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1 . Introduction 

In recent years, the Wald test has received increasing attention in the 

econometrie literature. This trend will probably last for some time as 

the Wald test (see Wald (1943)) has proved to be a very useful tooi in 

empirical econometrics and economie statistics. 

Among the areas of application, we like to mention the specification 

analysis or the 'top-down' approach to model-building, where a fairly 

general model is taken as the maintained hypothesis throughout the 

modeling process. 

Restrictions on the maintained model lead to a nested model and can be 

tested by means of a Wald test, which only requires estimates of the 

parameters of the unrestricted model. For computational convenience, 

a Wald test will be preferréd to a likelihood ratio test or a score test, 

when estimates of the unrestricted parameters can be easily obtained. 

Another important area of application is the population-sample decom-

position approach that is becoming popular in econometrics. Again, at 

the start, one assumes that an estimate of some population moment can be 

computed from a given sample. For a nonstandard sample, such as e.g. 

observations with measurement errors, incomplete sampling, presence 

of selectivity bias, the Standard moment estimators will not be con­

sistent. However, after an appropriate transformation of the moment 

estimator, consistency (and asymptotic normality) may be achieved. 

In a second stage, restrictions implied by the process for the population 

can be checked using a Wald test. Although the adjusted moment estimator 

will usually not be fully efficiënt, the population-sample decomposition 

is certainly attractive from a computational point of view and it 

is expected to be more robust than a joint analysis of a model for the 

population allowing for deficiences of sampling. 

In this paper, we present a general procedure for the computation of 

the Wald criteria when testing nested hypotheses. 

The suggested procedure does not require explicit derivation of the 

restrictions implied by the null hypothesis and hence its use might 

eliminate a time-consuming step in testing linear and nonlinear nested 

hypotheses. In section 2, we present the procedure along with some 
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basic notation. We also indicate how it can be used to get restricted 

parameter estimates. The properties of the general procedure are dis-

cussed in section 3. Section 4 contains several examples to illustrate 

how the Wald-statistic can be computed in a fairly straightforward way. 

Finally, in section 5 we briefly present some conclusions. 

2. A general procedure for computing Wald criteria 

Let us assume that we have a model defined in terms of n parameters 

forming a vector 0 , and that 0 is some consistent asymptotically 

normally distributed estimate of 0 such that \/T ('§ - 0) , with T 

being the sample size, has a covariance matrix which can be consistently 

estimated by ft . A nested null hypothesis H» implies a set of 

implicit constraints on 0 

h(0) = 0 , ' (2.1) 

which form a vector of r independent, continuously dif f erentiable 

functions. Under the alternative hypothesis H , the equality in 
CL 

(2.1) does not hold true. 

The Wald statistic for testing the set of implicit restrictions is 

W - T h(ê)» ft"1 h(0) , (2.2) 

where 

8 = (^L\ Q (JLY (2 3) 

with -rprr denoting the first derivative matrix of h with respect 
00 

to 0 evaluated at 0 . 

On the null hypothesis that all the constraints (2.1) aue satisfied, 
2 

W is x -distributed m large samples with r degrees of freedom, 

provided that plim ft, is nonsingular and that -r-^- is a continuous 

function of 0 at the true parameter value 0n . In the sequel, we 

denote the first and second partial derivatives of y with respect 

to a vector x' by D y , with y being a scalar of a vector, and 
2 . X . 

by D y respectively, when y is a scalar. 
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For a given set of restrictions, the Wald-statistic is easily 

computed. Explicit derivation of the restrictions however, can be 

tedious and time-consuming. The method we propose here simplifies 

explicit formulation of the restrictions. We show how h(9) and 

DJi can be determined by using the restrictions implicitly. Once 

h(§) and D h have been computed, the Wald statistic (2.2) can 

be directly obtained. 

In empirical work, the restrictions implied by Hn are usually given 

in the form of 

f(3,9) = 0 , (2.4) 

where g is a vector of m parameters of the restricted model, 

f is a - continuously differentiable mapping from a m + n dimensional 

space into a. m + r dimensional one. In section 4, some illustrative 

examples are given for various forms of f(g,9) = 0 . The m + r rela­

tions in (2.4) are implicit if HL is true. From the system in (2.4), 

we now choose m equations, f,(g,9) = 0 , such that g can be solved 

explicitly as a function of 9 , that is g = 3(9) . This solution is 

substituted in the r remaining relations that we denote by 

f2(g,9) = 0 to give 

h(9) = f2(g(9),9) = 0 . (2.5) 

As indicated above, we only need the restrictions and the corresponding 

partial derivatives both evaluated at § to compute the Wald statistic. 

Now we show how these magnitudes can be derived form (2.4). First, we 

determine h(9) along the lines just described, where an estimate 9 

is substituted for 9 , which means we soïve f.(g,§) = 0 for g to get \ 

Next, we obtain an expression for the partial derivatives evaluated at 

9 . Assuming that f, has been chosen such that D f,(g,9) is non-
I g 1 

singular at (S,S) , we have as a result from the implicit function 

theorem (see e.g. Rudin (1976)) that the solution of (2.5) is conti-

nuous and differentiable in 9 with first derivative at (g,§) given 

by 

DQ 3(e) = - | D f , ( e , 9 ) 1 DQ fj(g,9) (2.6) 

(6,9) 
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The matrix D f, is nonsingular if only one solution of f.(3,0) = 0 
P l ^ ^ 1 

exists"in some neighborhood of (3,0) . 

Using the chain-rule of differentiation and expression (2.6), the 

partial derivations of h at 0 become 

= f- D0 f0(Do f,)
 l DQ f, + DQ f, 

L. •2V 3 i e i e 2 
(2.7) 

(M) 
For the sake of simplicity, we delete the arguments 3 and 0 . 

Formulae (2.5) and (2.7) are suited for all kind of nested hypotheses. 

However, quite often the set of restrictions (2.4) has the special 

fora, f(3) - 0 = 0 , so that expression (2.7) can be simplified. For 

instance, the constraints implied by the common factor structure (a.g. 

Sargan (1977), (1980a)), the polynomial distributed lags (e.g. Almon 

(1965) and Sargan (1980b)) and the rational expectationsvrestrictions 

on the reduced form of a simultaneous equation model,(e.g. Hoffman 

and Schmidt (1981)) are of this special form. This list of examples 

is not exhaustive but it contains some major areas of application for 

the Wald test. For this special form of the implicit relations, we 

obtain 

and 

h(§) = f2(3) - 02 

DQ h - f- D6 f2(DB f ,)"1 : - i (2.8) 

with 0„ being the appropriate subvector of 0 . 

In this context, it should be noted that the system (2.4) can be used 

to get an efficiënt estimate of 3 , when 3 is the complete set of 

parameters of the restrixited model. Under H- , the log-likelihood 

function denoted by L can be expressed in terms of the parameters 

3, i.e. L [0(3)1, provided the restrictions in (2.4) are or can be 

written in the special form f(3) - 0 = 0 . Using the chain rule of 

differentiation, the first order conditions for a maximum can be 

expressed as 

(Dg0)'DQL = 0 = (DB0)<DQL 
2 

SAs/V^eMV 

(2.9) 
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where g , .3 and g.̂  denote respectively a consistent initial 

estimator, a first order efficiënt two-step and the efficiënt 

maximum likelihood estimator of g .When D f is nonsingular, 

the matrix of parttal derivatives 

Dg 0 = - [DQ f]
_1Dg f , (2.10) 

obtained from (2.4) can be substituted into (2.9) to yield the 

following expression for g 

<V)'CDef),~ïl4L<V)~1V 
•ï 

CV),(Def>*"lDe^ 
e,'£(É 

(2.11) 

The large sample covariance matrix for VT (g - g„) , with g» 

being the true parameter value is given by 

• 1 

. v~ . . , .~ , . , ~ ~ ,~ J\~lr> f 

• ] / e ' x e ' ©e v e 
(2 .12) 

Two remarks can be made. First, this estimation procedure cannot be used whe 

therestrictions are of the implicit'fprm (2.1)and-0 is theparameter of 
interest. "" -""" 
The Lagrange multiplier approach (see e.g. Silvey (1959)) is 

suited for efficiënt estimation under implicit restrictions. 
2 

Second, when Dnr)L can be rearranged to become a block diagonal 

matrix with the first diagonal block being of order s ̂  m 

and with the corresponding matrix D 0 having zero's in the last 
p 

n - s rows , then (2.12) can be expressed as a block diagonal 

matrix, so that the last n~-"s*~elements of D L are not needed to 

efficiently éstimate g . 

To conclude, besides yielding a convenient procedure to compute 

Wald criteria and restricted parameter estimates, the approach 

also accommodates sequential testing, which is accomplished by 

successively extending the set of restrictions f? for a given 

choice of f. . For most problems, the formulation of the restric­

tions in (2.5) and the choice of f. and f„ in the procedure 

described in this section are not unique. The implication of this 

choice for the value of the Wald statistic will be analyzed in 

the next section. 
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The Wald statistic and alternative f ormulations iif the restrietio 

In this section we investigate whether the value of the Wald- statistic 

is affected by choosing an alternative formulation for the constraints. 

We give a class of transformations of the restrictions, which do not 

affect the value of the Wald-statistic in large samples given that H_ 

is true. Furthermore, we consider the impact of multiple solutions for 

f1 (B,0) = 0 and the influence of the choice of f and f„ on the 

Wald test. 

In the present context, the following result by Holly and Monfort (1982) 

(see lemma 2) will be very useful: 

Lemma: Let V be a p-dimensional random vector such that Variance (V) 

= Q is of rank r (<̂  p) and E V = u € RvQ) , the range of Q . 

Let Z = AV where A is a non-random matrix. :Then, Z'(AQA')-Z = V'Q~V 

with probability one (for any choice of the generalized inverse 

(AQA')~~ and Q~ ) if, and only if, rank (AQA') = rank (Q) . 

For the proof, see Holly and Monfort (1982). 

Consider now the case where the set of restrictions h(0) = 0 is such 

that ' ü, is nonsingular. Any alternative formulation of the restrictions 

say g(0) = 0 , for which there exists a nonsingular matrix A 

such that D g = AD h (We call this the equivalence condition of the 

partial derivatives), will asymptotically yield the same value for the 

Wald statistic, both under H~ and under a sequence of local alter­

native hypotheses. That the identity for the Wald' statistic usually 

does not hold true when there exists no matrix A that transforms D h 

into D g can be seen by showing that the plim of the difference 

between the two Wald-statistics is nonzero. 

The problem we now consider is the existence of multiple solutions for 

a given choice of f.(g,0) = 0 . If H0 is true, the data generating 

process can be characterized by just one point in the parameter space 

for 8 , defined as the solution of f(g,0n) = 0 , where 0„ is the 

true value of 0 . Otherwise, the parameter B is not identified under 

Hn . HoweVer, not every solution of f (3,0O) = 0 will also satisfy the 

remaining implicit relations. Usually, only one - occasionally several -

of the solutions for f (B,9_) = 0 also satisfies f„(3,0n) = 0 . 
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As the sample size T inereases, the WaldJstatistic tends to infinity 

for those solutions for which f2(3,©0) 4- 0 . If there exist two or 

more solutions for f (3,0 ) = 0 , which also satisfy f2(3,©n) = 0 , 

their Wald-^statistics will usually not be identical, as the equivalence 

condition for the partial derivatives need not to be. fuifilled. The practi­

cal implication of the existence of multiple solutions for f.(3,0) = 0 

is that one can only reject EL if for each solution of f , the Wald 

statistic is significantly different from zero. This point will be 

illustrated by the example of common factor restrictions in section 4. 

However, this problem is only relevant if we cannot find a set of 

restrictions f (3,0n) = 0 so that just one solution exists. 

Next, we investigate the consequences of the choice of f1 and f„ 

for the value of the Wald -statistic. Without loss of generality, we only 

consider two alternative choiees for f1 and f„ . To do so, we 

partition the system of constraints into four subsets, which consist 

of k , m - k , k and r - k relations respectively, 

f* (6,0) = 0 (3.1) 

f* (3,0) = 0 

f* (3,0) = 0 

f* (3,0) = 0 . 

To simplify the notation, we delete the arguments 3 and 0 and we 

:_ .. /f|\ 
denote the subset of restrictions (f*) by f*-,-

,-y 1+3 

As out first choice of f = 0 , we use the set f*, ff,9 to derive 

a solution for 3 , 3, • A second solution 32 is derived from 

f*o.o = '0 • Using the result in (2.7), the partial derivatives can be 

written as (the subscript i = 1,2 indicates the choice of f ) 

D h = - D f* (D f* ) D f* + D f* 
0 1 ! 3 3+4 k 3 l+2; 0 rl+2 ue 3+4 

and 

D 0 h 2 " D B
 ft+4 (D3f!+3)_1 D0 f2+3 + D0 f!+4 

J(Br©) 

(3.2) 

J(32,0) 

(3.3) 
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A - f- Ds *u B2 ; °* r"k" 
xr *• I , J 

r-k 
(Br§) 

» 

is a zero-matrix of order k x (r-k) and B2 

The value of the Waïd*lstatistic will asymptotically not be affected 

by the choice of f, , if there exists a nonsingular matrix A such that 

the partial derivatives in (3.2) and (3.3) satisfy the equivalence 

condition, Dfl L = A D. h. . A nonsingular matrix that gives the 

desired result is 

(3.4) 

where 0, , 
k r-k 

mxm V M1' 

After premultiplication of (3.2) by (3.4), we get an expression that 

is identical with (3.3) except that it is evaluated at (£.,§) (the 

details of the derivation are given in an appendix). The choice of a 

subset of restrictions f does not affect the value of the Wal d-

statistic, provided plim ($^-$„) = 0 and the matrices of partial 

derivatives are continuous at the true parameter values. 

Under H_ , plim (3 -§„) = 0 if there exists just one solution of 

the implicit functions for both choices of f1 . In the presence of 

multiple solutions, there will be a combination of these solutions 

such that plim (3 - B ) = 0 , but not every combination will ne-

cessarily have this property. Therefore, we have to conclude that 

different choices of f may not yield the same value for W if 

there is a choice of f , for which multiple solutions exist. 

Finally, we consider the case where the set of implicit restrictions 

h(9) = 0 is given. We prove that h(9) = 0 and'. g(h(0) ,9) = 0 , 

g being continuous at the true parameter values, yield the same 

value for W in large samples, if g(0,9) = 0 and D g(y,9) is 

nonsingular. The matrices of partial derivatives of h and g with 

respect to 9 are given by 

DQ h(9) ^ and |D g(y,9) Dey + DQ g(y,0) . (3.6) 
(y,6)-(h(9), 
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Premultiplication of the second expression by [-D g(y,0)J 

evaluated at (h(0)0) yields 

DQ h(8) ^+ [ü g(y,e)"j_1 D g(y,0) 
0=0 L y .J 

. ..(3.7) 
(y,0)=(h(0),0) 

But on H , plim D g(y,0) = plim D g(O,0) »" 0 ," the second term in 

(3.7) vanishes in large samples and we obtain the asymptotic invariance 

of the Wald- statistics with respect to transformations of the type 

g(h(0),0) . 

In section 4 , we present some selected examples which illustrate the 

theoretical results given in sections 2 and 3 . 

4. Some econometrie applications 

The purpose of this section is to illustrate the wide range of appli­

cations of the Wald'test. Thereby, we pay attention to the problems 

discussed in the preceding sections. 

The list of examples considered is not exhaustive, but it should give 

the reader a fairly good indication of the usefulness in empirical 

èconometrics of the Wald procedure proposed in the paper. Each of the 

subsections can be read separately. 

4.1 Overidentifying exclusion restrictions in the linear simultaneous 

equation model 

The structural form of a simultaneous equation model (SEH) is useful for, 

among other things, generating restrictions on the data-generating 

process (DGP). Byron (1974) proposed a Wald test for overidentifying 

restrictions ah a single structural equation and ón a structural 

system. His test can be implemented straightforwardly using the procedure 

described in section 2. 

To illustrate the implementation of the test, we consider overidentifying 

restrictions on a single - say the first - structural equation. As we 

ignore other constraints on the system, we can limit ourselves to the 

set of reduced form equations 

( y } Yj) = X lij + Vj , ( 4 . 1 ) 

T x g ] Txk k x g ] T x g ] 
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for the g, endogenous variables included in the first-structural 

equation 

yj + YJYJ + XJÓJ = Uj . (4.2) 

When the exclusion restrictions on (4.2) are true, the matrix II 

partitioned appropriately satisfies the relations 

ni ' v ' = 1 VY,,' 
"""21 "21' x,l 
l^oi n9i/ W \ ® ) 

(4.3) 

, where the number of rows of the 

(kj + k-kj) x g j (gjXl) 

where k1 is the number of predetermined variables included in (4.2). 

The overidentifying restrictions can be written as 

f(B,0) = 0 = 0r2, n21) Q ) , (4.4) 

(g, - 1 + r) x 1 J' 

with g = Yi and Q = vee (II ) = ir , r = k - k - g, + 1 (assumed to 

be strictly positive). Notice that 6 is a vector of nuisance para­

meters in the present case. In order to get a solution for y , we 

Pl\ n21̂  
partition (ir. n„.) as I 

VÏ2l*21^ . *_ 
blocks is (g,-'l) and r respectively, and ü„ is assumed to be 

nonsingular. Solving f < ( Y # ) = ~^n\ + "̂ 21Y1 = ^ ^or Yl ê^ves Y, ~ 

-ï 2 ] ¥„. , so that from f-Cy.jir) = £21 + H?lYi = *-* > w e n a v e 

h(9) = h(Tr) = 1 2 1 " n.21̂ 21 ¥21 = ° ' ( 4 , 5 ) 

Notice that for a given choice of f , there is only one solution 

for y. , so that under Hn , the test statistic will always give the 

same value in large samples. We use (2.7) to obtain the matrix of 

partial derivatives D h 

For this purpose, we need the following results 

D f. = TL, , D f0 = n01 , 
Yj 1 21 Y ] 2 -21 

D, f, - (irpuio^,),^ ig]., o(gi.1)„] 

\ h • OYp©[O r J t ( k g I r] , (4.6) 
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where (£> denotes the Kronecker product, A © B = [a. .B] . 

We substitute the expressions (4.6) in (2.7) and obtain after some 

transformations the partial derivatives 

D^h - (i Y|)®[o r x k i -n21n-; ir3 . (4.7) 

The results (4.5) and (4.7) evaluated at the OLS estimate of II , 
-1 ' 

II = (X'X) X'(y Y ) , and the variance of vee (II) = ff, 

X © (X'X) , with I being a consistent estimate of the covariance 
v v 

matrix of the reduced form disturbances in (4.1), can be substituted 

into (2.2) to yield the value of the Wald statistic for overidentifying 

restrictions. A Wald test for the restrictions on a complete SEM can be 

derived along the same lines. 

2 Common factor restrictions 

Common factor restrictions, which are widely used in dynamic econometrie 

models, can easily be tested using the methods presented in section 2. 

The main reason for which we discuss the common factor approach here is 

to show how multiple solutions for the subset of nonlinear restrictions 

f1 arise and how alternative formulations for the restrictions 

imply different asymptotic values for the Wald statistic under H» . 

Sargan (1980a) presents a method for testing common factor restrictions in a 

dynamic single equation model. His method is based on a condition on the 

determinant of a given matrix. Sargan (1977) generalizes the method to 

SEM's. Mizon and Hendry (1980) give an application of Sargan's (1980a) 

method. A single regression equation with common factors can be written 

as 

k 

M D <f>0
(L)yt = ±Ii *(L) V ^ i t + £t ' (4,8) 

where y is the endogenous variable, £ is a white noise error term 
t 2 . 

with zero mean and constant variance a and independent of the exo-

genous variable x. , , for all t and t' and i=l,...,k . The poly-

nomials (j> (L) and <j). (L) , i=0,...,k , have degree p and r. res-

pectively. The roots of cf>(L) <|>.Q(L.) lie outside the unit circle. The 

model (4.8) is a special case of 

e0(D y = J^.CDx^ + e , (4.9) 
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where 0.(L) , i=0,...,k , are polynomials in L of degree p+r. , 

and the roots of 0Q(L) lie outside the unit circle. The number of 

k ,,-. k 
parameters in (4.8) and (4.9) is m = p + .Z„r.+k.;||Sd n = (l+k)p + .Z„r.+ k 

respectively, so that the common factor structure in (4.8) leads to 

pk.-, restrictions on the parameters in (4.9). 

For the procedure presented in section 2, we determine the implicit 

restrictions by equating the corresponding coeffieients in (4.8) and 

(4.9). A subset of m restrictions forms the system fj(3,0) = 0 . 

and is used to obtain a solution for 3 , the set of parameters in (4.8). 

The formulae given in (2.8) are then used to compute the Wald statistic, 

because the implicit restrictions are of the form f (3) -0 = 0 . 

Computation of the Wald test is straightforward in this case. 

However, for a given choice of f. , there might exist two or more . •.'; 

solutions, not all of them yielding the same asymptotic value for the 

Wald statistic under H» . A simple example given by Mizon and Hendry 

(1980) is illuminating in this respect. They consider a special case of 

models (4.8) and (4.9) written as 

yt = (4> + «)y t_r +«yt_2
 + Y0*t

 + ^r^oK-i " *Yixt-2 + s 

with k = p = r_= r. = 1-, 

and 

^ = 6lyt-l + 92yt-2 + 93xt + 04Xt-l + Q5xt-2 + £t * 

When H„ is true, we have the following set of implicit relations between 

3 = (<f>, a, Y 0, Yj)' and 0 = (0],...,05)' 

fj(B,0) = 0 : <j) + a - 0 = 0 

-$a - 0 = 0 

Y Q - 0 3 . = 0 

Y, - *T 0 - e4 - o 

f2(6,0) = 0 : -<j>Y] - 05 = 0 (4.10) 

2 
When 0. + 40„ > 0 , f1 = 0 has two real solutions. However if HQ 

is true, only one of these solutions also satisfies f„ = 0 . Notice 

that if both solutions satisfy f„ = 0 , there exists a functional 

relationship on 3 , namely Yn
 a = T, • The requirement that 
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2 
(1 - 6.L - 92L ) = O and (1 - aL) (1. - $L) = 0 have their roots outside 

the unit circle does not resolve the pröblem of multiple solutions. For 

instance, for 0' • (.5, .2, 1., 5, 1.)» the characteristic roots of 

the unrestricted model and the restricted model lie inside the unit 

circle, whereas (4.10) still has two solutions. 

The Wald statistic can be computed for both solutions using the 

formulae in (2.8). The partial derivatives are then given by 

fy^ * Y 0 j> 2 Y t + YQ<i> 2 \ 

e-i V <* - • ' a - • ƒ L g e 

(4.11) 
Computation of the Wald test when (2.8) is evaluated in a solution 

of f = 0 that also satisfies f„ = 0 asymptotically will yield the 

value for the test statistic that ought to be used in testing. The 

value of the Wald statistic for the second solution of f.' = 0 will 

tend to infinity as plim h(0) = constant ^ 0 and plim Q, is a 

constant matrix. 

In small samples, we may not be able to discriminate between these 

values, but in large samples we can. 

Mizon and Hendry (1980) derive the restrictions on 0 implied by 

(4.10) explicitly. They find 

, 0.0, - 0„0, 
0 5 + » 0 4 + * 0 3 = 0 and * - e ^ + /5 . (4.12) 

If the implicit relations (4.10) are substituted in (4.12), it is 

obvious that the restriction on 0 implied by (4.12) must be valid 

under EL . However, the formulation of the restriction in (4.12) is 

not unique. After some transformation of (4.10), we also find 

2 "0203 " 05 
0 5 + * 0 4 + * 0 3 = 0 and • - QjQ + Q; (4.13) 

I 3 4 

as a restriction. There does not exist an equivalence between the 

partial derivatives of (4.12) and (4.13), as can be seen by determining 

D h for both of them and substituting the implicit relations in (4.10). 

According to the results of section 3, the two associated Wald statistrcs 

will not be equivalent asymptotically. The problem caused by multiple 

solutions is present whether we choose an explicit or an implicit form 

for the restrictions. In empirical work, one will have to compute the 

different solutions for the set of restrictions. The null. hypothesis EL 
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is not rejected once we have found a solutions for which the test is in 

favor of Hn . It can only be rejected when for all solutions for the 

restrictions, Hr has to be rejected» 

4.3 Testing for LISREL 

In this section, we consider an example of the linear structural relations 

(LISEEL) which have been widely used in economics and other social sciences 

and we show how the Wald test applies in this case. As the LÏSREL-model 

linearly relates observed variables to some unobservable quantities, it 

can be used to generate restrictions on the second moments of the observed 

variables. In the economie time series literatüre, LISREL-models have 

been postulated for second-order stationary processes (see e.g. among 

others Geweke and Singleton (1981)) and tested by means of frequency 

domain methods. In addition to the requirement of weak stationarity, 

we assume that the observed variables are generated by a finite order 

vector autoregressive model. This assumption which is frequently made in 

applied work simplifies the presentation. We show how covariance structures 

for a multivariate dynamic model can be tested in the time domain. 

We assume now that aggregate expenditures on good i in constant prices 

c. , i = 1, ..., N, and aggregate personal disposable income in constant 

prices y , are (after appropriate transformation) generated by a weakly 

stationary p-th order autoregressive model. 

'It 

'2t 

'Nt 

= xt = A(L
!) xt + ut , (4.14) 

where A(L) = .£ A. LJ is a (N+l) order matrix polynomial lag operator 

of degree p with constant coefficients u is a vector white noise 

with zero mean and nonsingular covariance matrix Q, . The roots of 

the determinant |I - A(L)I are assumed to lie outside the unit circle. 

Now we consider a simplified version of a model recently used by Geweke 

and Singleton (1981). 
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Cit = 5i (L) Zt + Eit 

yt = Z t + vt » (4.15) 

where z denotes the unobserved permanent income at time t in constant 

prices, e. and v are disturbances that can be interpreted as transifeory 

consumption and income rëfB-ectLvely. We assumethat e. and v have zero mean, 
2 2 - ït t 

constant varxances o. and a , zero autocorrelations and zero cross-
ï v ' 

correlations at all leads and lags and that they are independent of z , , 

for all t and t' . The 6. (L)'s are one-sided scalar polynomials of 

degree d. in L . For the sake of simplicity, we assume that all 

variables in (4.14) and (4.15) have mean zero. By postulating model 

(4.15), we introducé an unobservable variable z , but more importantly, 

we are able to formulate restrictions on the parameters of (4.14). Z 

Imposing these restrictionSj (4.14) leads to a nested null hypothesis 

which can be tested against the more general model (4.14). At this point, 

several comments have to be made: - Model (4.15) is an example of confirmatory dynamic factor analysis, of 

which the static version (see e.g. Jöreskog (1969)) is readily obtained 

by appropriate specialization of (4.15). 

The variable z in (4.15) can also be interpreted as an unobserved 

component (see e.g. Nerlove et al. (1979)), for which a process can be 

specified and combined with (4.15) to yield the joint process of x 

(instead of assuming (4.14)). 

- The disturbance v in (4.15) can bë interpreted as an error of 

measurement. If the second moments for v are known, the estimated 

second moments for y. can be corrected for the effect of v to 

yield consistent (and asymptotically normally distributed) estimates 

of the corresponding moments for z . Then, the set of restrictions 

implied by the first part of (4.15) can be tested using a Wald criterion. 

This approach is an example of the population-sample decomposition, 

(see e.g. van Praag (1982), for more examples), where the sample 

moments are adjusted for deficiencies in the observations before being 

used to test restrictions on the population parameters. The estimates 

of these parameters will not always be efficiënt and the corresponding 

Wald test is not necessarily most powerful (for local alternatives). 

However, it may be computationally more convenient and more robust 

than a likelihood ratio test or a Wald test based on maximum likelihood 

estimates for a complete model taking account of the sample deficiencies. 

Nevertheless, the adjustment of the estimated moments for the nonstandard 
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sampling requires a priori knowledge, that may not be available in 

practice. 

To illustrate the use of a Wald test, we consider a special case of 

(4.14) and (4.15), with. N=2, p=l, dj='d2 =:0 . For (4.14), we have 

FQ = A, T_ + tt 

r i = A i r o (4.16) 

where r . = E xfc x ' •• = T' . ï t t-x - ï 

From ( 4 . 1 5 ) , we ge t 

r„ - "V 
V 
1 

L. J 

( Y Z I 0
 Yz20 Yz30) ou 0 0 

a 2 2 0 

'33 

= 0 

and ï \ - • 10 

20 

( y z l l Yz21 Y 2 3 p = 0 (4.17) 

with Y . . = E ẑ . x.. . 
'zji t jt-i 

The system (4.17) implies 18 relations 

between the 15 parameters of r„ and T and the 11 parameters in 

e = (f i 1 0 . , s 2 0 Ys Y, Yr 'zlO ' '220 ' 'z30 ' 'zll ' rz21 ' yz3l ' 11 » 22 ' u33-)-', 
Alternatively, we can relate the parameters of 6 to those of ü 

and A. by sübstituting (4.17) for rQ and T in (4.16). The two 

corresponding Wald statistics have the same value in large samples 

because of the one-to-one relationship between (r_ , T.) and (Â  , ü) . 

Through vectorizing the set of relations (4.17), we get the restrictions 

in the form of (2.4). The choice of" f1 is fairly obvious in this case. 

Provided estimates for 9 = vee (T* T ) or 0 = vee . (Q* Aj) , where * 

indicates that only the freely varying parameters are included in 0 , 

are available and their joint (asymptötic) distribution is known, the 

Wald statistic can be computed as outlined in section 2. As (4.17) 

implies 7 implicit restrictions on 0 , under H_ , the Wald statistic 

is chi-square distributed with 7 degrees of freedom. When we use OLS 

estimates for A and ü , the Wald test will be equivalent in large 

samples to a likelihood ratio test conditional on initial values. 

Notice finally that when a„_ 'is known a priori, y „„ can be 
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consistently estimated by Z y - a__ , and as all remaining second 

moments of z appearing in (4.17) can be consistently estimated by 

the corresponding sample moments for y , the population-sample 

decomposition can be straightforwardly applied. 

From the discussion in this subsection, it should be clear that the 

Wald test can be useful for analyzing covariance structures in static 

and dynamic models, when an initial model such as e.g. (4.14) has been 

specified. 

5. Some concluding remarks 

In this paper, we presented a general procedure for computing Wald 

criteria to test linear and nonlinear -nested hypotheses. The procedure 

can also be applied when the restrictions are in implicit form, as is 

often the case in econometrie modeling. The proposed procedure is 

expected to save the investigator fromfthe time-consuming activity of 

expressing the restrictions in explicit form. We also investigated the 

consequences of the choice of a particular form of the restrictions for 

the value of the Wald statistic. The troublesome problem of multiple 

solutions for a subset of nonlinear constraints used to compute an initial 

value for 6 has also been analyzed. In particular, it has been shown 

that for some solutions, the Wald statistic will tend to infinity. 

Three econometrie applications for the Wald test have been presented in 

order to illustrate the possibilities for using Wald criteria and the 

problems that might arise. Several important applications have not been 

discussed. Among them, we mention the set of nonlinear constraints 

implied by the rational expectation hypothesis in a SEM (see e.g. Hoffman 

and Schmidt (1981) and Revankar (1980)), the flausman specification test 

(see e.g. Hausman (1978), Holly (1982)), the Almon pplynomial lag 

constraint (see e.g. Sargan (1980b)). Finally, the Wald encompassing 

test can be used to test nonnested hypotheses (see e.g. Mizon and 

Riehard (1982)). lts implementation however, requires some modifications 

of the general procedure presented here. 
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Appendix 

In this appendix, we show that 

A [ -De f*+4 % ft +2
) _ 1 De f ï + 2

 + De f3+4 ] 

[ "DB fï+4 % f!+3>
 De f2 +3

 + DQ f*-4 3 • ( A'° 

" °k r-k 
where A = [ -D. f*. B„ '. T ] is defined in (3.4) and B„ 

3 1+4 2 . I ' 2 
r-k 

is given in (3.5) and the formulae are evaluated at (B, 0) = (8 , .0) 

The matrix multiplication in the l.h.s. of (A. 1) gives--

D~ f t + 4 B2 Dg f*3
 + { X\ -1 (DB fï+2> D0 fï+2 + 

K f! fU h D0 f? + Ufft (A.2) 

From the definition (3.5), we have the following identity 

B2 D8 f3 " \ " Bl DB f ! • 

which we substitute into the first term öf (A.2) to yield, after some 

algebraic transformations, 

i. : o, . 
k . k m-k 

D3 f4 (D3 f*+2> 

- D Q f* . B, (o . . : i .) + 
B 1+4 1 m-k k . m-k 

k m 
,-1 i-D f* D f* 1 Ug r4 UB '1+2, 

D f* - D f* B D f* + 
0 rl+2 UB rl+4 n2 UQ r3 

k TJ D
0 n 

(A.3) 

Expression (A.3) is equivalent to 

D f* 
0 1 

r-k n 

D0 f* , B, (0 . + Dn f*) 8 1+4 1 m-rk n 0 2' D B f l + 4 B 2 D 0 f 3 + 

k n 

D 0 f 4 

(A.4) 
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Using (3.5) in (A.4), we find the desired result 

- D f* (D f* ) D f* + D f* UB rl+4 ^ 3 2+3; 0 2+3 9 rf+4' 

FP/db 
82121 
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