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1. INTRODUCTION 

A data network is a collection of switching nodes 
connected together by a set of communication channels. 
It provides a message switching service to the users at 
the various nodes. Messages in the network are routed 
from one node to another in a store-and-forward manner 
until they reach their destinations. A key performance 
measure of the data network is the sojourn time from the 
arrival of the message at its souree to the successfull 
delivery of this message at its destination. Kleinrock 
(1964) developed an open queueing network model for data 
networks and derived an expression for the mean sojourn 
time. This expression has been used extensively for 
performance analysis and network design. 

Kleinrock's result is the mean sojourn time over all the 
messages delivered by the network, but he does not give 
results about the distribution of the sojourn time. 

In this paper we treat messages with the same source-
destination pair as belonging to a particular message 
class and derive the distribution of the sojourn time of 
each class. We consider a network with fixed routing, 
and assume that there is one unique path for each mes
sage class between any pair of channels in the network. 

Knowledge of the distribution of the sojourn time allows 
us to determine statistics as the mean, variance and 
90-percentile of the sojourn time. 
Our derivation is based on Kleinrock's model with 
emphasis given to classes of messages. A description of 
this model is given in section 2. The model is a special 
case of queueing network model studied by Jackson 
(1957). We consider this model in section 3. In section 
4, our basic result on the distribution of the sojourn 
time for a class of messages is given. This basic result 
is then generalized to the whole network. 

Finally section 5 is devoted to a numerical example and 
application of the results to data networks. 
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2. MODEL DESCRIPTION 

We first assume, that the sojourn time experienced 
by a message in a data network is approximated by the 
queueing time and the data transfer time in the chan
nels. The processing time at the switching nodes and the 
propagation delay in the channels are assumed to be 
negligible. 

Let M be the number of channels and C(i) be the capacity 
of channel i, i=l,2,...,M. In our open queueing network 
model, each of the M channels is represented by a sin-» 
gle server queue. The queueing discipline at each chan
nel is first-come-first-served. We assume that all chan
nels are error free and all the nodes have unlimited 
buffer space. 

Messages are classified according to source-destination 
pairs. In particular, a message is said to belong to 
class (s,d) if its source node is s and its destination 
node is d. Let R be the total number of message classes. 
In a network with N switching nodes, R=N.(N-l). For con-
venience, we assume that message classes are numbered 
from 1 to R, and we use r instead of (s,d) to denote a 
message class. The arrival process of class r messages 
from outside the network is assumed to be Poisson with 
mean rate g(r). Message lengths for all classes are 
assumed to have the same exponential distribution and we 
use l/m to denote the mean message length. 
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Fig.1. Hypothetical data network. 

It follows from this last assumption that the data 
transfer time of all messages at channel i is exponen
tial with mean l/(m.C(i)). For the mathematical 
analysis to be tractable, Kleinrock's independence 
assumption is used. This assumption states that each 
time a message enters a switching node, a new length is 
chosen from the exponential message length distribution. 
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The route of a message through the network may be 
described by an ordered set of nodes or an ordered set 
of channels between these nodes. We assume that the 
routing in a data network is in general along the shor-
test possible route. If there are alternatives, one 
route is chosen. This means that the route of each mes
sage class is unique. We use a(r) to denote the ordered 
set of channels over which class r messages are routed. 

In fig. 1 we show a hypothetical data network with 6 
nodes and 12 channels. The matching queueing network is 
shown in fig. 2. 

We note that a full duplex channel between two nodes in 
the data network consists of two independent channels in 
the queueing network. 

Fig.2. Matching queueing network. 
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3. OPEN JACKSON NETWORKS 

The model of a data network and the matching queue-
ing network, which we described in the previous section 
has much in common with an open Jackson network with 
single server queueing stations. 

We will briefly discuss this system and use the vocabu-
lary of the previous section. 
The model introduced by Jackson (1957) is a generalisia-
tion of a M/M/l queue to an arbitrarily interconnected 
open network of single server channels with exponential 
service and Poisson external input. Every channel has a 
first-come-first-served queue discipline and a waiting 
room of unlimited capacity. The external input stream to 
channel i is Poisson with rate b(i) and these external 
input streams are assumed to be independent. The service 
times at channel i are independent and have a common 
exponential distribution with parameter m.C(i) and are 
also independent of the message arrivals at channel i. A 
message leaving channel i is immediately and indepen-
dently routed to channel j with probability p(i,j) and 
the message departs the network from channel i with pro-
bability 

hl 

1 - Z P(i,j). ( 1) 

Let b=(b(l),...,b(N)) be the row vector of the external 
input intensities, let P be the N x N-matrix of the 
p(i,j)'s and let a=(a(1),a(2),...,a(N)) be the row vec
tor solution of the traffic equation 

a=b+a.P. ( 2) 

Since we are assuming the network is open, that is, any 
message in any channel eventually leaves the system, it 
follows that each entry of the matrix P* converges to 0 
if n—»co . Thus the matrix I-P is invertible and there 
is an unique solution for the traffic equation for a 
given b. In row form (2) is equivalent to: 

M 
a(i)=b(i) + Z P(i,j).a(j) i = l,...,N. ( 3) 

That is, the equilibrium rate of flow through channel i 
a(i) is the sum of the external input rate b(i) and the 
total rate of internal transfers to channel i. It is 
plausible that equilibrium conditions will be obtained 
if the traffic intensity q(i) is less than one at chan
nel i. 

q(i)=a(i)/(m.C(i)) < 1 i=l,...,N. ( 4) 
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Under these assumptions, Jackson showed that if P(C) is 
the equilibrium probability of the network of being in 
state C=(c(l),..., c(N)) then 

P(C)-P,(c(l)).Pa(c(2))...PN(c(N)) ( 5) 

where Pj(c(i)) is the equilibrium probability of having 
c(i) messages in a M/M/l queue with input rate a(i) and 
service rate m.C(i). 

The product form of the right hand side of (5) reveals 
the mutually independence of the states of the various 
channels in the network. However we must be careful. 
The form of the equilibrium solution has misled many 
researchers in believing that the channels behave gen-
erally like individual M/M/l queues. Also the conjec-
ture that the traffic transfer between channels consists 
of mutual independent Poisson processes is not true. We 
will have a closer look at these networks with regard to 
the transfer processes. 

By a result of Burke (1956) and Reich (1957) we know 
that the output of an M/M/l queue in equilibrium is 
Poisson with the same intensity as the input process. 
This result, when applied to a tandem queue of exponen-
tial servers shows each input and output process to be 
Poisson. 

From Kelly (1976) we know that the message streams leav-
ing a Jackson network form mutual independent Poisson 
processes. 

Beutier and Melamed (1978) generalised the above 
results. They proved that traffic on all exit paths of 
channels in an open Jackson network in equilibrium is 
Poisson and moreover, the message streams leaving any 
exit set are mutually independent. Here an exit path of 
a channel is a path from that channel such that a mes
sage moving along that path cannot return to that chan
nel and a path is an ordered set (u(l),..., u(i), 
u(i+l),...,u(m)) of channels with 

P(u(i),u(i+l)) > 0 for 1 < i,i+l <. m. 

An exit set is a set of channels such that messages 
departing from this set can never visit this set again. 

As a special case, we get Kelly%s result. In contrast, 
traffic on non-exit paths is non^Poisson and indeed 
non-renewal. 

Beutier and Melamed defined a canonical decomposition of 
the network as a partition of the set of channels into 
components, each component consisting of communicating 
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channels. 

Channels i and j communicate if channel i is accessible 
from channel j and if channel j is accessible from chan
nel i. Channel i is accessible from j if P^(j,i) > 0 
for some n. 
Beutier and Melamed showed that the set of all exit 
paths coincides with the paths emanating from the com-
ponents. This means that all the traffic streams between 
the components are mutually independent Poisson streams. 
If in a queueing network all the channels are non-
communicating then the set of components is the same as 
the set of channels. 
The network can be decomposed into single channels and 
all the streams in the network are mutual independent 
Poisson processes. It looks like we may consider the 
channels in these networks on their own. However Simon 
and Foley (1979) proved that in general there are depen-
dencies in the sojourn times of the different channels. 
Therefore we will now consider the sojourn times in net
work. 

Reich proved that, in equilibrium, the sojourn times of 
a message in each of M/M/l queues in tandem are indepen
dent and he extended this result to an arbitrary number 
of such queues in tandem (Reich(1963)). This result was 
extended by Lemoine (1979) to the case of acyclic Jack-
son networks in which any two channels are connected by 
at most one path. Since such networks have no parallel 
paths, and since the service discipline is first-come-
first-served, every path in the network has the so 
called non- overtaking property. This property says that 
a message travelling along the path cannot be overtaken 
by the effects of subsequent arrivals. 

However a path need not be a message route in the sense 
that it may not be possible for any single message to 
follow the successive channels in a path. The non-
overtaking property means that all paths from i(u) to 
i(v) must go through i(u+1). Hence a message which 
traverses i(l),.., i (u) ,.. ,i (v) ,.. ,i (m) cannot be over
taken either directly by any message which inters i(l) 
after him or indirectly by subsequent arriving messages. 
Thus it is information or influence as well as physical 
presence which is not allowed to pass a message. 

Walrand and Varaiya (1980) showed very recently that in 
any open Jackson network, the sojourn times of a message 
at the various channels of a non- overtaking path are 
all mutually independent. Since the distribution of the 
sojourn times at each channel is known, it is possible 
to calculate the sojourn times for non-overtaking paths. 

Walrand and Varaiya showed that the non-overtaking pro
perty cannot be generally relaxed and they also showed 
that for any network the sojourn times along any path 
which permits overtaking cannot be independent at least 
under light traffic. 

If a path in a network has the non-overtaking property 
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then certainly the channels on this path do not communi-* 
cate in the sense of the definition of Beutier and 
Melamed. 

If in a network all the paths have the non-overtaking 
property then there are no communicating channels in 
network and we can decompose the network into indepen
dent M/M/l channels. 

We note that if we are only interested in the mean 
sojourn time of messages in a channel, on a route or in 
the whole network we only need to use Jackson^s results. 
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4. SOJOURN TIME DISTRIBUTION 

In section 2 we assumed that the routing in a data 
network is along the shortest possible route and if 
there exist alternatives one of these is chosen. 

If a route has the non-overtaking property then. it is 
possible to derive the distribution of the sojourn time 
along this route. 

Because according to the result of Walrand and Varaiya 
the sojourn times of a message at the various channels 
of this route are mutually independent. This means that 
the sojourn time of message of class r in the network is 
given by the sum of /a(r)/ independent random variables. 
Each variable in this sum is the sojourn time in a chan
nel on path a(r). The sojourn time of channel i is given 
by the sojourn time of a M/M/l queue. 

Let b(i,r) i=l,2,...,M and r=l,2,...,R be the mean 
arrival rate of class r messages to channel i. Then 

g(r) if channel i 6 a(r) 
b(i,r)= <{ ( 6) 

0 otherwise. 

Let q(i,r) be the utilization of channel i by class r 
messages, then 

q(i,r)=b(i,r)/(m.C(i)). ( 7) 

The total utilization of channel i, q(i), can then be 
written as 

R 
q(i)= Z q(i,r) ( 8) 

We require that q(i) < 1 for i=l,2,...,M, the equili-
brium condition. 
According to queueing theory, the density function of 
the sojourn time of channel i dj(x) is 

d .- (x)=m.C(i) . (l-q(i) ) .exp(-m.C(i) . (l-q(i) .x) 
x > 0. ( 9) 

The mean E(T(i)) and variance Var(T(i)) of the sojourn 
time in channel i are 

•E(T(i))-l/(m.C(i).(l-q(i))) (10) 
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and 

Var(T(i))=l/(m.C(i).(l-q(i))) . (11) 

Let tp.(x) be the density function of the sojourn time of 
class r messages and T^(s) be its Laplace transform, 
i .e. 

en 
f 

T^(s)= I exp(-s.x) .t^(x) .dx. (12) 

° X 
The Laplace transform Tr (s) of the sum of /a(r)/ 
independent random variables with density functions 
d^(x) and ifa(r)f is given by the product of their 
Laplace transforms, i.e. 

X -, 
T„(s)= jT m.C(i)..(l-q(i)) 

i 6 a(r) s + m.C(i) . (l-q(i) ) (13) 

Tr(s) can easily be inverted, by using partial frac-
tions, to give tj.(x). 

The mean E(T^) and variance Var(Tr) of the sojourn time 
T r of messages of class r are given by 

dy)-#SL l/(m.C(i).(l-q(i))) 
i 6 CL(\T) 

(14) 

and 

Var(TK)- ^ l/(m.C(i) .(l-q(i))) . (15) 

iecLtr) 
If all the routes in a network have the non-overtaking 
property then it is possible to derive the distribution 
of the sojourn time of all the messages in the network. 

a 
If we let g= ̂ ~, g(r) then it is easily seen that the 
Laplace transform of the sojourn time of all messages in 
the network T (s) is given by 

T (S)= 2» g(r) .T (s). (16) 

For the mean E(T) of the sojourn time of messages in the 
network we obtain 
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E(T) = .-_ g(r) . 2 l 1/ (m.C (i ) . (l-.q (i ) ) ) . (17) 

i)=£- b(i,: If b(i)=^- b(i,r) and q(i)=b(i)/(m.C (i)) 

M 

E(T)=].. 2 1 b(i)/(m.C(i).(l-q(i))). (18) 
g i-.i 

For the variance Var(T) of the sojourn time of messages 
in the network we can write 

so 
Var(T)=E(Var(T^jr)) + Var(E(T^|r)) , (19) 

Var(T)= Z- g(r).Var(T>.) + 2_ g(r).(E(TK) - E(E(T^))) 
r~l g r=i g (20) 

and £ 

E(E(T ))= ^ g(r).E(Tr)«E(T). (21) 

Hence £ R 

Var (T)=2.g(r) . Var (TK) +2. g (r) .[ E
X(Tr )-2.E (T ) .E(T)+E

Z(T)J 
r=ri~g rn-g— L (22) 

So R R 
Var(T)= 2 l g(r) .Var(Tr) + £L 9(r) .E (T ) - E*(T). 

• *» - g — r.>i — g - r (23) 
Eq.(18) and (23) may also be obtained by using 

E(T ) = (-1) .T '(0). 
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EXAMPLES 

Our numerical examples are based on the hypotheti-^ 
cal network shown in fig. 1. The external arrival rate 
of messages belonging to each source-^destination pair is 
given by the traffic matrix in fig. 3. 

source 

de: 3 t in tatio n 

1 2 3 4 5 6 

1 0 2 2 2 1 1 

2 2 0 2 2 2 2 

3 2 2 0 2 2 2 

4 • 2 2 2 0 2 2 

5 1 2 2 2 0 1 

6 1 2 2 2 1 0 

Fig. 3. Traffic matrix. 

All channels are assumed to have the same capacity. The 
capacity and the mean message length are chosen that 
l/(m.C(i)) = 0.05 for channel i, i=l,...,12. 

We first consider the case that the routing is based on 
the shortest path between each pair of nodes. Suppose we 
are interested in the sojourn time from node 1 to 5. 
Messages routed along the shortest path between this 
source and destination pair we denote by class 1. 

The channels on this path are 1, 3 and 9. 
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In fig. 4 we give the traffic streams that pass these 
channels. 

Fig. 4. Traffic streams, 

From the traffic matrix we get the total arrival rate 
for 

channel 1: 10 
channel 3: 6 
channel 9: 8. 

We apply eq.(13) and get: 

T,(s)= 10 . 14 
s+10 s+14 

12 
s+12 

We may express this as the following sum 

T, (s)= 2JL0̂  + 210 - 420 
s+10 s+14 s+12 

This Laplace transform can be inverted to give 

t,(x)=210.exp(-10x)+210.exp(-14x)-420.exp(-12x) x >_ 0 

and of course tj(x)=0 for x < 0. 

A plot of t,(x) is shown in fig. 5. 

The n-̂ th moment of X is calculable from 
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E(X )»(-l) .Tf (0) . 

For the mean E(X) and the variance Var(X) of the sojourn 
time along the path (1,3,9) we may compute 

E(X)=0.255 

and 

Var(X)=0.022. 

This result may also be obtained by using eq. (Ui) and 
eq.(15). 

o o 
T 

DE.NGITY FUNCTtON 

o o 
E : I X J = O . 2 S 5 o o 

f " 

~ o 
X ° 
1— 

o 
o 

\ 

C3 V o ' V. i 1 1 1 1 
U • Ou -o / 1.33 Z-OC 2-S7 3-33 i 00 

X 

Fig. 5. Sojourn time distribution of class 1 messages. 

Now consider the case that we do not have routing based 
on the shortest path from node 1 to node 5. Instead of 
this the messages from node 1 to node 5 go through the 
channels 1,5,8,9 but all other messages are still routed 
through their shortest path. 
In fig. 6 we give the traffic streams that pass these 
channels. 
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We see that path (1,5,8,9) can be overtaken by path 
(1,3,9). So it is impossible to derive the distribution 
of the sojourn time along this path. 

In this network with traffic between all nodes we will 
have dependencies if the routing of the message is so 
that 

p(3,7)+p(8,4)+p(4,5)+p(6,3)+p(5,8)+p(7,6) > 0. 

We will have dependencies between the sojourn time in 
channels of a data network if the matching queueing net-* 
work allows overtaking. 
It will only be possible to derive the distribution of 
the sojourn time of messages in a data network if in the 
matching queueing network any two channels are only con-
nected by one path. 
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In fig. 7 we give some examples of such data networks. 
We assume shortest path routing of messages and if there 
are alternative routes: take the route that turns clock^ 
wise. 

Fig. 7. Data networks. 
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