), but also to the (current
value) costate variables.

Next we have to add that the solution (A.10) of our optimal control
preoblem is unique, as we are deéling with & concave integrand. This

can also be shown by the following second order conditions:

& 5 H* 0,D
( Yy = - ! 3.< 0 _ (AW

8 Tij ) Tij | Tij
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When we analyze the conditions for the costate variable, we can easily
obtain:

. 8 I J Ty
P o= (r + §) Y* - {-¢ <£T..(ln = D} = 1% (A.15)
i 1 T o e gey 1 O i

i

The final solution of ?*icannot be expressed in an analytical sense

(as is the usual situation in spatial interaction models), but it can
be obtained in a recursive numerical way.
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