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1. Introduction 

In recent years one observes a growing interest among economists in non-linear 

dynamic systems. Several reasons can be mentioned for this 'upswing' in the atten-

tion for non-linear dynamics. 

First, after the path-breaking methodological contributions to (in)stability 

and (dis)equilibrium analysis in the natural science field made among others by 

Thom (1975) and Nicolis and Prigogine (1977), a stimulus was given to a thorough 

investigation into the nature of non-linear dynamics in the social sciences (see 

e.g., Weidlich and Haag, 1983). It was increasingly realized that dynamic inter-

actions between the components of a complex system marked by dissipative structures 

affecting inter alia the homogeneity of time and space may lead to a large spectrum 

of evolutionary pattems of such a system (ranging from inert and stable behaviour 

to fluctuating and unstable behaviour). 

In the second place, structural changes in the economie conditions of western 

societies have caused an increasing interest in non-linear evolutionary pattems. 

Long-wave pattems in macro-economie and regional systems, long-term drastic shifts 

in economie activities, and differential dynamic trajectories of various subsystems 

of the economy have demonstrated the relevance of non-linear approaches in economics. 

In fact, as soon as parameters of an otherwise linear system are time-dependent 

with respect to endogenous variables of this system, one faces a situation of endo-

genously determined structural change leading to non-linear dynamic models. In 

a space-time context such structural changes may lead to interesting questions re-

garding spatio-temporal (ir)reversiblë trajectories (including catastrophic be­

haviour) of a dynamic system. 

Finally, for a long time the mathematical-statistical difficulties inherent in 

non-linear dynamic systems have precluded many researchers from applying such approaches 

to social sciences, but the rapid computational advances in this field (including 

operational computer software) and the availability of an appropriate mathematica! 

framework (notably the analysis of the qualitative behaviour of a dynamic system) 

have led to an increased use of non-linear dynamic models in economics. 

Examples of such applications can be found in various fields of economics, such 

as macro-economics (e.g., long waves analysis), consumer economics (e.g., shopping 

behaviour), regional economics (e.g., urban life cycle analysis), and business 

economics (e.g., technology innovation behaviour). An intriguing question in this 

respect is the relationship between the micro behaviour of system's components and 

their macro consequences for the system as a whole: changes at a micro level may -

beyond a certain critical threshold level - exert structural influences at an. aggre- -

gate level. Glearly, linear models are in general unable to generate structural or 
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sometimes discontinuous changes. 

The class of non-linear dynamic models has specific features which distinguishes 

them from conventional linear dynamic models. The main characteristic is that such 

models are able to describe qualitiative system's changes, as in a non-linear dynamic 

model there may be certain ranges of parameter values for which the system can be in 

multiple equilibrium states. Such ambiguity which in any case does exist in a formal 

sense can only be eliminated if either the theory inderlying the non-linear dynamic 

model specification is made more specific (i.e., more oriented toward the behaviour 

of the system under these parameter values) and hence more aligned to the phenomena 

to be studied (to diminish the semantic insufficiency), or if more insight is avail-

able on the long-term historical evolution of the phenomenon at hand (requiring full 

and non-trivial information on past behaviour). In general however, economie theories 

are semantically insufficiënt to avoid a priori the possibility of multiple equi­

librium states. The existence of various types of feedback mechansims in economie 

systems may lead to non-linear trajectories and even discontinuous changes. Such 

discontinuous changes are often time-irreversible, i.e., by reversing the direction 

of the initial stimulus that has caused the discontinuous movement (e.g., bifurcation, 

catastrophe, or shock), the system does not necessarily move back to its original 

state. Such asymmetrie behaviour implies an unstable evolutionary pattern, as the 

discontinuities which may then be triggered by marginal changes in initial con-

ditions or in parameter values, make the system's evolution time-irreversible. 

Consequently, the past state of a system plays a dominant and non-trivial role in 

non-linear dynamic systems. 

It is worth noting that non-linear dynamics plays a crucial role in explaining 

the spatio-temporal evolution of a spatial system (e.g., city, region), as here 

the question of isotropy of space and time is at stake. The analysis of the de-

velopment of geographical structures requires an investigation into the existence 

of reversibility of space-time systems. An abstract representation of a geogra­

phical structure can be given by the Cartesian coordinates (x, y) of the successive 

phenomena to be modeled in order to position them in a two-dimensional surface. 

Additional dimensions (e.g., z) may of course be added to account for other attri-

butes of such a phenomenon, for instance, its size or magnitude, its degree of 

spatial interaction with respect to other phenomena in space and time, etc. Geo­

graphical structure in a general sense then refers to the interrelatedness between 

locational aspects (x., y.) and other dimensions z. of a phenomenon i. Clearly, 

such structures are the result of a historical process (e.g., investment and lo­

cational decisions), which might inter alia be described by means of event-history 

analysis (see Hannan and Tuna, 1985) in a discrete sense, or by means of continuous 



space-time models (see Beckmann and Puu, 1985) in a continuous sense. In all these 

cases the structure and evolution of geographical systems may be analyzed by means 

of non-linear dynamic models exhibiting discontinuities and irreversibilities. To 

illustrate the relevance of such approaches, one may quote Griffith and Lea (1983) 

who remark: "Geographical systems, such as school systems, and geographical networks 

such as grain elevator and gas station networks, experiencing rationalization, growth 

or contraction and decline, have demonstrated empirically the asymmetry of life-cycle 

trajectories". 

Paragraph 2 contains some remarks on dynamic systems. Different forms of bifur-

cation are shortly treated in paragraph 3. In paragraph 4 we distinguish three 

levels on which dynamic processes can be modelled. These three levels are used 

to classify some models as have been developed by economists and geographers. 

Finally, paragraph 6 contains some conclusions. 

• o 
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2. Dynamic Systems 

Following Samuelson (1948, p. 314) and Frisch (1935-36) we may define a dynamical 

system, as a system whose behavior over time is determined by functional equations 

in which variables at different points of time are involved in an essential way. 

This definition is made more precise in its application to economics by requiring 

that the variables should be economically significant. Otherwise every variable 

can be written as the derivative of its own integral, which itself may not be a 

variable of interest, although it would .make the system dynamic. 

Accounting for this qualification we regard systems of difference and differential 

equations as dynamic systems. In the sequel of this paper we will only pay attention 

to these two classes of dynamic equations. 

There are various ways of classifying dynamic models. For instance, Samuelson 

has made a subdivision into complete causally-determined systems, historical systems, 

and stochastic (historical and non-historical) systems (see for details Samuelson, 

1948). 

The analytical knowledge of systems of differential equations is better developed 

than that of systems of difference equations. Several results for systems of 

differential equations hold however in an analogous way for systems of difference 

equations. Sometimes however, unexpected results may take place, viz. if differential 

equations are discretely approximated by means of difference equations. The problem 

here is caused by the fact that empirical economie data are usually only available 

at discrete time intervals, so that in economie research practice for dynamic systems 

one is forced to use difference equations. This problem can be clarified as follows. 

Assume the following dynamic system: 

x - F(x) (2.0 

where x £ X c IRn, x s ̂ LÜii and F: X -» IRn. X is called the state space and 

F defines a vector field on X, while (2.1) is a general formulation of a system 

of differential equations. 

In applications where numerical solutions are required, the distinction between 

differential and difference equations becomes blurred, as the computer solution of 

Cl.l) usually requires a discrete approximation: 

x(t+A) - x(t) , ( 2 # 2 ) 

A t 

where t = 0,A,2A,... with A a small positive number. Let n = 1; 

;local stability of the corresponding equilibrium x* of (2.1) requires: -v.--

' (#)| *< 0 , (2.3) 
dx 'x=x 
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while local stability of the corresponding fixed point x* of (2.2) requires: 

|1 + A g | < 1 (2.4) 
x=x* 

The latter illustrates that a discrete numerical solution procedure for a differen-

tial equation system evokes problems of stability: if A is taken too large, the 

fixed point x* of the approximated system (2.2) may exhibit unstable behaviour, 

although it may be a stable equilibrium point for system (2.1). 

A glaring example of such a situation can be found in models of the type developed 

by May (1974), which are frequently used in population dynamics (see also Pimm, 1982, 

Li and Yorke, 1975 and Brouwer and Nijkamp, 1985). 

The prototype of the May model has the following form: 

x(t+l) = *x(t)[l - x(t)] (2.5) 

This simple non-linear dynamic system in difference equation form may exhibit a re-

markable spectrum of dynamic behaviour ranging from stability to fluctuating and 

even chaotic patterns, depending on the parameter values and on the initial con-

ditions. This unusual and unexpected behaviour of a non-linear dynamic model does 

however, not hold for its continuous counterpart in differential equation form. 

Consequently, the conclusion may be drawn that the May model derives its unusual 

results mainly from its specification in difference equation form. Although such 

models may generate a wide spectrum of dynamic behaviour, there is a priori no reason 

to believe that simple models of this type are able to provide a more realistic and 

reliable representation of a dynamic complex world than other models would do. 

With regard to models of type (2.1) it is interesting to pay attention to 7 funda-

mental questions raised inter alia by Varian (1981): 

(i) Do solutions exist? 

(ii) Do equilibria exist? 

(iii) What is the number of equilibria? 

(iv) Which equilibria are locally stable? 

(v) Which equilibria are globally stable? 

(vi) Do cycles exist? 

(vii) Is the system structurally stable? 

These questions will concisely be treated here in order to clarify some relevant 

aspects of (non-linear) dynamic models. 

A solution to (2.1) - with initial conditions x(0) = x is a differentiable 
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function x : I -* X, where I is an interval in IR, such that: 

^ j ^ - = F(x(t)), and x(0) = X Q (2.6) 

If F is continuous differentiable on the open subset X, a unique solution does 

exist. This solution is continuous (as a function of x ). An explicit analytical 

solution to (2.1) is however usually difficult to find, so that normally the attention 

is focussed on the qualitative properties of this system. In this framework, the 

issue of the existence and the stability of equilibria of the system emerges. 

^ n e(Iuilibrium is defined as a point x* £ X such that F(x*) = 0. 

Various theorems dealing with the existence and number of equilibria - especially 

in case of non-linear dynamic models -r may be relevant in concrete situations 

(see, for instance, Rijk and Vorst, 1982). Particular important in this context is 

the notion of local stability. An equilibrium point x* is called locally (asymp-

totically) stable, if there is some e > 0 such that for all x for which |XQ-X*|<£ 

it follows that lim ca (x ) = x*, where <a (x ) is the flow of the differential 
{--XXJ t O t O 

equation (2.1) that corresponds to the initial condition x(0) = x . Usually, only 

locally stable equilibrium points are regarded as relevant from an economie point of 

view. Stable equilibria act as attractors of the trajectory of a dynamic system and 

thus determine a specifie solution. The case of unstable equilibria is also interest-

ing, as such points may act as repellors of the trajectories. Finally, a third type 

of equilibrium is the saddle point which reflects a special kind of instability: a 

saddle point implies that there are two trajectories leading to different equi­

librium points; such a point divides the state space into two areas, while each tra­

jectory in each area is directed towards a' Sifferent stable equilibrium. The nature 

of an equilibrium point x* can in principle be evaluated by analyzing the eigen-

values of the Hessian matrix DF(x*) (see Annex 1). 

An equilibrium point x* is globally stable, if lim x(t) = x* for any initial. 
condition x . Further contributions to the analysis of global stability in economics 

o 

can be found in Arrow and Hahn (1971). 

A special type of equilibrium is a cyclical pattern: a point set X is in a cycle 

(closed orbit), if F(x) ± 0 and tp (x) = x for some t^O. Casti (1985) indicates 

why cycles are relevant in modelling real-world phenomena. In his view, empirical 

evidence indicates that for many phenomena periodicity is the rule and static equi­

librium the exception. Besides, he states that a system that can respond more swift-

ly to the environment than its neighbours has a competitive advantage. That real-world 

systems do not always exhibit truly periodic behaviour is due to perturbations which 

continually push the system from one cycle toward another. 

It is worth noting at the end of this section that the equations of a model have 
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always an approximate character, so that structural stability is a desirable property, 

i.e., a small change (perturbation) in F(-) should not change the qualitative 

nature of the vector field. Structural stability is thus directly related to the 

'behaviour' (in terms of location, existence and character) of the equilibrium points. 

Clearly, under specific circumstances with dramatic or discontinuous changes in a 

real-world system one may use modelling experiments based on structural instability. 

In the latter case, linear models with endogenous changes cannot be employed. 

« 
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3. Non-linearity and Bifurcations 

Linear model specifications have become very popular in economics, although 

there are a priori no strong theoretical arguments in favour of linear models. 

Clearly, practical reasons may be relevant in this context (for instance, data 

availability, econometrie estimation and test procedures, first-order Taylor 

approximations, computer software like linear programming etc), but as noted 

before there are many convincing examples that demonstrate the inadequacy of the 

use of linear models for various real-world phenomena. 

Non-linear models are able to generate non-trivial changes in a dynamic system 

(not just growth or decline), and consequently the (event) history of phenomena 

plays a crucial role in dynamic modelling efforts for such a system. The capability 

of non-linear models to describe and/or to endogenously generate. bifurcations is 

their major discriminating feature. For instance, by means of bifurcation anal-

ysis one may try to model structural change processes: the qualitative nature of the 

change caused by a bifurcation reveals the evolution of the system concerned. 

Consider system (2.1) in a slightly modified fora: 

x = F(x;a) , (3.0 

where a is a parameter vector. Let F be non-linear. Assume now that 

x. (x=l,...,I) are I distinct equilibrium points. The number I may then be 

co-determined by the numerical value of a. Since x = O for any point x^, there 

exists an internal consistency within the system for these values of x. A state 

is internally consistent, if it is self-sustaining. The non-linearity of F may 

thus lead to a number of distinct self-sustaining states. Existence of cycles re­

veals that there may also be an internal consistency between moving variables. If 

one takes for granted that a social system can be decomposed in individuals whose 

behaviour influences the system's environment and is in turn influenced by this en­

vironment, it is easily seen that multiple self-sustaining states may exist. 

Each individual action or each local intervention in a complex system may lead 

to an aggregate impact at the system's level that - after a bifurcation - may result 

in global changes. Various forms of bifurcation may be distinguished, some of them 

will be discussed here. Assume for instance the following partition of (2.1) 

(a) Xj = f1(x,,x2;e) (3i2) 

(b) x2 = f2(x2;y) 

where x. and x„ are vectors of fast respectively slow moving variables, and S 

and y parameter vectors. The functions f. and f„ are assumed to be non-linear. 

Since f. is non-linear, there may be some ranges of x„ and g for which (3.2.a) 
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has multiple equilibria, and there may be some bifurcation points (x2>B ) at which 

this number of equilibria may even change. If the system is situated near such a 

point, it depends on infinitesimal changes in x„ and/or 8 which equilibrium point 

will be reached (note that x. is assumed to be a fast moving variable). Consequent­
ie l- 1 

ly at such points (x„,6 ) the self-sustaining nature of the equilibrium points becomes 

unstable: a small-change in x„ and/or g may trigger a fast development whereby 

x. takes on an entirely different equilibrium value. In such cases, the predictability 

with regard to x. will be low, even if the functional form f, were exactly known. 

Another example of bifurcation concerns the nature of the equilibrium points, which 

may alter in response to a small parameter change. 

Both types of bifurcation (i.e., those related to the number and nature of equilibria 

reflect essentially situations of structural instability; they may even occur simult-

aneously. 

A final and different form of bifurcation is related to small changes in the initial 

conditions. A small shift in the initial conditions may force the system to move to 

a completely different trajectory. This divergence is caused by the shift in the in-

fluence of either attracting points (in case of stable equilibria) or repelling 

points (in case of unstable equilibria). The treatment of unstable system behaviour 

requires often a probabilistic approach as will be indicated hereafter. 
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4. Three Levels of Modelling Dynamics 

Models can be designed and estimated at different levels of aggregation, ranging 

from macro to micro levels. Each aggregation level imposes certain constraints on 

model specification and validation, as well as on the conclusions to be inferred 

from model results (see also Blommestein and Nijkamp, 1985). For instance, when a 

model is specificied and estimated as a macro model, one has to be extremely cautious 

in drawing conclusions on the micro behaviour of economie agents (the so-called 

problem of 'ecological fallacy'). 

Each scale of aggregation implies that certain aspects are left out of consider-

ation or are assumed to be constant. For instance, for certain modelling purposes 

(e.g., short-term forecasts) one may abstract from the explanation of slow moving 

variables (by using a ceteris paribus clause). On the other hand, in other cases 

one may be willing to neglect the impact of fast moving processes, for instance, if 

theseprocesses are assumed to be so fast that the analysis is not distorted of the 

trajectory of these variables from one equilibrium to another is not precisely studied 

(e.g., in a comparative static framework). Clearly, the validity of these simplify-

ing assumptions depends on the differences in time scales and order of magnitude of 

the variables involved. However, in a dynamic model fast and slow dynamics may occur 

simultaneously. 

It is worth noting however, that the rate of change of a variable in a model de­

pends usually also on the variables which are left out of consideration. The be­

haviour of such omitted variables depends in turn on other variables (either included 

in the model or omitted) etc. Consequently, from the viewpoint of specification 

analysis, it has to be observed that a closed set of equations (i.e., a finite set 

of- equations specified only in terms of agreed-upon variables) does only exist in 

an approximative sense. 

There *re however, phenomena for which the distinction according to time scale 

and size does not provide a useful way of demarcating a closed set of equations. 

For instance, in case of structural change processes, we can imagine that a small 

change at the micro level of a system (e.g., the construction of a road or the intro-

duction of a new production process) may have substantial impacts on the macro level. 

In these cases "... the difficulty comes from the fact that couplings may exist at 

all scales from the smallest initial ones to those of the macroscopic level when a 

system is about to topple over from one stable mode of operation to another" and 

thus "... a model or theory for describing systems near these critical points must 

therefore take all these correlations into account in one way or another" (see 

Courtois, 1985, p. 593). 

If the abovementioned new mode of operation is qualitatively different from the 
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original one, one can speak of an evolutionary event (see also Johansson and Nijkamp, 

1986): a small change at the micro level may sometimes change the structure of the 

system. For instance, in case of a new road the transportation cost matrix for a 

whole spatial system may change, or in case of a new production process new firms 

competing with better products, may enter the market. Such new macroscopic struct-

ures emerging from microscopic events would of course in turn have an impact on the 

structure and the functioning of microscopic mechanisms. 

After these remarks, we will now discuss three levels of description of change in 

physical systems as distinguished by Prigogine (1981): 

(i) a macro-phenomenological level 

(ii) a micro-stochastic level (usually based on Markov processes) 

(iii) an approach based on the dynamic laws corresponding to a basic (micro or meso) 

level. 

The fact that in both physical and social systems we can distinguish a micro level 

and a macro level (structure) may provide a useful analogy. We will therefore use 

this distinction to classify types of non-linear dynamic models that have been applied 

in (regional) economics. Thus the aim is not to propose unambiguous design and 

specification principles for such models; such questions are co-determined by the 

nature of the phenomenon under consideration, the specific research questions posed 

etc. 

(i). macro-phenomenological level 

The variables in the macro-phenomenological approach are (weighted) average values 

of micro variables whose fluctuations are supposed to have little impact on the first 

mentioned variables. Clearly, this assumption is not always warranted, witness the 

occurrence of bifurcations in real world systems deteriorating the macroscopic des­

cription. In case of a bifurcation (which ultimately always sterns from the micro 

level), it is clear that complementary theoretical considerations, not included in the 

macroscopic viewpoint, are needed in order to adequately analyze the bifurcation pro­

cess and the way the system reorganizes itself. 

(ii). micro-stochastic level 

In the micro-stochastic approach the micro variables underlying the macro behaviour 

are explicitly modeled. The factual knowledge regarding their behaviour is limited, 

so that often a probabilistic approach is foliowed (e.g., by describing the state 

transitions of micro variables by Markov processes). By assuming an initial proba-

bility distribution for the state of the system, it is then possible to tracé the 

consequences of the micro behaviour and to derive a stationary distribution function. 
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This distribution reflects then the fact that the multitude of individual events 

taking play simultaneously at the micro level of the system eompensate each other 

statistically, sö that they may create a certain macro order which is called a 

structure (cf. als the notion of entropy in a spatial interaction system; see Wilson, 

1970). 

Under certain conditions the stationary distribution may be multimodal, viz. 

if - given an initial unimodal distribution and its ensuing trajectory - certain 

points emerge over time at which the distribution shifts from a unimodal to a multi­

modal one. Such a transition is accompanied by large fluctuations in the micro 

variables. It is in principle possible to derive approximate mathematical express-

ions for the growth in such fluctuations proceeding the occurrence of a bifurcation. 

These fluctuations reflect the existence of a certain ambiguity in the system, as 

the system may 'choose' between various regimes. Beyond such a bifurcation point 

the average value of the variables is no longer directly related to the extreme points. 

Then a multimodal stationary probability distribution results, which indicates that 

there may be various macro structures that are consistent with the stochastic behaviour 

of the micro variables. If this micro behaviour is represented by means of a para— 

metrized model, the form of the stationary distribution function may drastically 

change due to a (small) shift in one of the parameters. As a description of a rela-

tively large system in terms of a probability distribution is often not very meaning-

ful, one moves usually to mean value equations. It should be noted however, that in 

case of a multimodal stationary distribution the relationships between extreme points 

and mean values become blurred. Fortunately, it can be demonstrated that the stable 

equilibrium points of the mean value equations correspond to the extreme points of the 

stationary distribution. When the behaviour of the micro variables depends on the 

macro state of the system, the mean value equations will be non-linear and there may 

be multiple stable modes of operation. 

(iii). dynamic laws at a basic level 

The third approach provides a description in terms of the dynamic laws operating 

at a basic level (e.g., the individual trajectories of molecules in a physical system, 

or the dynamic behaviour of individuals or firms in an economie system). Clearly, 

the precise demarcation of a basic level implies some arbitrariness. Instead of 

providing a sharp demarcation criterion for cases (i) and (iii), it is more meaning-

ful to spell out the consequences of not using a phenomenoglogical approach, i.e., in 

what sense does the analysis change if, in one way or another, one takes into account 

the fluctuation, diversities and feedbacks at the micro level? 

Let us assume that the exact dynamic laws governing the behaviour of basic 

variables are known. Such laws may express stable behaviour, so that neighbouring 
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points are transformed into neighbouring points. Then we may use these laws to ana-

lyze the behaviour of the system. However, if these laws reflect unstable behaviour, 

a problem arises, as then any region in the state space, whatever its size, always 

contains different trajectories that diverge as time passes by. In such cases, 

even small differences in initial conditions may be amplified. Since a specific limit 

transition in which processes of a region in the state space are restricted to a point 

(and hence to a well defined trajectory) is not possible, the description in terms 

of trajectories breaks down. Then a description in terms of bundies of trajectories 

becomes relevant. This can be modelled by representing the dynamic equation in 

stochastic form. This approach, called in the natural sciences the ensemble stand-

point, is based on a probability aggregate, which is composed of an ensemble of 

copies of the original system that are consistent with the information assumed about 

the original system. 

The above mentioned classification of dynamic models is not only relevant for the 

natural sciences, but also for the social sciences. Especially in disaggregate mo­

dels of socio-economic behaviour various kinds of non-linearities are likely to 

exist. Such non-linearities can make the dynamic behaviour of the pertaining model 

unstable. 

In the next section, it will be demonstrated that various models which in the 

past years have been developed to describe non-linear evolutions, especially of 

spatial (urban or regional) socio-economic systems, can be classified by means of 

the foregoing three categories. 
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5. A Classification of Major Types of Non-linear Dynamic Spatial Models 

In the past years, various models have been developed by economists and geographers 

to describe non-linear dynamic (sometimes irreversible) socio-economic developments 

in time and space. Instead of providing an exhaustive survey of the literature, we 

will present for each class of non-linear dynamic models discussed in section 4 one 

or two prototype models which may be regarded as representative for a.broad class of 

models. 

(i) macro-phenomenological models ""'--~-~J:.:*• 'y 

Various models in this class are directly or indirectly based on the so-called 

Volterra-Lotka approach in population dynamics. An example of-the macro-phenomeno­

logical approach to urban growth and form can be found in Dendrinos (1984). and 

Dendrinos and Mullally (1985). The central point in this approach is that - despite 

the complexity of a system at the micro-level - it is possible to gain basic insight 

into the nature of urban evolution by means of an analysis of a limited number of 

strategie macro-level variables. Dendrinos refers to May (1971). who has shown that 

- in case if random connectance - a system is more likely to- be stable when it is 

small, the elements of the system are weakly connected and the average strength of 

interaction is low. Although he admits that inter-city linkages are highly non-

random, he uses nevertheless this argument (together with the analytical intractabil-

ity of large non-linear dynamic models) to rejeet the use of large-scale models for 

describing urban evolution in the U.S. which over a time-span of a century has shown 

a remarkabie stability. 

He introduces then the concept of an effective environment, which allows him to 

design a small model for analyzing the income-population dynamics relative to that 

of the environment of the SMSA's in the U.S. An effective environment is a system's 

environment which implies such a normalization of variables that their dynamics can 

be described by means of the Volterra-Lotka dynamics (or any other non-random dynamic 

model) which provides theoretical insight and makes empirical verification possible 

(see Dendrinos, 1985, p. 68). 

The Standard form of this model is as follows: 

*t - a(yt-i)xt - 6xJ 

yt = y(x-xt)yt 
} (5.1) 

where x is the relative population size of a metropolitan area (normalized with 

respect to the total national population size) at time period t, y the ratio of 

urban real per capita income to the prevailing national average during each time 

period t, and x the carrying capacity (in terms of population size) of the metro-

politan area concerned. 

. i -
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This model structure is claimed to be supported by empirical evidence. The model 

has to be regarded as a specimen of the macro-phenomenological type, as relative 

income and population dynamics of an urban area could in principle equally well 

be modelled in terms of disaggregated variables (such as employment in specifie in­

dustries, the presence of housing, infrastructure etc). 

The insight which te model may provide is rather limited. The behaviour of an 

urban system can not reaListically be explained without regard of its environment. 

Despite the normalization used, no functional relationships of^the city and its en--

vironment are considered. One of the more interesting topics! in. regional and urban 

economics is the question: which are the determinants of the relative carrying cap-

acity of an urban area and which are the driving forces of, urban,.dynamics? The 

analysis however provides no answer to these questions.' The relative carrying 

capacity level of population is not a variable determined endogenously in this 

approach but it is treated as a parameter for which it is claimed that robust es-

timates are obtainable. The robustness of these estimates is explained by means of 

the metropolitan areas having sticky ties to their environment. A relevant point 

to be explained by a dynamic theory is why this is the case. 

One may interpret the abovementioned model as being obtained by implicitly sim-

plifying a more comprehensive model. The validity of explaining a complex phenomenon 

by means of a few strategically placed macro observations is directly related to 

the existence of an effective environment, which itself is a somewhat vague concept. 

It is questionable whether there are many phenomena for which this is possible. 

In fact, löw dimensional models may be useful within a more comprehensive, disaggre­

gated analysis. In the words of Casti (1985, p. 213): "it has been empirically ob-

served in many modelling excercises that the essential behavioral properties of a 

system which involves interactions of many variables can be captured by centering 

attention upon a small number of macro-level variables forméd, generally, as some 

(usually non-linear) combination of micro-variables. Usually, the observed macro­

variables exhibit the characteristic oscillations, bifurcations, etc, and what is 

needed is some sort of meso-level theory enabling us to translate back-and-forth 

between the microvariables, which we cannot see or know, and the macro-patterns". 

(ii). micro-stochastic models 

An example of this type of model is the work of Haag and Weidlich (1984) on inter-

regional migration. They employ synergetic concepts to analyse the dynamics and 

possible stable modes of operation of a system that describes the distribution of a 

given population (N) over a number of regions (L). Within their approach the be­

haviour of the micro variables of the system (i.e., individuals who might or might 

not migrate to another region) is explicitly considered. It is argued that the hetero' 
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geneity of their behaviour impede a fully deterministic model. Instead, they make 

a plea for a probabilistic treatment in terms of transition probabilities for well 

defined states. These transition probabilities provide a Markov chain. They may be 

modelled by means of a parametrized model. The parameters in such a model are called 

trend parameters. The resulting stochastic theory describes the system in terms of 

a probability distribution defined over the possible states of the system. 

By means of the transition probabilities it is possible to link (static) theoretic-

al considerations to dynamics, and by means of the so-ealled master equation, which 

describes the evolution of the probability distribution over ;time, a link is provided 

between the micro- and macro-level. Then an elegant framewörk for analysing the 

dynamics of complex systems results. Once the initial conditions and the specification 

of the transition probabilities are given, the behaviour of. the system is completely 

determined by the numerical values of the trend parameters. These trend parameters 

are then estimated on the basis of empirical data. In a more extensive analysis they 

may be explained by socio-economic factors and in this way make the model more approp-

riate for prediction purposes (see for more details Annex 2). 

In the case that the transition probabilities are functions of the macro-state of 

the system there exists a feedback from the macro- to the micro-level. This feed­

back may lead to a multimodal stationary distribution function the shape of which 

may change drastically under certain critical changes of the trend parameters (bi-

furcation). The states of the system corresponding to the maxima of the stationary 

distribution are to be interpreted as stationary end-states in which the spatial 

interactioö\ system has attained a stable mode of operation. In the case of a multi­

modal distribution there are several stationary end-states. It depends on the ini­

tial conditions which one is attained. Under the condition of 'detailed balance', 

that is local balance of all probability fluxes, it is possible to derive explicitly 

the stationary distribution function. An often analytically more tractable but less 

informative representation is by means of mean value equations. These deterministic 

equations describe how the mean values of the number of people living in the different 

regions change as the probability distribution evolves over time. In formula: 

1 

where: n' s (n.,..n.,..n.,..n_), a vector consisting of the number of people living 

in the various regions. 

n. = mean value of the number of people living in region i. 

-v-r— = time derivative of the distribution function concerned. 

Bij an approximation which is valid as long as the distribution remains narrow and 
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unimodal, a closed (self-contained) set of L differential equations is obtained . 

These equations are non-linear in case the individual transition probabilities are 

functions of n. The stationary points of the mean value equations correspond to 

the states at which the stationary distribution attains its maxima. Possible bi-

furcation phenomena are also reflected in these mean value equations. It depends 

on the initial conditions which of the stationary points is finally attained by 

the mean value equation. 

(iii). models based on dynamic laws at a basic level ƒ 
, ^ .. 

An example of the disaggregated approach belonging to the/third class is the work 

of Allen and Sanglier (1981). Their work is part of the investxgation of 'self-organ-

izing' phenomena in natural and social systems. In this/approach the interactions 

of geographically distributed sites can be analysed. It leads tb dynamic equations 

in which various types of non-linearities are present, and consequently the dynamics 

expressed in these models may r.eflect an unstable behaviour. 

A typical example of these equations reads: "* 
dx. ' , o - 2 
-*£.- bx.(J? + I J. - x.) - mx. + T[ Z {xf exp(-6d..)-xfexp(-ed..)}] (5.3) 

Ut X X ^ 1 X X 19=X J "'Xj X ij 

where: x. - population of site i 

J. - basic 'carrying capacity' of site i 
k J. - number of jobs in activity k at site i 
d..\- distance between site i and site j 
ij \ 

The parameters b and m reflect the demographic change (birth and dead rate) as 

well as the imobility of the population in relocating residences under pressure from 

the distribution of available employment. The last term, consisting of a weighted 

sum of the squared number of people living in the different site, expresses the in-

fluence of congestion effects. 

The specification of (5.3)which consists of an equilibrium condition and a dynamic 

adjustment process, is hardly motivated. The dynamics employed is inter alia used in 

biology (Volterra-Lotka). There it is, under certain circumstances, reasonable to 

assume that x,,x„ is a suitable proxy (model) for the number of prey-predator inter-

actions between the specimen 1 and 2. It is questionable whether these type o£ 

dynamics are appropriate for modelling socio-economic processes. In any case, they 

imply a type of behaviour that is not motivated. 

The possible development in case of non-linearity into a multimodal distribution 
is an extremely slow process which takes place after the distribution has been 
centred around one of the (ultimate) maxima. 
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Allen et al. consider spatial structures as being far from equilibrium in a 

thermo-dynamic sense and consequently they presuppose that flows of matter, persons 

and energy lead to a maintenance of this disequilibrium situation. The fact that 

a social system is open is incorporated in the model by two types of stochastic 

processes that may influence the simulation results in a non-trivial way. One is 

the random introduction of economie activity at various time intervals at all loc-

ations; if certain exogenous boundary conditions are met, the activity will develop, 

otherwise it will not survive. The second type is concerned wi-th the perturbation 

of exogenous parameters and the deviations of behavior of an „dndividual.agent from 

an average aggregate performance level. The authors are not so much interested 
' ' f • • • • • ' 

in making exact predictions, as well as in illustrating the consequences of fluctu-

ations and non-linearities. Their explanation is not as 'ströng' as the usual 'causal' 

explanations of classical physics. "It is through the action of elements not ex-

plicitly contained in the equations (fluctuations or historical 'accidents') that 

the choices are in fact made at the various bifurcation?points that occur during 

the evolution of any particular system" and "the spatial organization of a system 

does not result uniquely and necessarily from the 'economie and social laws' en-

shrined in the equations, but also represents a 'memory' of particular specific 

deviations from these average behaviours" (Allen and Sanglier, p. 168). 

Another example of the approach based on 'basic' dynamic laws is the type of 

models employed by Wilson et al. (see for example Wilson, 1981). They have used 

their models to analyse among other things the urban retail structure and the resi-

dential structure. Here we will take the urban retail structure model as an example. 

In this model two types of agents are distinguished: there are consumers who respond 

via their buying behaviour to a given spatial distribution of shopping centres and 

there are entrepreneurs who in response to revenue generated in the different shopping 

centres determine their investments and consequently the urban retail structure. 

The buying behaviour of the consumers is modelled by means of a measure of the at-

tractiveness of the different centres and the costs of travel. The attractiveness 

of the centre is assumed to be a function of the size of the centre. This size 

itself is determined by the investment behaviour of the entrepreneurs. 

The total revenue (expenditure on consumption goods) attracted to centre j is: 

-6c. 
e.p.W. e J 

D. = l - i - i J _ (5.4) 
i i -Sc. . 1 I W? e ^ 

j J 
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where: e. = the average per capita expenditure on shopping goods by the residents 

of zone i 

p. = the population of zone i 

W. = the size of centre j 
J 
c.. » the cost of travel from i to j 
ij 

a,3 = parameters 

Further it is postulated that the cost of employing a centre is proportional to its 

size: 

c. - kW. - J - (5.5) 

where k is a suitable constant. To analyse the development of the retail struc-
i f 

ture it is assumed that the entrepreneurs will expand their facility as there are 

positive profits and that the facility will be reduced in case-they make a loss. 

So thé following equilibrium condition is postulated: 

-Bc... 
e.p.WT e ^ 

Z X X * 0 -kW. '* (5.6) 
- B c . . j - , 

1 ZW?e 1J 

\ 2 -

-Bc. . 
e.p.W. e J 

W. • F[ Z X X J . kW.] (5.,7) 

Z W. e 1J 

j J 

where F is a function such that F[0] » 0 and F'[x] > 0, V x. It is worth noting 

that the specif ication of the F-function - in principle to be based on theoreticalj. _jt 

consideration - inf luences the nature of the equilibrium "points and hence the dynamic;. 

trajectory. The model is highly non-linear in the W. variables. (5.6) models 

the distribution of the expenditures over the different centres. The denominator 

in (5.6) serves to make this distribution consistent. It leads to non-linearities 

and the possibility of multiple equilibria. The dynamic behaviour of the model may 

exhibit bifurcation properties that are not easily investigated analytically. This 

will be even more likely when the model is disaggregated and the attractiveness fac­

tors itself become non-linear functions. 

After having briefly conisidered the various prototypes of models belonging to 

the thiree abovementioned classes, we will in the final section draw some more 

specific conclusions regarding the modelling of non-linear dynamic (spatial) systems. 
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6. Conclusion 

Non-linear dynamic systems are the appropriate tools for modelling discontinuous 

and structural changes in real-world systems. 

A non-linear dynamic system may, for ranges of numerical values of its parameters, 

have multiple equilibrium points. So, an equilibrium finally attained may be path-

dependent. Non-linearity therefore requires a dynamic analysis and often also a 

disequilibrium approach. This poses problems. As Koopmans (1957) observed 'until 
''t-

we succeed in specifying fruitfull assumptions for the behaviour in an uncertain 

and changing economie environment, we shall continue to be groping for the proper 

tools of reasoning'. We are still lacking such a fruitful^|theory:.of behaviour in 

disequilibrium. • •-.*'; ~*~f*pi-,,~-r-- ' : 

The nonlinearity may have its origin in non-linear ihdividual behavioural re-

lationships or \£iay be caused by aggregation of linear onesv However^ theoretical know-

ledge and empirical information concerning functional forms in economies is very 

limited and the class of non-linear functions is very wide. Cónscientious econo­

metrie research may be helpful but still requires basic assumptions that may be hard 

to motivate and will require an enormous effort to test empirically. Comparing 

different empirical models of a certain phenomenon that are based on different func-, 

tional forms is far from easy and is not guaranteed to lead to conclusive results. 

It seems therefore an exacting endeavour _̂ to describe specific non-linear phenomena 

by means of a complete set of well-motivated non-linear dynamic laws. : 

There arises a dilemma. On the one hand there are empirical phenomena that can 

not be explained by linear models while on the other hand the knowledge with regard 

to behaviour in disequilibrium and functional forms is often too limited to warrant 

the specification of a set of non-linear dynamic laws. 

A complete other and in our view promising way of arriving at a non-linear system 

is the synergetic approach. Synergetics is defined as the science of collective 

static or dynamic phenomena in closed or open multi-component systems with "cooper-

ative" interactions occurring between the units of the system (Weidlich and Haag, 

1983, p. 1). The non-linearity follows from the assumption that the behaviour of 

the micro-units (the components) of the system is dependent on its macro-state. 

The macro-state of the system is at the same time influenced by the individual be­

haviour. There exists a cyclic coupling between causes and effects which may lead 

to multiple self-sustaining states (structures). The non-linearity enters in a 

'natural' way and not by means of an often arbitrary functional form. Since in the 

synergetic approach the micro- and macro-level are modelled simultaneously it is 

suited for the analysis of structural change. 
The behaviour of the micro-units is modelled by means of transition probabilities 
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that define a Markov process. Therefore a specific functional form has to be chosen* 

Modelling -the transition probabilities, however, possess a rather well ordered problem, 

relatively easily accessible to empirical investigation, as opposed to the all em-

bracing nature of the specification of dynamic laws. Within the synergetic approach 

it is not required to postulate equilibrium conditions and disequilibrium behaviour. 

Once the transition probabilities are being modelled, the dynamics and equilibria follow 

in a logical way. 

The synergetic approach leads to a description in terms of a" distribution function 

over the state space. This description can be shown to be consistent with a des­

cription in terms of stochastic dynamic equations for the relevant variables (see 

Weidlich and Haag, 1983). In the case that the deterministic part of these equations 

exhibits unstable behaviour the latter description is rather limited. Sxmulating 

the dynamic trajectories for many times will lead to a wide spectrum of results. 

These results reflect the abovementioned distribution function. 

The description in terms of the distribution function is to be preferred since it 

is more complete. The intractability of the distribution function of somewhat larger 

system is, however, a serious handicap. Resort it then taken to the mean value 

equations. These provide in an elegant and concise way (often jidequate) informatiqn __ 

about the distribution function. 

In restrospect: the foregoing observations lead us to the conclusion that the 

power of the master equation is its ability to account for synergetic effects in 

sócial systems in an appropriate manner. Further empirical research, amongst others 

on the actüal properties of the mean value equations for real-world systems, is no 

doubt warranted. 
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Annex 1. Stability Analysis by means of Eigenvalues 

In this Annex, it will be outlined how equilibrium points x* can be dealt with 

on the basis of an eigenvalue approach of the matrix DF(x*). 

The linearized vector field that is close enough to the equilibrium point x* 

describes its stability properties. If at least one of the eigenvalues has a non-

zero imaginary part, the convergence or divergence will exhibit an oscillatory pattern. 

Clearly, when F(.) in a linear function, there is at most one equilibrium point. 
————— ; /.. 

In the latter case, DF(«) is constant, so that then the locaï behaviour and the 
• •• • .• • i ^ - v - " 1 - <"• •'" - - . • 

global behaviour of the system coincide, besides, the qualitative. characteristics 

of a solution will be independent of the initial conditions. As the linear case 

implies that DF(x*) will generally be a function of thé parameters, the equilibrium 

will change due to a shift in parameters. However, the location of the equilibrium 

point will not change dramatically in response to a small parameter shift. 

On the other hand, if F(-) is a non-linear function, sevëral equilibrium points 

may occur; their number depends inter alia on the numerical values of the parameters. 

DF(«) is then in general a function of the parameters and of x. Such a case of 

multiple equilibria of non-linear models implies that the location, existence and 

character of equilibrium points may sometimes drastically change in response to a 

small change in one of the parameters. 

Various examples of non-linear dynamic models can be found in regional economics 

(see also paragraph 5). Several of these models incorporate a static equilibrium 

condition in a dynamic framework. This equilibrium condition determines the location 

of the equilibrium points, while their character in addition is also dependent on 

the dynamic framework. This approach bears a similarity to Samuelson's correspon-

dence principle stating that a fruitfull application of comparative static methods 

often presupposes a theory of dynamics (see Samuelson, 1948). 

In conclusion, instead of specifying a priori and in an uncritical way a specific 

type of dynamics (e.g., Volterra-Lotka dynamics, May dynamics) for economie systems, 

it is preferable to give sufficiënt attention to the design of models for dynamic 

adjustment processes of the dynamic system at hand. 
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Annex 2. The Master Equation Approach 

In this Annex the synergetic concepts as employed by Haag and Weidlich (1984) 

will be described. The behaviour of the (migrating) individuals is modelled by' 

means of individual transition probabilities P.. which describe the probability 

that an individual migrates from region i to region j (i^j). With respect to 

these probabilities the Markov assumption is made. Thus the probability that an 

individual migrates from i to j in a given time interval is independent of its 

behaviour preceeding that time interval. The probabilities, which link static 
' • ' / ' ' • ' " • " " ' ' " concepts to dynamics, are modelled as follows: '/•'• 

• ?f' ' • ' < ' ' . . ' ' --

P ^ C n ^ ) = v exp[fj(n. + l) - f-̂ n,.)] i^j ƒ " . (I) 

where: P.. = individual transition probability for a transition from region i to 

region j 

v = global mobility parameter determining the time scale of the migration 

process *, 

n, = number of people living in region k 

f, (n, ) = utility of an individual living in region k which has a population 

n, ; the trend parameters that enter this function may be explained 

by socio-economic factors within the context of a regression model. 

These individual transition probabilities enter into the expression for transition 

'probabilities' between, so-called, socio-configurations. These socio-configurations 

are the possible distributions of the given N individuals over the given L regions. 

A typical socio-configuration can be described by the vector n containing a given 

number of individuals living in each region. The following model for the transition 

n = (n1,...,n.,...,n.,...n_) «»• n =.(n.,...n.+l,•..,(n.—1),...,n_) 

results: 

W..[n] - n.P..(n.,n.) (II) 
ji ï ji^ j' i' 

All the n. members contribute the probability P..#(II) enters into themaster 

equation, which describes the evolution of the probability that the system is in 

one of the (jj socio-configurations. 

d PA n ; t ) • I {W.,[nij]P(nij;t) - W..[n]P(n,t)} (III) 
dt i,j=l J1 J1 

The first and second term within the summation express a probability flux that 

goes into, respectively out of, the socio-configuration n. Summation gives the 

net result. Smce there are (jj socio-configurations the master equatxon is a 

system of |jj coupled lmear differential equations. It can be proved , 
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-fehat the distribution function P(n;t) finally becomes time independent. 

In the case of 'detailed balance' (i.e. ff..[n1J]P(n1J;t) = W..[n]P(n;t)Vi,j,ifj) 

the stationary distribution can be obtained, A less informative but often more 

tractible description is in terms of mean value equations (see page 16). The exact 

equations of motion for the mean values, which may be derived using (III), read: 

dn. L L 
-gJ-- .Z W. [n;t] - £ . W..[n;t] j-l,...,L ,.. / ' (IV) 

where W..[n;t]= I W.. [n;t]P(n;t) -/'\ -: '''f-
Jx n J1 ' /-'•;-• ' 

Employing .the approximation W..[n,t] - W..[n;t], which i's • valid; as long as the 

probability distribution remains narrow and unimodal (see fóotnote 1, page 17), 

we arrive at the self-contained set of coupled-differential equations: 

dn". L _ L 
-jJ-- .*, W..[n;t] -.J, W..[n;t3 j-1 L ^ (v) 

Since P.; is a function of n, (V) is non-linear and may have distinct stationary 

points. For the relation between these mean value equations and the distribution 

function (see page 16-17). 
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