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Introduction

The Wald test (see Wald (1943)) is a very useful tool in empirical
econometrics. For computational convenience, a Wald test will be
preferred to a 1likelihced ratio test or a score test, when
estimates of the unrestricted paramefers can be easily obtained.
For instance, this is frequently the case in a specification
analysis or 'top~down'approach to model-building, where a fairly
general model is taken as the maintained hypothesis threughout the
modeling process. Also, a Wald test can be used when consistent
but not fully efficient parameter estimates are available whose
asymptotic distribution is known (see e.g. Stroud (1971)).

In this paper, we present a procedure for the computation of the
Wald criteria when testing nested hypotheses. The suggested
procedure does not require expliecit derivation of the restrictions
implied by the null hypothesis and hence its use might eliminate
an intricate step in testing linear and neonlinear nested hypothe~
ses. We show that the traditional Wald test, which can be computed
if the restrictions are expressed explieitly, Szroeter's (1983)
generalized Wald method and our procedure asymptotically yield the
same value for the statistic under the null hypothesis, In
practice it is often possible to express the restrictions under
the null hypothesis in various forms. For the three statistics, we
discuss a general c¢lass of nonlinear transformations of the
restrictions, which yield the same value for the Wald statistic in
large samples, '

The plan of the paper is as follews, In section 2, we present our
procedure for testing nested hypotheses, For the ease of
reference, we briefly describe the generalized Wald test and we
introduce some basic notation. The asymptotic equivalence of the
three statistics 1is established 1in section 3. Then, a class of
nonlinear transformations’™ of the restrictions for which the Wald
statistic is invariant, 1is discussed., In section 4, we consider
the implications of a lack of global identification of the model
under the null hypothesis for our procedure and the generalized
Wald method. Section 5 contains an example which illustrates how
the Wald statistic can be computed in a fairly straightforward way
for common factor restrictions in a dynamic regression model.
Finally, in section 6 we briefly present some conclusions,. '



Wald criteria for nested hypotheses

In this section, we present a procedure ¢ compute Wald criteria,
which does not require explicit derivation of the restrictions
implied by the null hypothesis. For the ease of reference, we also
give the generalized Wald test proposed by Szroeter (1983) in our
notation. '

Let us assume that we have a model defined in terms of n
parameters forming a vector 8, and that 8 is some consistent
asymptotically normally distributed estimate of 8g such that
YT(® - 8p), with T being the sample size and 8pg being the true
value of @, has a covariance matrix Qg which can be consistently

estimated by ﬁe . A nested null hypothesis Hg implies a set of
constraints on 6

h{(g) = 0 , (2.1)

which form a vector of r independent, continuously differentiable
functions, Under the -alternative hypothesis , the equality in
(2.1) does not hold true,

The Wald statistic for testing the set of restrictions is

W= T h('é)@;? h(g) , (2.2)
where

8 - (2 3 (&Y'

q, = [38,) 2 ( 6,] , (2.3)

with %§7- denoting the first derivative matrix of h with respect
to o which. we evaluate at § .

On the null hypothesis that all the constraints (2.1) are
satisfied, W is x2~distributed in large samples with r degrees
of freedom, provided that plim Qp 1is nonsingular and that

sex 13 a continuous function of 8 at the true parameter value

In the sequel, we denote the first and second partial

derivatives of y with respect to a vector x' by ny , with y being
a scalar or a vector, and by Dixy respectively, when ¥y is a

scalar, Finally, 'ov' denotes the order in probability.

For a given set of restrictions, the Wald statistic is easily
computed, Explicit derivation of the restrictions, however, can be



tedious and intricate. The method we propose here simplifies
explicit formulation of the restrictions. We show how n(3) and
Dgh can be determined by implicitly using the restrictions.
Once h(8) and Dgh have been computed, the Wald statistic
(2.2) can be directly obtained.

In empirical work, the restrictions implied by Hg are usually
given in the form of

f(B’e) =0 ’ (2-4)

where £ 1is a vector of m parameters of the restricted model,
is a continucusly differentiable mapping from an fm+n dimensional
space intc an m+r dimensional one, The wm+r relations in (2.4)
are implicit if Hp 1is true. From the system in (2.3), we now
choose m equations, f4(g,8) = 0 , such that g can be solved
explicitly as a function of 6 , that is 8 = a{(8) . This solution
is substituted in the r remaining relations that we denote by
f>(g,8) = 0 to give

h{e) = f>(g(e),8) = 0 . (2.5)

As indicated above, we only need the restrictions and the
corresponding partial derivatives both evaluated at E to compute
the Wald statistic.

First, we determine h(8) along the lines just described, which
means we 30lve f1(5,§) =0 for g to get.§ and substitute it
into {2.5).

Next, we obtain an expression for the partial derivatives
evaluated at a .

For the sake of simplicity, we define the following matrices

Dgf = F , Dgf = Q , Dgfy = Fj , Dgfy = Qi ,

i=1,2 , where the arguments g and § have been deleted. When we
evaluate these matrices at 8 and g(8), we use the notation F, J,
ﬁi and ﬁi respectively. Assuming that fq1 has been chosen

such that Fy is continuous and nonsingular at (Bg,8q) , we

have as a result from the implicit function theorem (see e.g.
Rudin (1976}) that the solution of (2.5) is continucus and
differentiable in & with first derivative given by

D, B(e) =~ F, Q . (2.6)
If the matrix Fy is nonsingular at (8p,90), there exists
only one solution to f41(g,8) = 0 in some neighborhood of
(Bg,00) - '
Applying the <c¢hain-rule of differentiation to (2.5) and using
expression (2.6), the partial derivatives of h become



Deh = F2 F1_ Q1+ Q2 Qg , | (2.7a)

:1 . Ir] . As a result of the implicit function

with H = E*Fz E
theorem, Deh is continuous in 9§ at 80 .

When we evaluate (2.7a) at a consistent estimate of 9§, we get (see
e.g. Billingsley (1968)) under Hy

Dgh = HQ + op(1) (2.7

with H and Q being evaluated at (8g,8¢9).

Formulas (2.5) and (2.7) are suited for varicus kinds of nested
hypotheses, However, quite often the set of restrictions (2.4) has
the special form, f(B) - & = 0 , s¢o that expression (2.7a) can be
simplified. For instance, the constraints implied by the common
factor structure (e.g. Sargan (1977), 1980a)), the polynomial
distributed lags (e.g. Almon {1965) and Sargan (1980b)) and the
rational expectations restrictions on the reduced form of a
simultaneous equation model (e.g. Hoffman and Schmidt (1981)) are
of this special form. For this form of the implicit relations,

Q = ~Ip , so that we obtain:

h(8) = £5(8) ~ 8>
and (2.8)
Deh = «~« H N

with &> being the appropriate subvector of [

A procedure for computing Wald tests for different kinds of nested

hypotheses consists in:

1) choosing a set of m equations 4, solving them for g for a
given 8 and substituting 2 in fo to obtain h(3) =
£2(8(8),8) ,

2) computing the matrices Fy and Q , i =1, 2, to obtain
Dgh in (2.7b), and

3) calculating the value of W in (2.2)}.

To conclude, the approach yields a convenient procedure to compute

Wald eriteria, It also accommodates sequential testing (see e.g.

Smith (1983)), when f, is successively extended, given the

cholice of fy and the parametrization 6 , B .

The generalized Wald test proposed by Szroeter (1983) for the set
of restrictions (2.3) can be obtained as follows. Given 8, a

consistent estimator g is found by minimizing

£(8,8)'S £(g,8) (2.9)



with respect toc B8, where S is a positive semi-definite symmetric
matrix such that F'S F has rank r. The requirement that rank
F'SF=r is a generalization of Szroeter (1983) since he
chooses a matrix S with rank m+r . Notice that the estimate which
minimizes (2.9) 1is the asymptotic least squares estimate (see
Gouriéroux et al. (1983)). Applying the implicit function theorem
to the first order conditions for a minimum, F'S £(8,8) = 0 , We
get

B BO = P Qo BO) * Op(T ) (2.10)

with P = « (F'S F)“? F'S ., The mean value theorem applied to f
at the frue parameters yields '

£(8,6) = [I+ FP1Q (8 - 6, ,

-~ -1
- L1+ FP1Q (8 =8y + o (T /3, (2a1)
where a tilde '"' denotes evaluation at a suitable point befween
(g(8),8) and (Bg,6q).
The generalized Wald test is now given by

o~ -,

Wg = T £(8,8)'3" £(3,8) , (2.12)

where {1 denotes the matrix Q = (I+FP)Q Qg Q' (I+FP)' evaluated
at (g(e),8) . As a result of the continuity of the derivatives
of £ and of Slutsky's theorem, Q is op(1) , and (2.12) can be
expressed as

Wg = T £(8,8)e™ £(8,8) + op(1) . (2.13)

To finish this section, we comment on the implementation of
Szroeter's (1983) procedure in practice,

When S = [Q $gQ1°! , the asymptotic covariance matrix of
£(8,8) in (2.11) is

[QRgQ'~ F{F'(Qneq'le}“T 1, (2.14)

and 3 is a g-inverse of this covariance matrix evaluated
at (8,8), so that the generalized Wald test (2.12) becomes

A~ o~

W T £(8,6)' (2 2,0'T'1(8,0) = T £(8,8)' £(§,0) . (2.15)

Wz 1is Szroeter's objective Tfunction (2.9) evaluated at the



minimum for 8 and multiplied by T. Expression (2.15) gives an
alternative way of cbmputing Wald ¢rieteria. Notice, however, that
Q may depend on B so that a consistent estimate of g is required
for obtaining S in (2.15).

Of course if tpe resirictions are of the form f(R) -8 = 0 ,
Q=+-~I, and the computation of the Wald test using (2.15) is
straightforward. To summarize the practical implications,
Szroeter's procedure requires computing the global minimum of
(2.9), whereas our procedure requires obtaining the solutions of
£1(8,8) = 0 and checking whether they satisfy fg(B,a) = 0.
Of course our procedure stops as soon as Hy is not rejected
for a given solution, Notice that solving f£q (g8,5) = 0
corresponds to minimizing (2.9) for diagonal S with a one on the
diagonal when the corresponding equation of [ is included
in f4 and zerc otherwise.



3.1

Asymptotic equivalence relationships

In this section, we investigate whether the value of the Wald
statistic is affected by choosing alternative formulations for the
constraints. We give a general class of nonlinear transformations
of the restrictions for which the vailue of the traditional and
generalized Wald statistics is asymptotically invariant under

Hp. Furthermore, we consider the influence of the choice of

f1 and fs on the Wald test. Finally, we show that our

procedure is asymptotically equivalent with the traditional and
the generalized Wald tests.

Transforming the restrictions

Consider the case where the set of restrictions h(8) = 0 1is such
that @ is nonsingular. As can be seen from (2.2) and (2.3),

an alternative formulation of the restrictions say g(e) = 0, for
which there exists a nonsingular matrix A such that Dg = ADgh
will asymptotically yield the same value for the Wald statistie,
both under Hy and under a sequence of local alternative
hypotheses, This resulf which we call the equivalence condition of
the partial derivatives directly follows from the lemma of Holly
and Monfort (1982), that we give in appendix I. That the identity
for the Wald statistic usually does not hold true when there
exists no matrix A that transforms Dgh 1into Dgg can be

seen by showing that the plim of the difference between the two
Wald statistics is nonzero.

Given the set of restrictions h(g) = 0 , we consider a
transformation g(h(8),8) , with g(h{e),8) = ¢ if and only
if n(s) = ¢, g having continucus first and second derivatives

and DY g(y,e) Dbeing nonsingular at (0,8p) . Then, h and g
yield the same value for W in large samples. This result follows
from the equivalence condition of the partial derivatives. The
matrices of partial derivatives of h and g with respect to ¢ are
given by

Dgh(e) and Dy g(y,8) Dgy + Dy g{y,6) . 3.1
But on Hg , as a result of Slutsky's theorem, we have

plim D g(y,8) = plim Dg g(0,8) = Dg g(0,80) = O, (3.2)
where 8 is a consistent estimate of & . The second term of the

derivative of g with respect to 8 in (3.1) vanishes in large
samples and we obtain the asymptotic invariance of the Wald
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statistic with respect to transformations of the type g(h(8),8).

Next, we consider some equivalence properties of the generalized
Wald test. First, Szroeter (1983) shows that the asymptotic local
power of his test does not depend on the particular choice of S.
The asymptotic efficiency of E, however, degends cn 8, In fact

s = [Q ﬁe 6']-1 maximizes. the asymptotic efficiency of 8 ,

which then is an optimal asympfotic least squares estimate,
Second, we consider general transformations of f(8,8) = ¢ which
take the form g(f(g,8), 8, 6) , with

n

if and only if f(R,8) 0 . Furthermere, g has continuous first
and second derivatives and 'Dy g{y,B,6) is nonsingular

at  (0,Bp,00). Again, we will show that in large samples f and

g yield the same value for the generalized Wald test, Without loss
of generality, we only consider the case where the optimal
weighting matrix S is chosen., When g is evaluated at the optimal
asymptotic least squares estimator g(8) , the matrix of partial
derivatives of £ with respect to & is given by

Dyg(y,8,8)[FDg 8 + Q] + Dgg(y,B,6)DgB + Dpg(y,8,8).
' (3.1)

But on Hp, as a result of Slutsky's theorem and similar to the
analysis in (3.2), the second and third term of (3.4) converge to
zero, when evaluated at & consistent estimate 8. In addition, the
difference between Dy based on I and g respectively, vanishes
in large samples (see alsc Gouriéroux et al., (1983)).

Therefore, '

-~ o, . LY " oA

(0, g(y,8,8)1 D g(£(8,6),8,8) = [I + F PIQ + o, (D, (3.5)
and the lemma by Holly and Monfort (1982) establishes the
asymptotie Iinvariance of the generalized Wald test for

transformations of the type mentioned above,

The choice of fy

Next, we analyze the consequences of the partition of f into £y
and fo for the value of the Wald statistic. Without loss of gen=
erality, we only consider two alternative choices for f4 and
f». To do so, we partition the system of constraints into four
subgets, which consist of k, m-k, k and r-k relations respectively
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*
f.{ (Bae) = (
*
f2 {(R,8) = 0
(3.6)
*
f3 (g,8) = 0
*
fg (g,8) =0

To simplify the notation, we delete the arguments g and ¢ and we
*

£,
*
denote the subset of restrictions (f* ] by fi+j and its par-
3
tial derivatives with respect to g8 and 8 by Fi+j and Qi+j res-
pectively.
*
As our choice of f. =0, we use the seta f = 0 and

1 1+2

*
f2+3 = 0 respectively to derive a solution for B. Using the

result in {(2.7a), the partial derivatives can be written as

~1

Dy by = [* Faey Frap Qun * Q3+n:I (3.7)
and
=1
Do hy = [ Fiy Fors Oy * Q1 (3.8)

where the subscript i = 1,2 indicates the choice of f1 .

The value of the Wald statistic will asymptotically not be

affected by the choice of fy , if there exists a nonsingular
matrix A such that the partial derivatives in (3.7) and (3.8)
satisfy the equivalence condition, éDehg = Al%ahl . A

nonsingular matrix that gives the desired result is

Ok r~k ]

IP‘k

. C(3.9)

A =1[-F B, :
rxr N

1+4 72

where Oy p-y 1is a zero-matrix of order k x (r=k) and By
consists of the last k columns of the matrix

(B B,]

1}

(F,, 5] : (3.10)

—_
Ke o o »
AN



3.3

1B

After premultiplication of (3.7) by (3.9), we get an expression
that is identiecal with (3.8) (the details of the derivation are
given in appendix II). The choice of a subset of restrictions fjy
does not affect the value of the Wald statistic, provided fy is
such that ifs solution § converges to g and the matrix of partial
derivatives is continucus at the true parameter values, Similar to
our analysis in section 3.1, we can also show that transformations
of the implicit functions asymptotically have no effect on the
value of the Wald fest in this case.

Equivalence of the traditional and the generalized Wald tests

We show that Ethe +traditicnal Wald test and the generalized Wald
test yield the same value in large samples. Therefore, it is not
necessary to derive the restrictions h(s8) = 0 explicitly, It is
sufficient to directly apply the procedure put forward in section
2 or Szroeter's (1983) generalized Wald method to f(R,e) = 0.
From (2.7), we obtain that '

n(g) = HQ (3 - eo) + op(T"?/z) ‘ (3.11)

The traditiocnal Wald test and our procedure (2.2) can then be
written as

~ ] 1 1 t 1 .....1 ~
W= T(e eo) QH fHQQeQ H ] & HQ(e eo) + op(1) . (3.12)
Since HF = 0 , from (2.11) one obtains that

1/2

H f(g,8) = HQ {6 ~ eo) + pp(? ) =

~ _1/
= h (8) + OP(T ) (3.13)

which establishes, wusing Holly and Monfori's lemma (see appendix
I), the asymptotic eqguivalence of the generalized Wald test, the
traditional Wald test and our approach, as H has full rank 80 that
rank (H) = rank (HQH'). When f(g,8) = 0 is linear in g and 8,
the three criteria are alsc equivalent in finite samples.
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Multiple solutions for B under H

0

We consider the case where f(8,8) = 0 , can have multiple solutions
for B.

First, the subset fl(B,G) = 0 we choose, possibly has multiple so-
lutions. Bowever, not every solution of fI(B,e) = 3 will also
satisfy the remaining implicit relations. As the sample size T in-
creases, the Wald statistic tends to infinity for those solutioms

for which fz(B,B) #0.

Second, the complete system f(B,8) = 0 can admit several solutions
for 8. We assume that the set of restrictions can be expressed in
the form f(B) - 6 = 0 and that each solution for B is locally iden-
tified. Under these assumptions, the various forms of the Wald test
asymptotically yield the same result for each solution B.

The traditional Wald test (2.2) is used to test the restrictions

h{8) = 0 . These restrictions are expressed in terms of the parameters
& only, which are uniquely identified. Therefore, this statistic is
not affected by the presence of multiple solutions for the implicit
parameters B. For an example, we refer to section 5.

To test £(8) - 6

[}

0 , the generalized Wald statistic equals

=
]

min TCER) - B)' oo} (£¢g) - 8) . 4. 1)

| 8
8 8
Let B* denote the value of g which minimizes expression (4.1) and

let 8% be given by 6% = £(8%) . Then we get

=1

o (6* - 8) . (4,2)

W = T(0* - 8)' @
Now with multiple solutioms to £(8) = o* , we obtain the same value
of Wg for each solutionm.
In section 3.3, we have shown that the asymptotic equivalence of the
three Wald criteria hinges upon the fact that HF = 0 . In the
presence of multiple solutions, this condition is satisfied too. To

show this directly, we use h(8) =0 and f(8) =96 . By differen-

tiating h(6) with respect to 8 and applying the chain rule, we find

0= DB h(8) = D, h(8) DB f(8) = wF , (4.3)

6
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which yields the desired result. The three statistics are asymptoti-
cally equivalent in case of multiple solutions for B.

It is interesting to note that the Lagrange multiplier test, the
likelihood ratio test and the Wald test also asymptotically vield
the same value under H, in case maximum likelihood estimates of 9

0
are used, even if B in f(B) - 6 = 0 is not globally identified.

The practical implication of the existence of multiple solutions for
f](B,S) = (0 is that one can only reject HO if for each solutiomn of
fI the Wald statistic is significantly different from zero. In other
words, once we have a solution B to fl(B,e) = 0 for which the test
is not significant, we conclude that the null hypothesis ig not
rejected. Therefore, one will preferably choose fI such that its
solutions can be easily obtained. For example, if there are at least
m linear restrictions in f, one may want to select fl as a linear
system in B (one has to make sure that is has a unique solution). The
occurrence of multiple solutions will be illustrated by an example of

common factor restrictions in section 5.

An example: common factor restrictions

Common factor restrictions, which are widely used in dynamic econometric
models, can easily be tested using the methods presented in section 2.
The main reason for which we discuss the common factor approach here
is to show how multiple solutions for the subset of nonlinear restric-
tions f1 arigse and how alternative formulations for the restrictions
imply the same asymptotic values for the Wald statistic under HO.
Sargan (1980a) presents a method for testing common factor restrictions
in a dynamic single equation model. His method is basedon a condition
on the determinant of a given matrix. Sargan (1977) generalizes the
method to vector dynamic models. Mizon and Hendry (1980) give an
application of Sargan's (1980a) method. A single regression equation
with common factors can be written as

k
¢ (L) a(L) Ve = =, ¢(L) Yi(L) X, tE (5.1)

i=1 t °?
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where Y, is the endogenous variable N is a white noise error term
with zero mean and constant variance o2 and independent of the

exogenous variable x , for all £t and " and i =1,...,k . The

s ht
polynomials (L) , a?ﬁ) and Yi(L) , 1=1,...,k , have degree
P, T, and s respectively. The roots of ¢(L) a(l) lie outside
the unit circle. The model (5.1) arises as a special case of the
dynamic regression model

k
GO(L) v, = i>=:1 Bi(L) Xig + £ (5.2)

r ¥

when 8. (L) = ¢(L)a(L) and ©,(L) = ¢(L) v, (L), i=1,....k.

k
The number of parameters in (5.1) and (5.2) is m = p + iéori+ k

and n = (1+k)p + 150 r, ¥ k respectively, so that the common factory
structure in (5.1) leads to pk restrictions by equating the corres-

ponding coefficients in (5.1) and (5.2). The restrictions are of the
form £(B) - 6 = 0 and the computation of the Wald test is straight-

forward in this case.

For a given choice of fl’ there might exist two or more solutiomns,

not all of them yielding the same asymptotic value for the Wald statis-
tic under:HO. However, all solutions to f yield the same value of W
asymptotically. A simple example given by Mizon and Hendry (1980)

is illuminating in this regpect. They consider a special case of

models (5.1) and (5.2) written as

L= Gty mday , vvgx Oy moydE _ m by X, te,

o]
e
+
s g
=
[]

pzr0=rl=lls ¢’(L)=I"¢'L’ C"(L)=1-GL’

= = + -
VL) =yg+ YL, and y, =8y, *8,y, _,¥Ox +O,x _ FOx _,te,

When HO is true, we have the following set of implicit relations

between B=(¢,a,yo,yl)' and 8=(61,...,05)‘

f](B,6)=0: ¢+v(—-81=0
-¢a —82=0
YD—63=O
Y 9 vy - 8,=0
fz(B,B) =0 : - ¢ Y- 65 = { (5.3
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When 62 + 482 >0, f =0 has two real solutions. However, if

1 1
Hy is true, only one of these solutions also satisfies f2 =0,
except when there exists a functional relationship on 8, namely
Yofx = -1 in which case both solutions satisfy £, = 0 and the
2
]L BZL)-O

and (1-caL)(1-¢L) = 0 have their-roots outside the unit cirele.

model has two common factors. The requirement that (1-98

does not resclve the problem of multiple solutions. For instance,
for o' = (.5,.2,1.,5,1) , the characteristic roots of the un-
restricted model and the restricted model lie inside the unit circle,

whereas (5.3) still has two solutions.

The Wald statistic cam be computed for both solutions using the
formulae in (2.8). The partial derivatives are then given by
.2
- . Yyd + voh Yyt Ygd 2
e I - a-¢ E a_* ’-¢ ] -¢!-l_ -
S=6 | 8=8

- (-_5 - &)
Computation of the Wald test when (2.8) is evaluated in a solution

of £, = 0 that also satisfies £, = 0 asymptotically yields the
value of the test statistic that ought to be used in testing. The
value of the Wald statistic for the second solution of f; = 0 will
tend to infinity as plim h(8) = constant ¥ 0 and plim ﬁh is a
constant matrix.

In small samples, we may not be able to discriminate between these

values, but in large samples we can.

Mizon and Hendry (1980) derive the restrictions on @ implied by
(5. 3) explicitly. They find

eres - 9294
9263 + 95

If the implicit relations (5.3) are substituted in (3.5), it is

obvious that the restriction on @ implied by (5.5) must be valid

O +¢94+¢2e3 = 0 and ¢ = (5.f5)

under I-I0 . However, the formulation of the restriction in (5.5) is
not unique. After some transformation of (5. 3), we also find
0203 = %

9193 + G

2
95 + ¢94 + 93 = 0 and ¢ = "

S.6)
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as 4 restriction. According to Sargan (1980a), common factor restrictions

emerge from conditions on the rank of a certain matrix ¥. For the problem
at hand,

-1 e, o,
rank (¥) = rank ©3 9 O 0 . 4
0 . -1 9‘ Q,Z
|0 8 o, 6

gives the restriction as can be verified by subst::l.tutmg (5 3.

"The rank condition yiélds the determinantal condition

egq-zezeaes-»eleues-re 20505+ 0363 -0,02-0,06,0,08, =0 , G.7

which is equivalent to the relationship obtained from (5 5) or (5.6) aftet
eliminating ¢. This result shows the equivalence between the Mizon~Hendry
approach and the Sargan procedure. The equivalence with our procedure and
the generalized Wald test can be shown along the lines of section 33 as

(5 7) is equivalent to £(B(8),8) and for (5.3}, Dgh = -H which is orthogonal
to F,

If yi'-i- uT{) = f), the matrix ¥ has rank 2 when Ho is true. Sequential testing
for the presence of two common factor polynomials can be perf_omgd along the
lines proposed by Sargan (1980a) by first testing for rank (¥) =3 and
subsequently for rank (Y) = 2. Alfernatively, in our method we could extend
€, in (5.3) by adding the restriction yll»ayé -0,
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Some concluding remarks

In .this paper, we presented a general procedure for computing Wald
criteria to test linear and nonlinear nested hypotheses. The pro-
cedure can also be applied when the restrictions are in implicit
form, as is often the case in econometric modeling. Along with
Szroeter’'s (1983) generalized Wald test, the proposed procedure is
expected to save the investigator from the time-consuming activity

of expressing the restrictions in explicit form.

We gave a class of nonlinear transformations of the restrictions,

that we want to test, for which the various Wald criteria are asymp-
totically invariant. We discussed the properties of the proposed
procedure. In particular, we showed the asymptotic equivalence
between the proposed procedure, the traditiomal Wald test and the
generalized Wald test. The problem of multiple solutions to a set

of nonlinear constraints om the parameters under H0 has been discussed.
Some of the problems which may arise when testing nonlinear constraints
have been illustrated using a dynamic regression model with common
factor restrictions. Additional applications including the test of

overidentifying restrictions in a simultaneous equations model are

given in Kodde and Palm (1982).

Finally we like to point out that the Wald encompassing test for
testing nonnested hypotheses (see e.g. Mizon and Richard (1982) can
beobtained using the procedure proposed here after some modifications.
Also, B can be efficiently estimated by asymptotic nonlinear least
squares applied to the 'asymptotic' model £(B8,8) = 0 along the
lines proposed by Gouriéroux et al., (1983), provided an efficient

estimate of 9 1s available.
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Appendix I

For the ease of reference, we give lemma 2 obtained by Holly and

Monfort (1982):

Lemma: Let V be a p-dimensional random vector such that

Variance (V) =  1is of rank T (5 p) and
EV =y € R(Q) , the range of @ .
Let Z = AV where A is 2 non-random matrix. Then,
Z'(AQA'Y Z = V'Q V with probability one (for any choice
of the generalized inverse (AQ A" and Q) if, and
only if, rank C(AQA') = rank (2) .

For the proof, see Holly and Monfort (1982).
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Appendix I

In this appendix, we show that

- -} -1
A 1Fa Frao Qag * Qagd = [F 1y Fauz Qus + Qugls (A.1)
where A = [- Fl+4 32 : okr-k] is defined in (3.9) and BZ‘ is given in
I

r~k
(3.10) and the formulae are evaluated at (B,0) = (él’é) .

The matrix multiplication in the 1l.h.s. of (A.1} gives

0 : 0, v
« f T \] 1 [,_ * kn_\]
[F1+4 P25 -] Tz Qa2 T [T B2 Bt ( - QZ)J -
(A.2)
From the definition (3.10) we have the following identity
*  _ - *

which we substitute into the first term of (A.2) to yield, after some
algebraic transformations,

I. . O .
k. k m=k .
- Froa By Opge gt Tpud *
F& F]+2
Okm * ok!l
+ g% 5] Qao = Frey B, Q3 + o . (A.3)
4 T14+2 4
Expression (A.3) is equivalent to:
Q - 0
1 % * kn
ceal T T B Onin Q) 7 Frag By G "[Q}: - @b

Using (3.10) in (A.4), we find the desired result:

-1
~ Fles Foa3 Qa3 T Qg -
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