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Abstract 

This paper deals with the design of general classes of dynamic 

spatial interaction models. On the basis of a general (well-behaved) 

multi-period objective function and of a dynamic model representing 

the evolution of a spatial interaction system, an optimal control 

model is constructed. Particular attention is given to the equilibrium 

and stability conditions. It turns out that it is possible to identify 

steady-state solutions for a dynamic spatial interaction model. Further-

more, it can also be demonstrated that the entropy model is a specific 

case of the above mentioned spatial interaction system. 

•o 
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1. Introduction 

In the seventies a great deal of publications in the f i e ld of quan-
t i t a t i v e geography and regional economios has been devoted to spa t i a l 
in teract ion analys is . This macro (or meso) oriented approach has 
evoked many in te res t ing methodological questions, such as the macro 
(or meso) behavioural in terpre ta t ion of .spatial in teract ion models 
(e .g . a generalized cost in te rpre ta t ion) and the micro behavioural 
foundation of spa t i a l in teract ion analysis (e .g . based on a disaggre-
gate choice theory) . In a recent paper (see Nijkamp and Reggiani, 
1986) i t has been demonstrated that s p a t i a l in teract ion models of the 
Wilson type are compatible with s tochas t ic d i sc re te choice theory, in 
par t icular with multinomial log i t models based on random u t i l i t y 
theory both in a s t a t i c and dynamic sense. 

Only recent ly , more a t tent ion has been devoted to dynamic spa t i a l 
Interact ion analys is . Examples can be found in Batten and Boyce 
(1986), Boyce and Southworth (1979), Clarke and Wilson (1983), Byler 
and Gal e (1978), Coelho (1977), Griff i th and Lea (1983), Haynes and 
Phi l l ips (1982), Kahn (1981), Leonardi (1983), Lombardo and Rabino 
(1983), Nijkamp and Poot (1986), Nijkamp and Reggiani (1985), Rabino 
(1985), Sonis (1984), Williams and Wilson (1980) and Wilson (1981). 
Various specif icat ions have been chosen for such dynamic models, for 
instance, Markov t r ans i t ion models, synergetic tnulti-actor models, 
Volterra-Lotka type of models, and so for th . 

In the present paper an attempt wil l be made at developing an o p t i -
mal control formulation for a spa t i a l in teract ion model. Instead of 
choosing an entropy objective function, we wil l use here a general 
well-behaved objective function (of which the entropy function i s a 
specif ie case-). Besides, an addit ional dynamic equation for push-pull 
effects wil l be added. Hence, the r e su l t s wil l be more general than 
those emerging from a Standard entropy approach even if i t i s , from an 
analyt ica l viewpoint, d i f f i cu l t to es tab l i sh a formal re la t ionship 
with the family of d iscre te choice models. 

The paper i s organized as follows. In section 2 the general dynamic 
spa t i a l in teract ion model wil l be formulated as an optimal control 
model. Next, in section 3 special a t ten t ion wi l l be given to the 
equilibrium conditions and to the s t a b i l i t y of the optimal control 
so lu t ions . Finally, some concluding remarks wil l be made. 
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2. A General Dynamic Spat ial Interact ion Model 

In t h i s section an optimal control representat ion of a dynamic 
spa t i a l in terac t ion model wil l be given. For the ease of presentat ion, 
but without loss of general i ty , we wil l assume a t ransport system in 
which a l l or ig in-des t ina t ion flows are time dependent. These flows 
wil l be regarded as control variables in the Pontryagin sense. 

I t will be assumed that the t o t a l volume of flows from origin i , i . e . 
0j_, may be regarded as a s t a t e variable whose evolution i s dependent 
- by means.of a l inear function - on the net push out - pull in 
effects of place i (see also Nijkamp and Reggiani, 1986. This leads 
then to the following dynamic equation: 

0. = a .0. + 6. ( .L T.. - .£.T. .) (2.1) 
1 1 1 1 j=1 j i j=1 i j 

Equation (2.1) can also d i rec t ly be derived from the well-known dyna­
mic migration model developed by Okabe (1979) and Sikdar and Karmeshu 
(1982): 

P. = a.P. + . £ T.. - .£, T. . (2.2) 
1 i l j=1 j i j = 1 i j 

where q i s the natural growth r a t e of population at the i t h place 
and Pj_ is the population s i z e . Obviously, in our t ranspor ta t ion 
system we can derive (2.1) from (2.2) by assuming that 0j_ i s l i nea r -
ly dependent (through the parameter Si) on the population size in i , 
as follows: 

Oi = SiPi (2.3) 

or : 

0. = 6.P. (2.4) 
• 1 i l 

Final ly , instead of a conventional entropy function we assume the 
following more general, well-behaved ( i . e . concave) objective function 
(see also Nijkamp, 1975) re f l ec t ing a co l lec t ive u t i l i t y function for 
a l l pqints of origin and dest inat ion within a given time horizon T: 

T 
max OI* = fa (T. ., 0.)e~ dt (2.5) 

0 1 J l 

where T^j stands for the whole set of flow variables TH,..,TIJ. 

A cumulative entropy function (see Sonis, 1986) is a special case of 

(2.5). 
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Maximizatlon of (2 .5) sub jec t t o (2...1) r e q u i r e s the use of f i r s t - o r d e r 
cond i t i ons for an opt imal con t ro l model. The r e l e v a n t Hamiltonian i s 
then : 

I 
(2.6) - r t H (T , 0 i t <JK,t) = Ü) (T , 0 .) e 

where ^ r e p r e s e n t s a c o - s t a t e v a r i a b l e . 
1=1 r i 1 

The f i r s t - o r d e r cond i t ions for a maximum s o l u t i o n of t h i s optimal 

c o n t r o l model a r e : 

6 H 
= 0 

5 T. . 
i j 

6 H 
6 0 . " " * i 

6 H 
8 <JK = 0. 

i 

¥ i , j 

-V- i 

V- i 

(2 .7 ) 

All v a r i a b l e s in (2 .7) a r e provided wi th a d i scount r a t e . According t o 
Kamien and Schwartz (1981) i t i s more a p p r o p r i a t e t o analyze the 
f i r s t - o r d e r cond i t i ons in terms of cu r r en t values a t each po in t t than 
in terms of t h e i r equ iva len t a t t ime 0, as in the f i r s t case a s e t of 
autonomous ( i . e . non t ime-dependent) d i f f e r e n t i a l equa t ions d e s c r i b i n g 
the opt imal s o l u t i o n i s o b t a i n e d . 
Then the fo l lowing ad jus t ed Hamiltonian may be used: 

r t H (T , 0 . , if;.) - e " H = Ü) (T , 0 . ) + ^ ** 0. (2.8) 

with 

\b* = e e. (2 .9) 

Next, by d i f f e r e n t i a t i n g (2 .9) wi th r e s p e c t t o t ime , we o b t a i n : 

', * r t , _u r t ', 
4i* = r e é . + e é. 

6 H 
= r é* - e r t 6 0. r i 1 

= r \\>* - e r t 
6 ( e " r t H*) 

(2.10) 

6 0.. 

r ,p* 
6 H* 
6 0. 
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If we substitute (2.8) into (2.10), we'obtain: 

6u (T , 0 ) 6 o> (T , 0 ) 
*} - r * { - — ^ • « ** - (r + 6.) ** - 6 Q

J ^ . 1 1 ) 
1 1 

The remaining f i r s t -o rde r conditions from (2.7) are straightforward, 
so that we arr ive at the following system: 

5 T. . 

ij - (r + 6.) *} - f-£_ * i 

°i - ^ 

(2.12) 

where for the ease of presentation the arguments of u are omitted. 
By adding a l so (2.1) to the l a t t e r system, an autonomous set of equa-
tions i s obtained, where time i s not an exp l i c i t argument. 

3- Equilibrium and S tab i l i ty Solutions 

In t h i s section we wil l study more carefully the solut ion paths of 
the above-mentioned system (ei ther in exp l i c i t form or in a q u a l i t a t i -
ve sense) . The f i r s t necessary optimali ty condition of (2.12) can be 
writ ten as : 

•5 H* .6 u 
Ö, ip* - 0 (3 .1 ) 

5 T . . 6 T. . u i y i 
i j I J 

This condition s t a t e s that the marginal value of the col lec t ive u t i l i -
ty function for the system at hand equals the shadow price of the push 
of the dynamic s t a t e equation. 

If the objective function would be a cumulative entropy function, 
subject to some constraints on the or igins and on in terac t ion cos t s , 
i t can be shown that the optimal values of the control variables can 
be calculated from the following (generalized) production-constrained 
spa t i a l in terac t ion model: 

T. . = A.» 0. D. exp(-6*c. .) (3-2) 
ij i i J ij 

where A^* is a generalized balancing factor (see for a formal deri-

vation Annex-A). 

Now it may be interesting to analyze the optimal control solution in 



the (Oj_, ïĵ *) plane, as in this plane we do not have an explicit 

solution for T-y (ÜJ IS also depending on Tij). In this oase we 

have to analyze more thoroughly equations (2.1) and (2.11), which 

represent a pair of differential equations in Oj and t|>*i. In order 

to analyze the solution trajectories that are compatible with (2.1) 

and (2.11), we will first consider the 0.= 0 locus, i.e., 

J J 
0. = - (.E. T.. - .L. T. .)&./a. (3-3) 
i J=1 Ji J=1 ij i ï 

J J 
It is noteworthy that .Z..T. . and .Z, T. . are not a function of é* . 

j - 1 i j j =1 i j y i 

Next we consider the points for which ^* = 0, i . e . , 

*i = 0~ ; ( r + ö i } ( 3 ' 4 ) 

Assuming a concave objective function ÜJ, we have the following second-
order conditions: 

62 a 

5 T * . 
i j 

and : 

<52
 M 

6 Q2 

< 0 v . (3.5) 

< 0 ( 3 . 6 ) 

The l a t t e r r e s u l t implies that (3.1*) represents a downward sloping 
curve (see Figure 1). 

Now the questlon ar ises whether we can infer some conclusions r e -
garding the ultimate s t a t e equilibrium. As u i s unspecified so far , i t 
i s d i f f i cu l t to provide a precise ana ly t ica l der ivat ion, but i t i s 
possible to approximate the dynamic s t a t e and costa te equations 
((2.1) and (2.11), respect ively) in a Taylor ser ies around the steady 

s s 
s t a t e solut ion (for 0. and'ifj*.)of systera (3.3) and (3*4). 



s s 
Fig. 1. Solution t r a j e c t o r i e s and steady s t a t e for 0. and ip*. 
This leads to the following express ions: 

0. - - ^ ( 0 . - 0») 

and 

r i 
— ( 0 , - 07) + (r + 6.) (ip* - **3) 

(3.7) 

(3.8) 
d 0? 

Now we have to examine the c h a r a e t e r i s t i c roo t s of (3.7) and (3-8) in 
order to study the configuration of the equil ibrium point . These 
c h a r a e t e r i s t i c roots a re : 

K =» r /2 + (r + 2 6 t ) / 2 (3.9) 

as i s eas i ly seen by wr i t ing the following c h a r a e t e r i s t i c equation 
(see Kaplan, 1958): 

- ó 2 m (Op 

6 0? 

or: k2 - pk + q = 

r + <5. - k 

with: p = « k l + k 2 = r > 0 
q - k t . ka - -fij (r + 5i) < 0 

and: 
A » p2 - 4q » (r t 2 Sj.)2 > 0 

(3-10) 

(3 .1D 

(3.12) 

(3.13) 
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Now it is clear that - given that q < 0 - (1) A is positive and (2) 

the roots kx and k2 are real and distinct. However, from (3.9) it can 

easily be derived that both roots have an opposite sign, i.e., 

k1 < 0 < k2 (3.1^) 

Consequently, the steady state reflects a saddle point solution, so 

that the equilibrium is compatible with a stable state. 

This result could also be analyzed in a geometrie way. For example, 

from equation (3.7) and Figure 1, it can be seen that at the right 

• • 
hand side of the locus 0.= 0 , 0.< 0, while at the left hand side 

ï ï 
0.> 0. Similarly, from equation (3.8) one can eas i ly show that above 

•* 
the locus i|>. = 0, ïp* is increasing (and hence ip* > 0 ) , whereas 

below the locus if>* = 0 the following s i tua t ion holds: \\>* < 0 . 

In Figure 1 the arrows i l l u s t r a t e the areas of increasing and de-
creasing 0^ and i|>*i respect ively in the phase plane. This solution 
i s consistent with an optimal control approach. In fac t , i t appears 
that the pair of d i f fe ren t i a l equations (3.7) and (3.8) a r i s ing from 
system ( (2 .1 ) , and (2.5)) does not have a t o t a l l y s tab le so lu t ion , 
that for a l l paths converges to a steady s t a t e (see Kamien and 
Schwartz, 1981 and Medio, 1986). 

In conclusion, i t i s clear that by considering a general dynamic 
spa t i a l in teract ion model one obtains solution t r a j ec to r i e s that 
approach an equilibrium point as time goes by, reaching the so-cal led 
saddlepoint s t a b i l i t y . 

4. Conclusions 

In t h i s paper the s t a b i l i t y of a spa t i a l flow system emerging from a 
general optimal control spa t i a l in teract ion model has been analyzed. 
The optimal paths leading to a steady s t a t e have been examined. I t 
appears that a steady s t a t e solut ion (reflected inter a l i a by a sad­
dlepoint) i s reached. 

The r e su l t s are , obviously, co-determined by the i n i t i a l assumptions 
on s t a t e variables and control var iables . The discount r a t e has only 
the function of changing the marginal value of the costate variable 
(see (3 .4 ) ) . For example, from th i s equation i t can eas i ly be seen 
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that an increase in the discount r a t e decreases the ty* = 0 locus, 

while i t leaves the 0. = 0 locus unaffected in a downward movement of 
1 

the steady state solution. 

The same appli.es if we increase in the spatial interaction model the 

parameter 6.. Thus an increase in the discount rate, in 5., moves the 

equilibrium point downward. In this context, it might also be worth 

considering the possible movements of the state variables, if the sy-

stem is not fully deterministic, but subject to stochastic disturban-

ces. This would require the use of a stochastic optimal control model 

based on e.g. Brownian motion processes), which is still an under-

developed field which no doubt would warrant further investigation. 

http://appli.es
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ANNEX A. A Produc t ion-Cons t ra ined S p a t i a l I n t e r a c t i o n Model as a 
So lu t ion of an Optimal Control Entropy Model 

In t h i s s e c t i o n , an opt imal con t ro l problem w i l l be analyzed i n 
which the o b j e c t i v e func t ion wi th in a given t ime hor izon T i s assumed 
t o be the well-known entropy func t ion which can a l s o be regarded as a 
s p e c i f i c type of welfare func t ion (see e . g . Wilson, 1970, Coelho, 
1977, and Coelho and Wil l iams, 1978): 

I J 
(o •- - Z E T . . ( l n (T . . /O.D.) - 1) (A.1) 

i-1 j=1 1 J 1 J l J 

sub jec t t o the Standard c o n s t r a i n t s on o r i g i n s and c o s t s in a t r a n s -
p o r t a t i o n system. Therefore the opt imal con t ro l problem becomes: 

max ÜJ*= - ƒ e 
0 i 

s . t . 
J 
I T. . 

J-1 1 J 

=s 0. 
1 

I J 
Z Z 

i -1 j - 1 
c . .T. .= 

i j I J 
C 

i-1 J-1 
Z T. . ( In - i i 
_i IJ O.D 

- 1) dt 

i J 

¥ i 

(A.2) 

where CJJ is the unit trans port at ion cost between i and j , c is the 

total cost budget, and Dj a certain given attraction indicator for 

place j. The constraints in (A.2) are assumed to hold in each time 

period, and Tjj is again assumed to be a control variable. The 

parameter r reflects a discount rate in order to transform all varia­

bles into their present values. In addition, we have the dynamic 

equation (2.1) for the state variable Oj. This specification bears 

some resemblance to the cumulative entropy model discussed by Nijkamp 

and Reggiani (1985) and Sonis (1986). 

Owing to the equality constraints from (A.2) the problem becomes a 

bounded optimal control model, so that the necessary conditions for 

the optimality can be represented by means of the Hamiltonian and of 

the Lagrangean function. 



10 

The necessa ry f i r s t - o r d e r cond i t i ons a re now ( in terms of cu r r en t 
values a t each point t ) ( see s e c t i o n 2 ) : 

S L * 

<5 T . . 
i j 

- 0 

ï i 

0. = 
ï 

where: 

5 H* 

S ty* 

6 L* 

a 0 . 

V- I , j 

V- i 

¥ i 

r t , 

i s the cu r r en t value m u l t i p l i e r a s s o c i a t e d wi th (2 .1) 
( cu r r en t va lue) Hamiltonian i s : 

(A.3) 

(A.4) 

The ad jus ted 

r t 
I J T. . 

i j H* = e H - - E , E T ( I n - ^ - D + E ** 0. 
1=1 J=1 i j 1=1 

whi le the corresponding ad jus t ed Lagrangean i s : 

(A.5) 

I J I J 
L* = H* + E A* (0 . - E T. .) + B* (C - E E o. . T. .) (A.6) 

i-1 1 X j-1 1 J 1=1 J -1 i j IJ 

where X* and 3* r e p r e s e n t the ( c u r r e n t ) Lagrange m u l t i p l i e r s a s s o c i ­

a ted with the c o n s t r a i n t s 0j_ and C. 

The necessa ry cond i t i ons for a cons t r a ined maximum with r e s p e c t t o 

j ari 

5 L* 

T ^ a r e : 

5 T. . 
i j 

- l n tnr ~xl- **Gij ~ V ? • ° 
i J 

so t h a t : 

T. . 
g i j l . - exp(-A* - 5 **) . exp(B*c ) 

i j 

(A.7) 

(A.8) 

By de f in ing now: 

exp (-A* - 6 . ï* ) = A* 
i i l i 

expressj,on (A.7) becomes; 

(A.9) 

T. .= A*0.D.exp ( - B * c . ) (A.10) 
i j i i J i j 

This express ion i s again the usual p r o d u c t i o n - c o n s t r a i n e 4 ; s j m t i a l 
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i n t e r a c t i o n model. 
J 

Next i f we apply the c o n s t r a i n t E T . . = 0. (as def ined in A.2) t o 
1-1 1 J 1 

equa t ion (A.8) , we o b t a i n : J 

J 
1 = exp (-A* - 5.f*) Z D. exp ( - g * c . . ) (A.11) 

i=1 J J 
so t h a t : J 

J 
exp (-A* - ö.i|>*) = 1 / Z D. exp ( - B * c . ) = A* (A.12) 

i i i . i j i j ï 

By s u b s t i t u t i n g (A.12) i n t o (A.8) , we can e a s i l y de r ive the p robab i -
l i t y P j . 

T. . D.exp (-6*c. .) 
p - - Ü . - J U (A. 13) 

1 Z D.exp ( - g * o . . ) 
J-1 J 1 J 

Expression (A.13) r e p r e s e n t s a model of the l o g i t t y p e . I t i s of 

oourse a l s o equ iva len t t o the s p a t i a l i n t e r a c t i v e model ob ta ined in 
(A.10) . 

Because of the genera l express ion in the term A* def ined in (A.12) , 

the s p a t i a l i n t e r a c t i o n model (A.10) or (A. 13) i s more genera l than 

the Standard one . 

Obviously the same r e s u l t can a l s o be ob ta ined for a doubly-con-

s t r a i n e d s p a t i a l i n t e r a c t i o n model. I t i s c l e a r t h a t in t h i s case we 

w i l l ob ta in two ba lancing f a c t o r s A* and B* which w i l l be r e l a t e d not 
i J 

only t o the Lagrangean m u l t i p l i e r s (as in Standard s p a t i a l i n t e r a c t i o n 
model (see Nijkamp and Reggiani , 1985)) , but a l s o t o the ( cu r r en t 
value) c o s t a t e v a r i a b l e s . 

Next we have to add t h a t the s o l u t i o n (A.10) of oür opt imal c o n t r o l 
problem i s unique, as we a r e dea l i ng with a concave i n t e g r a n d . This 
can a l s o be shown by the fo l lowing second order c o n d i t i o n s : 

5 5 H* O.D. 
( ) = - -±-L< 0 (A.14) 

6 T . . 6 T. . T. . 
IJ IJ IJ 
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When we analyze the conditions for the oostate var iable , we oan eas i ly 
obtain: 

ö I J T. . 
ip* - ( P + 5 ) i|>* - { - E E T ( i n s ^ - - D } - A* (A. 15) 

1 l 1 6 0. ' i -1 j - 1 J i j 

The final solution of f*.cannot be expressed in an analytical sense 

(as is the usual situation in spatial interaction models), but it can 

be obtained in a recursive numerical way. 
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