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Summary 

Hybrid log-linear models are developed for the analysis of spatial 

interactions with categorical data. Such models may lead to 

statistically significant results based on a reduced number of para­

meters . 

Special attention is given to the problem of so-called structural zeros 

and of stability of spatial interaction patterns. Various constraints 

on the set of interaction parameters emerging from the off-diagonal 

elements of a spatial interaction matrix are taken into account by 

means of an entropy function. The analysis is illustrated by means of 

an empirical application to migration flows. 
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1. Introduction 

In spatial data analysis, much information is freguently non-cardinal (quali-

tative or categorical ) in nature. Por instance, surveys often contain cate­

goriaal data represented in a dichotomous sense, such as; man or woman; 

married or single persons. These variables can only be distinguished by 

their names or attributes and are measured on a nominal scale. Categorical 

data from surveys may be represented in contingency tables. Such a table can 

be interpreted as a sample from either an independent Poisson distribution or 

a multinomial distribution. The main focus of this paper will be on interac-

tion analysis of spatial migration flows based on categorical data, foliowed 

by an analysis of the stability of such migration patterns. 

In section 2 we will treat the well-known spatial interaction models, espe-

cially log-linear models, as part of a broad family of generalized linear 

models. The fit between observed and expected values of the cell-elements in 

a spatial interaction matrix , conditional to some statistical hypothesis, 

may be judged by means of an asymptotic chi-squared test-statistic, called 

the deviance. This interaction analysis will be based on the general gravity 

model. Special attention will be paid to various possibilities of estimating 

the spatial distribution function in such a model. 

The structure of the above mentioned spatial distribution function will be 

analysed in section 3. When the diagonal elements are excluded from the anal­

ysis, the intra-regional migration flows have zero weights in the estimation 

procedure, based on prior information. This phenomenon with both theoretical 

and practical consequences leads to the occurrence of incomplete spatial 

interaction tables. In this regard, we will discuss four parameter estimation 

procedures, that have been proposed in the literature on so-called structural 

zeros. When, on the other hand, the diagonal cell-elements are taken into 

consideration, the distribution function may be estimated by means of either 

the well-known general type of the log-linear model or a hybrid type of this 

model. We will mainly focus the attention on hybrid log-linear models. 

In section 4 we will concentrate on the concept of stability of the distribu­

tion function , by analyzing both the stability of migration flows themselves 

and the stability of the underlying spatial structure. The potential of some 

measures for analysing the stability of the spatial distribution function by 

means of the log-linear model and a hybrid log- linear model will also be 

dealt with. 
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In section 5, the log-linear model is used for analyzing the spatial mobility 

in the housing market area of the Dutch city of Den Bosch (in the province of 

Noord-Brabant) for the period 1971-1980 subdivided 'into five subsequent two-

year periods. The intertemporal stability of the spatial pattern is studied 

by means of a log-linear model that encompasses a dynamic component. Final-

ly, a test-procedure ( including empirical results ), which is also appropri-

ate for a situation where the number of interaction parameters with a time 

component becomes large, will be discussed. 

2. Spatial Interaction Models as Generalized Linear Models 

In this section the analysis of categorical data will be discussed by using 

so-called generalized linear models as a frame of reference. The generalized 

linear models consist of a broad family of linear models, made up of the 

classical regression model, the analysis-of-variance model, the logistic 

regression model,as well as the log-linear model with contingency table anal­

ysis (see also Imrey et al., 1981, 1982; Nelder, 1983; Nelder and Wedder-

burn, 1972). 

A generalized -linear model (GLM) can be concisely characterized as follows: 

(1) The response (or dependent ) variable y is distributed independently, 

with mean y and a variance-covariance structure for the response varia­

bles determined by the underlying probability distribution function. 

(2) A linear relationship, say E(y)= Xg, exists between \i and the set of 

explanatory (or stimulus) variables; X is a matrix of explanatory varia­

bles and 3 a vector of parameters. 

(3) A relationship is defined between y and its mean u, viz. y = f (y), where 

f is called a link-function. 

Different types of generalized linear models may be obtained by varying ei-

ther the distribution function of the response variable and/or the link-func­

tion f. The normal regression model for quantitative (cardinal) data will be 

obtained, for example, if the observations are assumed to be normally dis­

tributed with mean \i and variance a , based on a linear link-function. The 

goodness-of-fit between observed and expected values from such a model, call­

ed the deviance D, may be determined by maximizing the log-likelihood func­

tion and is defined as: 

(y, - y ) 2 

o 

The deViance from relationship (1) is the sum of independent Standard normal 

distributed statistics and is an asymptotic chi-squared test statistic with 

degrees of freedom equal to the number of observations. 
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The above mentioned GLM for quantitative data can be adjusted in the frame-

work of qualitative data (see also Nelder, 1983). In regard to categorical 

data for spatial interaction flows, a multiplicative model may be assumed in 

contingency table analysis, where the logarithm of the expected values of 

cell-frequencies becomes linear with respect to the classified elements. A 

GLM for qualitative data is then obtained in the following way. Given cate­

gorical data in log-linear models, the normal errors distribution as well as 

the identity link-function from quantitative models are replaced by the Pois-

son errors function and the log-link function, respectively. The response 

variables are assumed to be independently Poisson distributed with mean p, 

where p = exp(y). 

The likelihood ratio test-statistic -2 lnX, with X the maximum value of the 

likelihood function conditional to some given null hypothesis related to the 

unrestricted maximum value of the likelihood function, or deviance D, is now 

defined as (see also Mood et al., 1974): 

Yi 
D = 2 Z y± In ~^~ (2) 

In the present section, we will treat the log-linear model as a GLM from a 

constrained gravity model. The general form of the gravity model is : 

m. . = k O. D. f (d..) (3) 
13 i 3 i] 

with nu A the volume of flows from region i to region j, 0H and DJ 
i J i j 

push-factors and attraction-factors respectively, k a constant ensuring the 

additivity condition , and f (d^^) the spatial distribution ( friction or 

discount ) function between region i and region j. 

Widely used types of such distance friction functions are the inverse power 

function, the negative exponential function, or the Tanner function as a 

combination of the two previous functions (see also Hua and Porrell, 1979). 

Model (3) is said to be restricted when the volume of flows leaving a region 

of origin or arriving at a region of destination are constrained. This re-

striction is equivalent to the existence of given marginal totals in contin­

gency table analysis. When both the volume of flows leaving a region and 

those arriving at a region are constrained, we get the double-constrained 

gravity model, viz. 
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m. = k A. B. O. D. f (d..) (4) 
13 1 3 x 3 i] • 

where: 

O^ = volume of flows leaving region i. 

D-s = volume of flows arriving at region j. 

A^, B-i are balancing factors related to the Lagrange multipliers. 

k = constant, viz. the geometrie average of the flows. 

f (d^j) = spatial distribution ( friction or discount ) function. 

When interaction model (4) is linearized by means of a logarithmic transfor-

mation we obtain: 

log m.. = log k + log A. + log B. + log O, + log D. + log f(d,.) (5) 
xj x 3 x 3 13 

which can be rewritten eguivalently as a conventional log-linear model with 

A B AB 

log m . . = u + u ( i ) + u ( j ) + u ( i , j ) (6) 

where: 

A B 
u + u (i) + u (j) = log k + log A. + log B. + log O. + log D. 

and 

uAB(i,j) = log f (d ) 

If the elements mjj are independently Poisson distributed, model (6) is a 

log-linear model with a log-link function that belongs to the family of gene-

ralized linear models. The parameters are estimated by a maximum likelihood 

procedure, viz. an iterative weighted least squares approach. The parameter u 

corresponds to the overall mean-effect, the parameter uA(i) and uB(j) 

describe the row- and column-effects respectively, and the parameter 

UAB 

(i,j) corresponds to the interaction-effeet between variable A and 

variable B. 

The multiplicative analogue of the saturated log-linear model in formula (6) 

becomes: 
A B AB 

m.. = w w. w. w.. (7) 
X] X 3 X] 

When the structure of the distribution function f (d^j) is analysed, one 

has to take into account whether or not the diagonal elements are included in 

the analysis. There are different possibilities for analysing the structure 

of f(dj •) in a log-linear modeling approach: 

(1) The intra-regional flows are included; then the classical log-linear 

model with interaction parameters is employed ( see also Brouwer and 

Nijkamp, 1983; Scholten, 1983). 
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(2) The intra-regional flows are excluded; then the result is an incomplete 

spatial interaction model. Then zero-entries called structural zeros 

occur because of this a priori information. Some theoretical solutions 

will be discussed in section 3 to obtain parameter estimates for incom­

plete contingency tables ( see also Brouwer and Nijkamp, 1983; Scholten, 

1983). 

(3) The intra-regional flows are included, while hybrid log-linear models are 

developed. Hybrid log-linear models arise because of quasi independence 

restrictions on a set of interaction parameters (see also Willekens and 

Güvenc, 1983 ; Scholten and Van Wissen, 1983). Hybrid log-linear models 

include parameters that are not part of the conventional log-linear mo-

deling analysis because of restrictions on a set of parameters. Such 

models involve a synthesis of (1) and (2), because restrictions arise for 

the off-diagonal interaction parameters and a simplified interaction 

structure is obtained . A reduction in the number of interaction parame­

ters can then be obtained by means of the hybrid log-linear model. The 

goodness- of- fit statistics based on the hybrid log- linear model may 

also be compared with the classical log-linear model. 

We will analyse the hybrid log-linear model by means of an entropy function 

for the off-diagonal. elements. The diagonal elements of the spatial inter­

action matrix are determined by first-order interaction effects. 

A B AB .. . 
m.. = w w. w. w.. ïf ï = ï 
iD i 3 i} 

m. . = w w. w. expf -3(d, .) 1 if i 4= j 
iD i 3 iD J 

Theoretical results as well as empirical applications of both approaches 

related to (1) and (3) above will be given in the sequel of this paper. 

3. The Analysis of Incomplete Spatial Interaction Models 

Multiway contingency tables are called incomplete tables when some cell-en-

tries are ignored or one or more variables are not completely classified. 

There are two possibilities for the presence of zero elements in contingency 

tables: fixed and sampling zeros (see among others Bishop et- al., 1975; 

Fienberg, 1977). 

Sampling zeros may occur because of a relative small cell-probability. They 
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may vanish, at least in a theoretical way, when the sample size will be suf-

ficiently enlarged, and need not necessarily be equal to zero. Structural or 

a priori zeros occur if some cell-elements either do not exist or are exclud-

ed from the analysis, and if cell-elements are known to have a priori a zero 

value. 

^k® a P r i o r i knowledge of cell-elements is part of the analysis of incomplete 

tables. Incomplete tables consist of either some fixed-valued cell-elements 

or of one or more incompletely classified variables (see also Dempster et 

al., 1977; Fuchs, 1982). 

The analysis of structural zeros in incomplete tables consists of two parts: 

on the one hand, the computation of the estimated cell-frequencies by means 

of the marginal totals, and on the other hand the interpretation of the pa­

rameter estimates of the log-linear model with incomplete tables. 

The first problem can be solved unambiguously when we use an iterative pro-

portional fitting algorithm, the so-called Deming-Stephan procedure with 

proportional adjustment (see also Bishop et al., 1975). The cell-elements are 

then partitioned into a set S containing non-zero elements and a set of 

structural zero elements. The algorithm consists of an initial matrix 

N' ' with cell-elements n^j: 

(0) 1 if (i, j) - ' S . , . . . 
nij = '0 in other cases *<>rallx f 3 (9) 

Restricted maximum likelihood estimates of the cell-frequencies are obtained 

by bi-proportional adjustment because of the initial condition. Quasi-inde-

pendency can also be tested (viz. independence of the non-zero cell-elements) 

(see also Brouwer and Nijkamp, 1983). ïf the table consists of IJ elements 

and s structural zeros, only (1-1)(J-1)-s independent elements, called de-

grees of freedom, remain in the quasi-independence model. The cell-frequen­

cies in the generalized linear model are estimated by means of an iterative 

weighted least squares approach ( based on a maximum likelihood procedure). 

The main diagonal elements have zero weights in case of structural zeros. 

Although the estimation of cell frequencies with the log-linear model of 

incomplete tables is rather straightforward, the computation and interpreta­

tion of the parameter estimates becomes more problematic (see also Willekens, 

1983). The interaction-parameters are not computed in a unique way and at 

least four approaches can be found in the literature that aim at coping with 

this problem: 
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(1) Computation of parameters with incomplete tables in an analogous way as 

with complete tables (see also Willekens, 1983). The restrictions on the 

parameters are different from those in complete tables and become: 

Z uA(i) - Z uB(j) - 0 

S S . . u ( i , j ) = u ( j ) (10) 
1 l ] 

r „ AB , . . , A, . 
5 S ± U (1,3) = U (1) 

The dummy-variable S-̂ j becomes zero if cell-element (i,j) contains a 

structural zero , and one in all other cases. In order to arrive at the 

same parameter restrictions for complete and incomplete tables, it has 

been suggested by Bishop et al.(1975) to give one parameter some arbitra-

ry value. 

(2) The cell-frequencies of the table determine the parameter estimates of 

the log-linear model based on the incomplete table without making use of 

the cell-eleraents which contain structural zeros (see also Haberman, 

1979). 

This analysis is restricted to the unsaturated model. The interaction 

parameters do not lead to problematic results, because they are zero by 

definition. 

(3) The restrictions from the complete model determine the parameter estima­

tes. The parameter values are obtained by solving a set of equations 

including the unknown u-parameters. Then a main advantage is that the 

conventional restrictions hold. A serious disadvantage is the awkward 

interpretation of the parameter estimates, because the u-terms cannot be 

simply written as deviations from mean values. 

(4) The parameter values with incomplete tables are determined by cross-pro­

duct ratios (with multiplicative models ) or linear contrasts (with line-

ar models ) in an analogous way as with complete tables ( see also Fien-

berg and Mason, 1978). 

The different parameter estimation procedures with incomplete tables as well 

as hybrid log-linear models occur because of an identification problem: such 

models are generally underidentified and an adjusted identification procedure 

is required to obtain parameter estimates• The number of independent parame­

ters is by definition equal to the number of cell- elements with'unrestrict-

ed log- linear models so that in that case exactly identified models are 

obtained. We can conclude that parameter estimates are not obtained in a 

unique way if in the modeling phase we are confronted with underidentifica-

tion problems. 



4. The Analysis of Temporal Stability with Spatial Interaction Models 

The analysis of the structure of f(djj) can also be related to the tempo­

ral stability of the spatial pattern of f(dij) by means of the (hybrid) 

log-linear model. 

In this section we will pay attention to the concept of stability and to pro-

blems inherent in operationalizing this concept. A literature survey on tem­

poral stability with a wide variety of applications in the field of migration 

data can be found in Baydar, 1983, where the time dependence of the region of 

origin and destination is quantified by a log-linear model of migration anal­

ysis. A main advantage of the log-linear analysis is its capability to use a 

dynamic approach, because it allows a simultaneous treatment of migration 

patterns over a number of periods. The stability of the spatial pattern is 

analysed by means of the log-linear approach, by focussing the attention on 

the stability of the temporal interactions with the regions of origin and 

destination. 

There is a difference between temporal stability of. migration flows and tem­

poral stability of the spatial pattern. Migration patterns are called stable 

when all time-dependent interaction parameters are absent. 

The spatial pattern may be stable, even if the migration flows themselves are 

not stable. The stability analysis of flows will now be discussed. The mi­

gration matrix in period t and period t + 1 is represented by Mj. and 

M t + 1 successively. The matrix Mfc with elements nij^t consists of 

the two-dimensional origin-destination elements in period t. 

Many distance measures have been developed to analyse stability of migration 

patterns, for example the mean absolute percentage deviation, defined bys 

. £ . m. .. - m . . ... 
i,-i int i] t+1 

J ' y 1 * 100 (11) 
L • m . . 
ii] int 

The distance function in (10) is a real-valued, monotonous distance function 

which is homogenous of order zero, but a disadvantage is that it has no upper 

bound (see also Wolpert and Yapa, 1971). The matrices M^ and M t + 1 are 

called stable if the distance, defined in formula (10),becomes close to zero• 

The choice whether two points in time are called stable becomes problematic, 

because it is based on a subjective choice, viz. the choice of a distance 

measure. 

A coëfficiënt of agreement between M̂ . and Mt+1 ^ s defined as (see 

also Somermeijer, 1961): 
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The coëfficiënt I has values that f all in the range between 0 and 1, because 

the migration flows are non-negative. A coëfficiënt of agreement has an in-

terpretation different frora a coëfficiënt of correlation. When two sets of 

values are proportional to each other, they are perfectly correlated but they 

do not agree. A coëfficiënt of agreement indicates whether two matrices take 

on the same values, i.e. stability of migration flows instead of stability of 

spatial structure. 

The stability of the matrices M|. and M t + 1 may be tested by means of a 

chi-sguared statistic developed by Pearson and defined as: 

2 
„ (m... - m.. „) 

x2 , _JOt i ^ ± _ (13) 

•*•' j 

m. . , 

A real disadvantage of the x -value is its proportionality to the sample size 

E, m. , _ and the number of degrees of f reedom, which corresponds to the 
i,D . X]t+1 

number of cell-elements of the migration-matrix. 

The Pearson x2-statistic may be partitioned according to regions i of outmi-

gration. The share of the x -value due to this region is then defined as: 

xa tl) . , '-nt--nt.,'
a 

1 B i j t * 1 

The unstable regions can be identified by relating x2(i) t o t n e value x2-

Large values of x2(i)' when related to the x2~value, indicate temporal insta-

bility of the migration flows in the i-th region of origin. 

In the first part of this section an exploratory phase of stability analysis 

with migration flows has been developed . A log-linear model of migration 

flow matrices with a time component will now be proposed in order to analyse 

stability of a spatial pattern. Suppose a contingency table with cell-ele­

ments î-it* L e t variable A and variable B represent the regions of 

origin and destination respectively, and variable C the time component. 

Then a saturated log-linear model with cell-element (i,j,t) becomes (see also 

Payne, 1977): 

A. . . , B,.. L C,., , AB,. ., L AC,. .. , BC,. ^ 
m. . = u + u (x) + u (3) + u (t) + u (x,j) + u (x,t) + u (;j,t) 
X31 

+ uABC(i,j,t) (15) 

The time-dependence of this model consists of the main-effect uc(t) and the 

interaction effects of time with region of origin and destination, i.e. 
AC,. _ BC,. _ . ABC,. . . . 
u (x,t), u (],t) and u (x,j,t). 
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Migration pattems are now called stable when the interaction parameters as 

well as the main effects have small parameter values and are not related to 

the time parameter. The separate temporal components are part of the multi-

plicative analogue of the saturated log-linear model in formula (15), which 

becomes s 

A B C AB AC BC ABC , v m. .. = w w. w. Wj. w. . w.̂ . w.^ w. .. (16) 
i]t i 3 t 13 it }t i^t 

The temporal dependence of the migration flows is represented by the parame­

ter w ^ t ) , while the parameters wAC(i,t) and wBC(j,t) measure tem­

poral stability of the out-migration flows and in-migration flows successi-

vely. The temporal stability of the spatial interaction pattern is described 

by the second-order interaction effects wABC(i/j,t). 

The hybrid log-linear model becomes: 

A B C AB AC BC ABC 
m. .. = w w. w. w. w. . w..w.. w. ïf i = ] 
ïjt 1 j t ij it jt ijt J 

(17) 
A B C AC BC r „, , . i r 0j_ . . . ï . _ . , . 

.. _ = w w. w. w^ w_ w_ expl -6(d. .) I exp -•gt(d. .) I ïf 1 I ] 
ijt 1 3 t it ut L 13 J u 13 

The temporal stability of the different parameters can be tested in two ways. 

On the one hand the significance of a parameter is tested by means of its 

Standard error. On the other hand the significance of an added parameter is 

tested by means of the likelihood ratio-test statistic because of its additi-

vity character. The likelihood ratio test statistics will be applied in the 

following because they give a goodness- of- fit of the log- linear model. 

In the following section , we will deal especially with the temporal stabili­

ty of the spatial pattern because of its relevance with log-linear modeling 

analysis. 

5. An Application to Dutch Regional Migration Data 

The foregoing analyses will be applied to migration data to the Dutch city' of 

Den Bosch. The study area consists of 14 municipalities/ located as given in 

maps 1 and 2. A regional master plan for the area was initiated by the prov-

incial government in 1978. The 14 municipalities had to be reduced in number 

as a consequence of the regional master plan. Some concentrated urban centers 

and regional centers appear to provide four clusters of municipalities, viz. 

a) Helvoirt, Esch and Liempde, b) Berlicum and Den Dungen, c) Heeswijk -

Dinther and d) St. Michielsgestel. The regional master plan finally gives 

10 municipalities. The period 1971-1980 was subdivided into five two-year 

periods. The inter-municipal migration flows as well as the number of inhab-

itants on January 1, 1980, are given in table 1. 
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Fig.1. The housing market areas of the Netherlands >X-v 

Fig.2. The municipalities in the housing market area of Den Bosch. 
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Inhabitants 1971-1972 1973-1974 1975-1976 1977-1978 1979-1980 

per 1-1-1980 in out in out in out in out in out 

1. 12300 771 460 698 583 460 514 482 377 416 405 

2. 24030 531 612 843 607 631 535 665 444 475 445 

3. 11525 360 296 391 243 388 236 279 206 280 178 

4. 10150 377 274 469 346 267 314 323 262 321 287 

5. 87900 2138 3507 2042 3646 2251 3066 1886 2522 1756 2157 

6. 22550 1595 900 1517 1174 1471 1139 1388 880 1144 796 

7. 19365 562 352 662 382 556 398 571 377 372 337 

8. 12060 592 529 658 650 516 541 345 572 339 440 

9. 13875 454 389 581 311 370 380 349 290 387 269 

10. 23580 1199 1269 1393 1312 1332 1119 887 1145 736 912 

1 = Berlicum and Den Dungen. 6 = Rosmalen. 

2 = Boxtel. 7 = Schijndel. 

3 = Heeswijk and Nuland. 8 = Sint-Michielsgestel. 

4 = Helvoirt, Esch and Liempde. 9 = Vlijmen. 

5 = Den Bosch . • 10 = Vught. 

Table 1. The number of inhabitants and inter-municipal migration flows within 

the study-area. 

There are different computer packages to analyse conventional log-linear 

models, e.g., ECTA (Everyman's Contingency Table Analysis) and GLIM (General-

ized Linear Interactive Modelling). A disadvantage of these packages is the 

impossibility of an overall test of the time parameters, due to dimensional 

problems. For that reason, smaller time dimensions have been chosen to ana­

lyse temporal stability, viz. pairs of two-year time periods. The goodness -

of-fit which follows from the addition of parameters in a hierarchical log-

linear model is tested by means of the likelihood-ratio-test with the additi-

vity characteristic (see also Payne, 1977 for a proof of the addititivity of 

the likelihood-ratio-test). The empirical results of five log-linear models 

and three hybrid log- linear models are given in table 2. The models used 

are: 



- 13 -

A B C 
m. _ = w w. w. w^ 
ijt i 3 t 

A B C AB 
m. .. = w w. w. ŵ_ w. . 
i3t i 3 t 13 

A B C AC 
m. .. = w w. w. w. w.. 
X]t i 3 t it 

A B C BC 
m. , ̂  = w w. w. ŵ_ w, ̂  
i3t x 3 t ]t 

A B C AB AC BC ABC 
m. _ = w w. w. w,. w. . w.^ w.,_ w. .. 
ïjt i j t ij it jt ïjt 

A B C AB 
m. .. = w w. w. w^w.. 
ïjt i 3 t 13 

m... = w w. w. w^ exp[-13 (d..)1 
i3t 1 3 t u 13 

A B C AB AC BC ABC 
m. .,_ = w w. w. w^ w., w. ̂  w. ̂  w. _ 
X3t 1 3 t ij xt 3t ijt 

A B C AC BC r Q , , . -1 
m. . ̂  = w w. w. w^ w,, w.^ exp -£ (d..) 
i3t 1 3 t it 3t L 13 

A B C AB AC BC ABC 
m. ,._ = w w. w. w^ w, . w_ w., w. .,_ 
i3t 1 3 t 13 it 3t ïjt 

m..^ = w w . w. w^ w_ wfJ_ expT-^Cd. .) ] exp[-3t(d. .) 1 
i3t 1 3 t it 3t L 13 iD 

i/j/t U) 

i/j/t (ii) 

i/j/t (iü) 

i/j/t (iv) 

ii j/t (v) 

i=j 
(vi) 

i*j 

i=j 

(vii) 
i+j 

i=j 
(viii 

i+j 

Models (i) to (v) are classical log- linear models with parameter estimates 

computed with GLIM. Models (vi), (vii-) and (viii) are hybrid log-linear mo­

dels. Model (i) shows the deviance values for log-linear models with main 

effects and their corresponding degrees. of freedom. 

Model (iii) and model (iv) show the effect of the added temporal interaction 

effect parameters respectively. The interaction parameters of the out-migra-

tion and in-migration components are given in model (ii). 
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Model (v) is the saturated hierarchical log- linear model with complete fit 

(by definition), because all possible interaction parameters are added. 

Models (vi), (vii) and (viii) are hybrid log- linear models with parameter 

restrictions on the off- diagonal cell- elements. Model (vi) is a hybrid 

model with the region of origin and destination as first order interaction 

parameter for the diagonal elements. Models (vii) and (viii) are both hybrid 

models with first- order and second- order interaction effects on the diago­

nal elements and a time- dependent entropy function on the off- diagonal 

elements. 

The results presented in Table 2 can be interpreted in the following way. 

Model (i) shows the goodness- of- fit statistics for the log- linear models 

with main effects and their corresponding degrees of freedom. The level of 

the deviance indicates the decrease of the willingness to migrate during the 

period 1971- 1980. The empirical results show the poor fit of the mutual 

independence model which is insufficiënt to describe the characteristics of 

the observed migration flows. 

Model (ii) in table 2 shows the importance of the interaction effect between 

the region of origin and the region of destination. When model (i) with only 

main effects is compared with model (ii)/ the likelihood- ratio value decrea-

ses well over 98 percent for all time periods. The application of GLM as a 

spatial interaction model in this application has shown that the choice of 

the interaction parameters for the regions of origin and destination is im­

portant. The in-migration component needs special emphasis in migration anal-

ysis because of its time-dependence. The sharp reduction from the deviance 

value in model (ii) is obtained when 81 interaction parameters are added to 

the model (which is equivalent to a loss of 81 degrees of freedom). 

The decrease of the deviance shows the effect of the added interaction effect 

parameters between the time- components and the out- migration and in- migra­

tion in model (iii) and model (iv) respectively. The interaction effects are 

significant in a statistical sense for all periods at a level of significance 

of 95 percent (with a critical value of 16.9 for the 9 degrees of freedom ). 

The pattern of the out- migration seems to be more stable than the pattern of 

in- migration because of smaller deviance values. Only a small reduction in 

the deviance value (less than 0.5 percent ) is obtained when the interaction 

parameters between time and either the region of origin or the region of 

destination are added. 
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Model 

period 1 

and 2 

period 2 

and 3 

period 3 

and 4 

period 4 

and 5 

period 1,3 

and 5 

(i) 37412 

df = 180 

35750 

df = 180 

31020 

df = 180 

28276 

df » 180 

47033 

df = 279 

(ii) 36897 

0.986 

df = 81 

35292 

0.987 

df = 81 

30657 

0.988 

df = 81 

27990 

0.990 

df = 81 

46123 

0.981 

df = 81 

(iii) 69 

0.002 

df = 9 

24 

0.001 

df = 9 

49 

0.002 

df = 9 

41 

0.001 

df = 9 

141 

0.003 

df = 18 

(iv) 129 

0.003 

df = 9 

165 

0.005 

df = 9 

93 

0.003 

df = 9 

37 

0.001 

df = 9 

195 

0.004 

df = 18 

(v) 317 

0.008 

df = 81 

269 

0.008 

df = 81 

221 

0.007 

df = 81 

208 

0.007 

df = 81 

574 

0.012 

df = 162 

(vi) 35664 

0.953 

df = 10 

34023 

0.952 

df = 10 

29556 

0.953 

df = 10 

26884 

0.951 

df = 10 

44581 

0.948 

df = 20 

(vii) 48 

df = 10 

60 

df = 10 

47 

df => 10 

43 

df = 10 

86 

df = 20 

(viii) 5 

df= 1 

1 

df= 1 

3 

df= 1 

7 

df= 1 

5 

df = 2 

Table 2. Likelihood ratio-test statistics for 8 log-linear models. 

The same number of interaction parameters is necessary in model (v) which 

only gives a small percentual reduction of the deviance value. 

Finally, the empirical results from the hybrid models (vi), (vii) and (viii) 

will be discussed. 



- 16 -

Model (vi) shows the sharp reduction of the déviance value because of the 

interaction parameter between the region of origin and the region of destina-

tion. In period 1 and 2 the reduction eguals 35664 with only 10 parameters. 

Although the déviance value in model (iv) is larger (e.g., 36897-35664 = 1233 

in period 1 and 2 ), it is accompanied by a sharp reduction in the number of 

parameters ( 81 parameters in model (ii) and 10 parameters in model (vi)). 

Model (vii) and model (viii) are both hybrid log-linear models with déviance 

values for the second order interaction effects. The déviance values in 

these models are smaller than the one from the second order interaction ef­

fects. But this disadvantage is once again accompanied by a reduction in the 

number of model parameters ( 81 parameters in model (v) and 10 parameters in 

model (vii)). 

6. Conclusion 

Temporal stability and spatial interaction patterns have been analysed in 

this paper by means of different types of log-linear models. In doing so, 

the generalized linear modeling appróach has been used as a frame of refer-

ence and we have discussed the log-linear model as a member of the broad 

family of GLM. 

Restrictions on a set of parameters in spatial interaction tables lead to 

hybrid log- linear models. Hybrid log- linear models have been linked in this 

paper with an entropy function for the off-diagonal elements in a migration 

flow matrix. The goodness- of- fit based on hybrid models is compared with 

the fit based on conventional log- linear models. 

We can conclude from the results with the hybrid model that the interaction 

parameters of the off-diagonal elements, represented by the entropy function, 

describe a stable pattern, a conclusion which does not hold for the main 

diagonal interaction parameters. A reduction in the number of parameters is 

obtained for that reason. 

A main advantage of the hybrid log- linear models is the possibility of a 

model simplification because statistically significant modeling results can 

be obtained with a reduced number of parameters. 

The log-linear model is easy to apply in stability and spatial interaction 

research for different types of areas or time-periods as well as further 

classification procedures of migration flows. 

The hybrid log- linear model interpreted in this paper as a generalized line­

ar model gives a useful contribution to the empirical research of spatial 

,interaction patterns. 
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