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Abstract 

In this paper we report Monte Carlo results on the small sample properties 

of instrumental variables, asymptotically efficiënt two-step and iterative 

Gauss-Newton estimators for a Koyck (1954) distributed lag model with 

uncorrelated errors (model 1) and with first order autoregressive errors 

(model 2). We use the technique of control variables to increase the pre-

cision of the Monte Carlo results" and summarize the outcome using response 

functions. 

Two main questions have been investigated for a sample size T=30 and T=60: 

(a) are the asymptotically efficiënt estimators to be preferred to a 

consistent but inefficiënt instrumental variables estimator?, 

(b) does it pay to iterate an asymptotically efficiënt estimator until con-

vergence is achieved? 

For the sample sizes considered, we conclude that the efficiënt two-step 

estimator is usually preferred to the instrumental variables estimator and 

that it has properties which are very similar to those of the iterative 

Gauss-Newton estimator. 
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Comments welcome 

1. Introduction 

In recent years, several asymptotically efficiënt two-step and iterative 

estimators for dynamic models with autocorrelated errors have been 

presented in the literature. Some results on the small sample properties 

of the two-step and iterative estimation procedures arealso available. 

Among closely related Monte Carlo studies, we should like to mention the 

comparison of the finite sample properties of several estimators for the 

regression model with autoregressive errors by Rao and Griliches (1969) 

and for the Koyck (1954-) distributed lag model by Morrison (1970) and 

Dhrymes (1971). Hatanaka (1974) presents an efficiënt two-step estimator 

for a single equation dynamic adjustment model with first order autoregres

sive errors and reports results of a simulation experiment. Hendry and 

Sbra (1977)investigate the smallsample properties of instrumental variables 

estimators in a simultaneous equation framework with autoregressive errors. 

Harvey and McAvinchey (1979) compare the efficiency in small samples of 

various two-step and iterative estimation procedures for regression models 

with moving average errors. 

In this paper, we report Monte Carlo results on instrumental variables, 

efficiënt two-step and iterative Gauss-Newton estimators of a Koyck distrib

uted lag model with uncorrelated errors (model 1) and with first order 

autoregressive errors (model 2). 

Economische Faculteit, Vrije Universiteit, Amsterdam. 
The authorswish to thank H.J. Blommestein for his help in programming 
the estimation methods. They are indebted to D.F. Hendry and A.C. Harvey 
for their helpful comments on an earlier version of this paper. 
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The distributed lag model with a Koyck scheme, perhaps the most widely 

used distributed lag model, is simple in the sense that it involves a 

small number of parameters. The parameter of the lag distribution can 

often be interpreted in terms of economie behavior such as adaptive 

expectation formation or partial adjustment. Still, the problems generally 

inherent in the estimation of distributed lag models are also present 

here, so that Koyck's model is a natural candidate for a simulation study. 

In the last decade, dynamic specification analysis has received much 

attention in the econometrie literature. As the different approaches to 

specification analysis require estimates of several alternative dynamic 

specifications, possibly arranged as a uniquely ordered sequence of re-

stricted models, the demand for computionally convenient estimation meth-

ods with desirable small and large sample statistical properties has arisen. 

Usually one has to choose between consistent but inefficiënt or consis

tent and asymptotically efficiënt estimators, either iterative or not. 

The choice is usually based on criteria such as the computational costs 

involved, the small sample properties and the asymptotic efficiency. 

In order to be able to offer some guidance for empirical work, we focus 

on the small sample properties of one estimator in each of the three 

classes of estimators, i.e. Liviatan's instrumental variables estimator, 

an efficiënt two-step and an iterative Gauss-Newton estimator. The latter 

is called. a minimum chi-square estimator by Dhrymes (1971) [see also 

Dhrymes (1974)] , who shows that it becomes indistinguishable from the 

exact ML estimator in larger samples. 

In section 2, we shortly present the models and the estimation procedures. 

A more detailed presentation of the estimation methods and their large 

sample properties can be found in e.g. Dhrymes, Klein and Steiglitz (1970), 

Harvey (1978) or in Palm (1978). In section 3, we describe the experiments. 

Section 4 contains the results of the simulations. They are summarized 

using response functions. Instead of generating a large number of runs for 

each experiment, we use the technique of control variates to increase the 

precision of the outcome of the simulations. In the last section, we draw 

some final conclusions. 
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2. The models and the estimation procedures 

We analyze the geometrie distributed lag model 

or + a„ Z X x, . + u 
0 1 i=o 't-i 

t = 1, ... T, (2.1) 

where 0 < X < 1 and x is independent of the error term u , , for 

all t and t' and T is the sample size. 

We first consider the case where u is ,a white noise (model 1) with finite 
2 

variance o . Then we assume that u is generated by a first order auto-

regressive proces (model 2). 

If the u ' s are independent and normally distributed, the likelihood 

function is 

2 -T 1 T 

L (y, x, a , a , X, a ) = (\Z2ir a) exp ^ Z (y -a -a x* ) , 
0 1 l t = 1 t ü 1 t 

where the variable x is defined as 
(2.2) 

x. = .Zn X x. . = -—,T .̂ 
t 1=0 t-i 1 - XL t 

x̂  (2.3) 

for a sequence of variables x with L being the lag-operator. 

The first order conditions for a maximum of the log-likelihood function 

with respect to 3 = (an-
 a-i . ̂ ) a:C,e given by 

3 In L 
8 3 

v*' 

X u 
= 0 (2.4) 

with 
*' 

** 
ai xo 

** 
a 1x 1 

** 
ai XT-1 

(2,5) 

** 

(1-XL) 
2 xt and u = (u1

 u
2 ... uT) 

file:///Z2ir


_ 14 _ 

In the sequel we use the symbols "~" and "~" to indicate that a variable 

is evaluated at the first and the second step parameter estimates respectively. 

The first order conditiors (2.4) are nonlinear in the parameter vector g . 

We can solve them iteratively to obtain the maximum likelihood (ML) estimator. 

However, it is well-known (see e.g. Dhrymes & Taylor (1976)) that the 

following two-step estimator has the same asymptotic properties as the ML 

estimator of g 

g = ê - r_1 (g) £Jf± (2.6) 

provided 0 is a consistent estimator of g such that \/ T (g - g 0 ) , with 

gn being the true value of g 9 has some limiting distribution, and r(£) 

is a non-singular matrix such that 

plim =• r(g) 
T-»oo 

plim 
1 8 laL (gQ) 

f Tg 3 g» (2.7) 

As the log-likelihood function is proportional to u'u , maximizing the 

likelihood function is equivalent to minimizing the sum of squares u'u . 

One way to implement (2.6), such that (2.7) is satisfied, is to compute one 

step of the Gauss-Newton algorithm starting with a consistent estimate of 

g_ , (see e.g. Palm (1978)). The formula for the Gauss-Newton algorithm is 

given by 

[ju 
lag 

3u' 
3g 3g 

(2.8a) 

= g + (X*' X*) X*' u (2.8b) 

as -r̂ - = - X*1 in (2.5) . Iteration of (2.8) yields the nonlinear least 
dg 

squares estimator of g , which has the same asymptotic properties as the 

ML estimator. Whether the nonlinear least squares estimator is identical 

with a conditional or the exact ML estimator depends on the treatment of 

the initial values for the process x . Notice also that the difference 

between the two-step and the initial consistent estimator, g - g , in (2.8) 

can be computed through an ordinary least squares regression of the residuals 

u on their partial derivatives with respect to g , both evaluated at g . 

These derivatives can be computed analytically as in (2.5) or numerically 

(for numerically computed derivatives, see e.g. Harvey and McAvinchey (1979)). 

We use the analytical formula for the derivatives and compute the two-step 

estimator in (2.8) as follows: 
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Consistent parameter' estimates are obtained by Liviatan's instrumental 

variables method applied to the transformed model 

yt = oQ (1 - X) + X yt_1 + a1 Kt + vt , t = 2, ..., T (2.9) 

with v. = u. - X u. , , using x^ ., as an instrument for y_̂  . . 
t t t-1 ' & t-1 Jt-1 

The restriction 0 < X < 1 is imposed on the estimate X . 

If X lies outside the interval [.05 , .95] , it is fixed at the corres-

ponding boundary value and the parameters a and <x, are estimated in 

a regression of y - ï y on x . 

The boundary values for X were chosen after some experimentation with 

the model when X = .9 . For a boundary value very close to one and 

X = .9 , the iterative estimator of X often has a cyclical behavior. 

2 1 T 2 
The variance of u^ xs estimated by a = =—— E u,_ , with u = v_ 

t J T-4- t=2 't 2 2 

and ü. = X ü. , + v. , t= 3, .... T , where v_,_ is an instrumental 
t t-1 t t 

variables residual. 

In order to compute the two-step estimator in (2.8b) we rewrite the 

model (2.1) - after adding the same quantity to both sides of the 

equation - as 

[yt + X ax x**^ = aQ + ̂  [x*] + X [^ x*^] + ut (2.10) 

It is straightforward to see that the two-step estimator of B in (2.8b) 

can be computed by ordinary least squares applied to the equation (2.10) 

after evaluation of the quantities between brackets at the consistent 

first step estimates. 

Of course, there are many other ways to generate two-step estimators 

with the same asymptotic distribution as the ML estimator. Any matrix r 

satisfying the requirement (2.7) characterizes a two-step estimator, which 

is asymptotically equivalent to the ML estimator. For example the 

estimators proposed by Hannan (1965) and by Steiglitz, and McBride (1965) 

have this property. The small sample'properties of these estimators and 

of Liviatan's instrumental variables estimator for model 1 have been 

investigated by Morrison (1970). 

We compute the two-step estimator of $ in an OLS-regression of equation 

(2.10) for t = 2, ... T . The variables involved in the regressand 

and in the regressors of (2.10) are computed as 

x* = x^ + X x̂_ . and xT = xT + X x^ . t t t-1 t t .t-1 
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with x* and x** being set equal to the sample mean of x and x* 

respectively, divided by 1 - X (the process x. is stationary) . 

The estimate X has to lie inside the interval [.05 , .95] . 9therwise 

and a„ are it is fixed at the corresponding boundary value and a 

xJ 

0 "1 
Finally, the variance of u estimated in a regression of y on 

is estimated as in step 1 but using the residuals of step 2 . When iterating 

the Gauss-Newton algorithm, we reestimate equation (2.10) by 0LS after 

evaluation of the regressand and regressors between the brackets at the 

parameter estimates of the preceding step. The algorithm stops when 

convergence is achieved, i.e. the change in the estimates of a.. and X 

is smaller than .001 , when the number of iterations is 100 or when the 

restriction on X is violated for the second time. 

In model 2 , the disturbances u 

sive process 

p ut-l + et 

with !p i < 1 , p t X and e 
2 

noise process wxth varxance a 
Equation (2.1) can be written as 

are generated by a first order autoregres-

(2.11) 

being a normally distributed white 

yt - p yt-i = a o ( 1 - p ) + a i ( x * - p ^ + e i 
(2.12) 

and the two-step Gauss-Newton estimator for 9 = (a. , a. X p)' is given 

9 - 90 39 

-1 

30 
(2.13) 

0 = 0 

9e where 0 is an initial consistent estimator of 0 , -̂ r is the matrix 

of partial derivatives of the disturbance e with respect to the elements 

in 0 

(2.14) 

' l - P B a * 1 ~ P 

8e 
* x 1 - p * 

xo 
^ m ~ P ^rn i 

30 
a i ( x o - p X - l } a l T - l ~ P X T - 2 

.uo • * • U T - 1 

and e = (e. eT)' is the vector of disturbances. 
'1' 2 " 

The second right-hand-side term of (2.13) is evaluated at the" consistent 

estimates 0 . The two-step estimator presented in (2.13) has the same 

asymptotic properties as the ML estimator, provided the requirements in 

(2.6) and (2.7) are satisfied. If we iterate the estimator (2.13) until 

convergence, we get the conditional ML estimator. 
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We compute the two-step estimator (2.13) as follows. 

1. As for model 1, we estimate the parameters a , a and X consistently 

by instrumental variables applied to the transformed model (2.9) using 

x 1 as an instrument for y , and checking the restriction on X. 

Then we compute ü = v + X u , , . t = 3, ... T , ÜV = v , 

T T Jl 
p = I ü\ iï. 1 / Z ü. and 

t=3 t t-1 t=2 t 

Jl 1 T ,2 

° =
 T^T t5 3

 et ' 
where ê. = ü. - p ü. , . 

t t t-1 

2. Using expressions (2.12) and (2.14-), it is straightforward to show 

that the two-step estimator in (2.13) can be computed by OLS applied 

to the following equation (which is obtained through adding the same 

terms to both sides of equation (2.12)) 

Eyt " p yt-l + X al(xt-l - p Xt-2) + P Ut-13 = 

= aQ [1- p] + a± [xt - p xt_1.l +
 xta1(xt*1 - p x**2)] + 

+ P tu 3_3 + e , t = 3, ... T , (2.15) 

after evaluation of the regressand and the regressors between brackets 

, at consistent parameter estimator along the lines adopted for model 1. 
» 

The restriction .05 <ï X <: .95 is also imposed in a similar way. 

The runs, for which the restriction |p| <_ 1 is not satisfied, are 

disregarded. 

The latter restriction has been satisfied in most cases, although we 

do not use a block-diagonal matrix r in the two-step and iterative 

estimation procedure (for more details see e.g. Palm (1978)). When 

iterating the Gauss-Newton estimator for model 2, the algorithm stops 

if the change in the estimates of a1 , X and p is smaller than .001 

or when the number of iterations is equal to 100. It also stops when 

the restriction on X is violated for the second time. 

Finally, notice that for both models we ignore the first observations. 

Whether this affects the conclusions about the finite s,ample properties, 

as has been found by Beach and MacKinnon (1978) for a linear regression 

model with autoregressive errors, has not been investigated. 



3. The design of the experiments 

The complete model used to generate the data is defined by the following 

y = an + a, I X x, . + u. , 0 < X < 1 (3.1a) 
t 0 1 j_ = Q t-1 t 

u t = p u t_ 1 + et , p t X , lp 1 < 1 (3.1b) 

e * IN (0, ö2) V t , (3.1c) 

Xt = Y Xt-1 + \ ' ° < Y < X ' (3-ld) 

i\. * IN (0, 10) V t , (3.1e) 
t 

e and n , are independent for all t and t' . 

The following parameter values are considered 

a = 50 , a = .9 

X € {.3 , .6 , .9} , 

p G {-.85 ,-.5 , 0 , .5 , .85} 

y £ {0 , .7 , .95} 

a € {5,10} • 

These values cover the range of plausible values for the parameters and for 
2 

the theoretical R . The sample size T is equal to 30 and 60. The process for 

x is stationary and satisfies the Grenander conditions. For y = -95 , the 

spectrum for x approximately has the "typical shape of the spectrum of an 

economie variable". Using a trending x would imply a standardisation of the 

asymptotic distribution of the parameter estimate, which is different from \/T . 

Random samples of size 40 + T are generated from a uniform distribution. 

They are transformed into e and n according to (3.1c) and (3.1e) using 

the probability integral theorem. The random variables u and x are 
1 

generated according to (3.1b) and (3.ld) respectively, with u = e.. V s-
j - ./ 1 1 -P 

and x - n1 V ^ ' 
1-Y 

Then, for a given set of parameter a , a and X , sixty independent samples 

of size 40 + T for the variable y are generated using the model (3.1a), 

with x = 0 for t <̂ '0 . In order to guarantee the independence of y from 

the initial values of x , only the last T . observations are used in the 

simulation study. As an alternative, we could have generated y using its 

marginal density function implied by model (3.1) and the y's t = l , ... , T 

using equation (2.9). 
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4. The results of the simulations 

For each of the sixty independent runs of an experiment, we estimate the 

parameters using Liviatan's instrumental variables (IV) method, the two-step 

(2S) and the iterative Gauss-Newton (IGN) estimation procedure as described 

in section 2. We compute and analyse the simulation mean and Standard errors 

(SE) for these estimators. We do not investigate the existence of finite sample 

moments of the estimators. Rather we are interested in the relationships 

between simulation mean and SE's and the characteristics of the experiments. 

We model these relationship in response function equations and estimate them 

by OLS. 

Furthermore, we focus our analysis on the appropriateness of large sample 

theory for finite sample situations. Possibly, the use of restricted estimators 

guarantees the existence of their finite sample moments. 

In order to reduce the variance of the simulation results, we apply the technique 

of control variates (CV) to the outcome of the experiments (see e.g. Mikhail 

(1972, 1975)). For a more detailed description of this variance reduction tech

nique, the reader is referred to e.g. Hendry and Srba (1977) and the references 

therein. In short, the basic idea can be presented as follows. Suppose that we 

want to simulate the finite sample mean (assumed to exist) of an estimator 0 

of the parameter 0 . We can compute the sample mean of the outcome 0. of m 

independent runs 

Z i m -. 
0 = - I 0. . • (4.1) 

m j=i 3 

Consider now an alternative estimator 0 with known mean E (0 ) . Then, the 

quantity 9 = 9 - 9 +E(0) will have the same expectation as 0 . lts variance 

var (0) = var (0) + var (0°) - 2 cov (0 ,9°) (4-.2) 

will be smaller than the variance of 9 , provided 

2 cov (0,0°) > var (0°) . (4.3), 

The technique of CV's consists in choosing an estimator 0 (called CV) with 

known mean and satisfying (4.3) and to use 0 mstead of 0 as an estimator 

of the unknown expectation of 0 . In order to assure a high positive corre-

lation between 9 and 0 , we derive the control variate 0 from the 

asymptotic distribution of 0 . We choose 0 such that it has as finite 

sample distribution the large sample distribution of 0 , 
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For the IV estimator of 0 = (g' .. p)' in model 2, 

with 

HIV 

Z' 

= (Z'X) Z'y , 
'IV ^ l 0 - ! * u-l U 

1 

x„ x T-l 
X2 X3 

0-i.'i ) 

T-l 

and u 1 = (u .. u_ _,.... u_, 1 ) being the matrices of instruments and regres 

and the vector of lagged residuals respectively, the CV's are given by 

3°y = E-1(Z«X) Z'y (4.5a) 

and 

PIV = E (u^ u^) u ^ u-
(T-l) o 

Tj- ( U ^ U) (4.5b) 

The control variate 3TV has as expectation B and as distribution the 

asymptotic distribution of 3TV 

\/T (g 
IV 

:) ~ N (o , nIV) (4.6) 

with ü = T E_1(Z'X) E(Z'VZ) E-1(X'Z) , where V is the covariance 

matrix of the vector v = (v v v )• . 
1 — XL 

The vector v is generated by an ARMA (1 , 1)-model v = -= =- e 
t 1 — pij t 

autocovariances given by 

with 

E (v2j = L±± 2 p X 2 

E ( v t V i } 
( 1 - pX) (p - X) 2 

, 2 
1 - p 

( 4 . 7 ) 

E (v. v. .) = p E (v. v. . . ) t t - j t t - j + 1 
2 , 3 , . . . 

The control variate p is centered at p and has as distribution the 

asymptotic distribution of p 

VT (p 
IV 

IV 

p) ~ N (0 ,1 - p2) (4.8) 

Notice that p and 3T„ are independent in large samples. 

The CV's given in (4.5) are expected to be almost perfectly correlated with 

the IV estimates in large samples. As the two-step and the iterative estimator 

have the same asymptotic distribution, we use the same CV's 

0 
2S 

0 IGN = E _ 1 ( p , p ) p , y . (4.9) 
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where P' = - -̂ r defined in (2.14-) but for t = 3, ... T , so that it is 

of order 4 x T-2 . 

The mean of the control variates , E (0OC) is equal to the true parameter 

values. The finite sample distribution of 0„ is the same as the large sample 

distribution of the 2S-estimator 

A o _i 
\fl (02S - 0) ~ N (0 , o T E (P'P)) . (4.10) 

The matrix E(P'P) will be given in the appendix. 

The CV's for model 1 are easily obtained from (4.5) and (4.9) by setting p = 0 

and deleting the last column of P . 

In the tables 1-3 , we report the results of 12 experiments in detail. The 

values of the parameters and the sample size in these experiments are close 

to those often encountered in empirical econometrie wo'rk. 

In the columns 2, 7 and 13 of the tables 1 - 3 , the simulation mean (M) for 

the IV, 2S and IGN estimators respectively of a parameter 0. is given 

Z. i m „ 

0. = - I 0.. , (4.11) 
ï m j=i ï] ' 

where m = 60 minus the number of times convergence is not achieved at step 100 or 

the restrictions on X and/or p are not satisfied. 

In columns 3, 8 and 14 9 the simulation Standard errors (SSE) for the estimators 

are computed as 

-V z (0.. - e.r 
[m-l i=i x] ï 

(4.12) 

In columns 4 and 9 , the .mean of the control variates for the IV and 2S estimator 

resp. (MCV) is given by 

-o i m 

0. = - .1, 9.. . (4.13) 
ï . m ]=1 x] 

In columns 5 and 10 , the Standard deviation of the control variates (SDCV) 

are computed as 

r ^ 1 ( 0?. - ë?)
2f • (4.14) 

[m-1 j=l 13 i J 

In columns 11 and 15 , the square root of the mean of the variances of the 

estimators computed from the conventional formula for the estimated Standard 

errors (ESE) is computed as 
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2 ~ " -1 
where DE., is the i-th diagonal element of 5. [P'. P.] for run j, with 

3. and P. being evaluated at the 2S and iterated estimates respectively. 

For the IV estimator, the appropriate formula ÜJV for the estimated variance 

of 3 I V is given"in (4.6), with the moments replaced by their sample 

equivalents. As the formula is almost never used in empirical work, we have 

not computed ESE's for the IV estimator. 

In columns 6 and 12 , the asymptotic Standard errors (ASE) are equal to the 

square root of the i-th diagonal element of the covariance matrices in (4.6) 

and (4.10) divided by T. The reader can easily obtain a CV estimate of the 

finite sample bias of the IV estimator [2S , IGN] by substracting column 4 

[9,9] from column 2 [7 , 13] . Similarly, a CV estimate of the variance of 

the IV estimator [2S , IGN] can be obtained by substracting the square of an 

element in column 5 [10 ,10] from that of the corresponding element in column 

3 [8 , 14] and adding that of the asymptotic Standard errors in column 6 [12 , 12]." 

Although a CV estimate of the variance is sometimesgreater than the simulation 

variance, it is a more efficiënt estimate of the unknown variance. Notice also 

that for most of the experiments, the SSE's are closer to the ASE's than the 

ESE's. The variance of the estimates of an is high and usually differs sub-

stantially from its asymptotic value. In those cases, the results for o are 

not very satisfactory either. Whether this is an indication of the non-existence 

of finite sample moments of the estimators or of possible multicollinearity 

has not been investigated. The bias of the 2S estimator of a_ , for p t 0 

and T = 40 ., is much greater than that of the IV or IGN estimator. Although 

we do not report additional results for the parameter a , we should mention 

that they are not always satisfactory. In general, the results for the parameters 

a , X and p are satisfactory. The bias and the SE's of the 2S and IGN 

estimators for these parameters are very similar. The results in the tables do 

not indicate a dominance of IGN on the 2S estimator. For the 2S and IGN estimator 

in model 1, the SSE's are usually smaller than the ESE's. For model 2, both 

are fairly good - especially when T = 60 - , except for the parameter A , 

for which the SSE is closer to the ASE than the ESE. The results in the tables 

1-3 should give an overall picture of the finite sample properties of the 

three estimators considered. Still, they should not be carried over straight-

forwardly to other experiments. 

Next, in order to give an impression of the gain in precision when using CV 

estimates for the mean of an estimator, we report in table 4 the ratio of the 

simulation variance over the CV variance for several selected experiments, i.e. 
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m - Z o 
i (e.. - e..) 

RVar = 3-J: ± _ . (4.1b) 

f Ce.. -©?. - 3.. + ë?.)2 

j=l 13 13 13 13 

Except for high values of X , there is usually a substantial reduction in 

the variance of the CV estimates, indicating that (4.3) is satisfied. When 

RVar = 2 , the gain in efficiency from the use of CV's is equal to that of 

doubling the number of runs. The response functions given in the tables 5-11 

summarize the properties of the estimators for the experiments described in 

section 3. The tables 5-7. correspond to model 1. The response functions in 

tables 8 - 1 1 belong to model 2. 

The response functions (RF) are estimated using 36 experiments for model 1 and 

144 experiments for model 2;. In each experiment the sixty independent samples for 

e and n are reused, limiting thereby the computional costs at the price of 

sbme dependence. However under ergodicity, the results are not seriously affected. 

The functional form of response function is chosen after a detailed analysis 

of: the plots of the outcome of the experiments as a function of the parameter 

values and the sample size T (see e.g. Figures 1-2). Thereby the results of 

the experiments were grouped according to the values of some parameters and 

the sample size. 

We always impose the restriction on the RF specification that it should yield 

the asymptotic result for large values of T. As a dependent variable in the 

RF's for the bias, we use the Standardized variable 

Vm (G. - 6.) 
B = i — (4.17 ) 
i ASE. vt.-L/-» 

1 . 

for the simulation bias, and 

\/m (0. - 0?) 
B C V i = ASE. 1 ' (4-18) 

1 

for the CV bias, where m is equal to the number of runs for which the restricted 

IGN estimator has converged. 

Usually m = 60 , but for values of X and y close to one, m migth be 

reduced to 40 . Notice that the RF's for the IV and 2S estimator are estimated 

from the results of the runs for which the IGN has converged. 
The asymptotic distribution of the variable in (4.17) is N(0 , 1) . A log-linear 

relationship between the SE's and the estimated residual variance and their 
2 

asymptotic values (ASE and a ) is used. Additional terms depending on the 

remaining parameters and on T are needed in the specification in order to 

explain the variation of the SE's and the estimated residual variance over the 



- 14 -

experiments. Through the log-linear specification, we hope to achieve 

homoscedasticity (see e.g. Rao (1952)). For the 2S and the IGN estimator, 

the RF's of the SSE's and the ESE's are very similar. As the ESE's are more 

relevant to the empirical econometrician, we report RF's for them only. 

For the IV estimator, the RF's are estimated from the SSE-data. The CV 

estimates of the SE's are computed as 

SECV = [SSE2 - SDCV2 + ASE2]2 (4.19a) 

for the IV estimator, and 

SECV = [ESE2 - SDCV2 + ASE2]5 (4.19b) 

for the 2S and IGN estimator. 

Usually the same specification for the RF's is retained whether direct simula-

tion estimates or CV estimates are to be explained. 

In the tables, the figures between brackets are Standard errors. An explanatory 

variable written as (x > c) takes the value 1 if x is larger than c and the 

value zero otherwise. 

The RF's reported in the tables 5-11 have been used to predict the outcome 

of the independent experiments. In the tables 5 -11 , we give the value of 

1 2 

i (o. . - p . . r j = i i: i] 
Q.(l) = ^Zi , (4.20) 
1 sf 

1 

where 1 is the number of independent experiments to be predicted, 0.. is the standardized outcome of experiment j for the parameter i, P.. is the 
2 """-1 

prediction from the response function and S. is the residual variance of 
the RF. Under the assumption that the RF is correctly specified and known, 

2 1) 

Q.(l) is approximately x -distributed with 1 degrees of freedom. 

Alternatively, we also use the asymptotic N(0 , 1) distribution to predict the 

standardized outcome of an experiment. Under the assumption that the large 

sample distribution theory holds true for finite samples, 
QA.(1) ^ . ^ O 2 . (4.21) 

2 

is approximately x -distributed with 1 degrees of freedom. Notice that the 

standardized CV estimates computed from (4.18) have a large sample variance, 

which is smaller than 1. Therefore the Q.. for the CV -estimates should be 

rescaled in order to obtain a test-statistic which is approximately x ~ 

distributed with 1 degrees of freedom. 

1) This is not necessarily true for the predictions of the second order moments, 
as we use log-linear relationships. 
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The Q.'s and Q.-'s , for 1 equal to 4- and 8, are computed from the 
1 ri.2-

independent experiments given in the tables 1-3. As the outcome of the experi-

ments for negative values of p exhibits great variability, we predict two 
2 

additional independent experiments for p = -.6 , y - .95 , X = .9 , o =10 
2 

and T = 4-0 and 60 . The x -values for these experiments are given in column 9 
2) 

and 10 of the tables 8-11. 

We shall now briefly draw some conclusions from" the results in the tables 

5-11. This should not dispense the reader from having a close look at the 

results themselves. Except for the standardized bias of the IV estimator, the 

form and the parameter values of "éhe RF's for B. and BCV. are very similar. 

The residual Standard deviation in the response functions for the bias decreases 

when the CV estimates are used. This does not happen for the RF's of the SE's. 

From the functional form of the response functions, it should be obvious that 

values of X and y close to the unit circle, of p close to -1 or a sample 

size T close to 30 heavily affect the finite sample properties of the three 

estimators considered in this paper. A similar conclusion has been drawn by Y> 

Morrison (1970) for the small sample properties of Liviatan's IV estimator, 

a time domain version of Hannan's (.1965) two-step estimator and of the 

iterative Steiglitz and McBride (1965) estimator in a geometrie distributed 

lag model with uncorrelated errors. 

The predictive power of the response functions is quite reasonable as is 

indicated by the values of the Q.(l) 's . The RF for the bias of the IV 

estimator does not predict very well. The predictive performance of the large 

sample distribution theory in small sample situations is much less satisfactory. 
2 

In comparison with estimated residual variance S. of the RF's , a large 

sample unit variance for the outcome of the experiments seems to be too small. 

This conclusion is not modified, if we predict the four experiments for T = 60 

separately using the large sample N(0 ,1) model. Notice also that the large 

sample theory implies testable restrictions for the response functions. For 

example, the coëfficiënt of In ASE should not be significantly different 

from one, while those of the remaining explanatory variables in the response 
2 

functions for the SE's or for 5 should not be significantly different from 

zero. This is not always confirmed by our analysis. 

A major conclusion from the tables 5-11 is that the results for 2S and IGN 

are very similar, suggesting that for a sample of size T ï> 30 , the applied 

econometrician can do without iterative estimation for the geometrie distributed 

lag model. 
2 

2) The asterisk in the tables indicates that the x -test is based on 1-1 and 1-2 
predictions for model 1 and 2 respectively. For the excluded runs, the 
outcome for the CV estimate of the variance were negative. A negative R 
as in table 8 can occur in models without constant term. In order to mak e the 
response functions compatible with the asymptotic theory, we do not include a 

constant 
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5. Some final conclusions 

In this paper we have investigated the finite sample behavior of three 

estimators for the geometrie distributed lag model using Monte Carlo experi-

ments. We have tried to increase the precision of the outcome of the 

experiments through the use of control variates derived from the asymptotic 

distribution of the estimators. While the CV's yield a reduction of the 

variance of the results, the form and the point estimates of the KF's for the 

CV estimates of the bias and SE's are quite similar to those for the direct 

simulation results. Certainly, the gain in precision is lower than the increase 

in precision obtained by e.g. Hendry and Srba (1977). However, a major 

difference between their models and ours is the nonlinearity in the parameter 

X of our model. 

An important conclusion from our study is that the small sample (T ï> 30) 

properties of the two-step and of the iterative Gauss-Newton estimator are 

very similar, suggesting that it will in general be sufficiënt to compute an 

efficiënt two-step estimator. 

Our results do not give much evidence about the possible non-existence of 

finite sample moments of the three estimators that we have considered. Perhaps 

the restrictions imposed on \ and p assure the existence of moments in 

finite samples. Possibly, we obtained good estimates of the Nagar approxima-

tions to the moments (see Sargan (1978)). Finally, as the response functions 

presented in this paper yield the asymptotic result for large T , they enable 

us to answer questions such as "What is a large sample?" , "How large is large?" . 

That the answer to these questions depends on the true parameter values (or 

what one might think as being the true parameter values) should be obvious. 
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Appendix 

We shall give the elements of the matrix E (P'P) = A as functions of the 

parameters of the model (3.1). Summation goes from t = 3 to T. 

Denoting the i,j th element of the symmetrie matrix A by a.. , we have 

a u = (T-2) (1-p) 

3 

2 

a12 = E [I (x* - P**_±) (1-p)] 

al3 = ° 

a22 = E [I (x* - PX*_X)
2] = (T-2)[(l+p2) E (x*2)) - 2p E (x*x*_j_)] 

a23 = E [I (̂ (x* - PX*-;L) (x*fx - px**2)] 

= (T-2) a. [(1+p2) E (x* x**) - p E (x* x**) - p E (x* x** )] 

1 t t-1 t t t t-2 

a21+ = E [I (x* - px*^) ut_x] = 0 

a33 = E [a2 I (x*^ - px**2)
2] 

. = (T-2) a2 [(1+p2) E (x**2) - 2 p E (x** x*^)] 

a^ , E [c^Z (x*^ - Px*!2)ut_x] 

= 0 
a - r f l u 2 1 - ( T - 2 ) g 2 

V - E L I U t - l J - , 2 
1-p 

Next we must express the second order moment of x* and x** as functions 

2 t t 

of the parameters A s y andJ a . Notice that x* and x** are genera-

ted by a second and third order autoregressive process respectively 

with mean zero 

x* = (i-^)a-yD \ > *** = (1_XL)2(1_YL) \ • 

The variance of the AR(2) process x is given by 

. • er2 (1 + y\) 

E (xf) " n 

* 1 + (YA)
2 - y\ - Y 2 - A2 + Y

3A + YA3 - (YA) 3 

The first order autocovariance is 

o2 (y + A)/ 
E (x* x* ) " n 

1 + (YA) - yA - Y *"A + Y A + Y A - (YA) 
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The var iance of x** i s 

2 

E (x**2) = n 

t 1 - ^ P l - i>2 p2 - ^ p 3 

with ty = y + 2X 

* 2 = - (X2 + 2YX) 

, - ,2 
* 3 - A Y 

»i h r-^i+ h h + *2 - 4 i 
P l " 1 - *2

 + 1 - 4-2 L 1 " *2 " V * i + V -I 
2 2 

*1 + \ 3̂ + *2 " ^2 
P2 = 1 - *2 - ^ ( ' ^ + f 3 ) 

P 3 = ^ P 2 + <J>2
 p l + ^3 

The f i r s t order autocovariance of x** i s 

E (x** x**±) = p 1 E (x**2) 

The cross-covariances are 

Bl B2 
E (x* x**) = i-s- + 

t t 1 - X2 1 - YA 

a2 X (1 - Y 2 ) 

where B 
1 (X - Y)[l + (YX)

2 - YX - Y
2 - X2 + Y

3X + YX3 - (YX) 3] 

- B Y (1 - Y2) 
B = è _ -
2 X (1 - Y ) 

B1 X B Y 
E (X* X**, ) = ;r + 

't t-1' i - x2 1 " YX 

2 2 
B X B Y 

E (x* x** ) - • ^ 't t-2' i - x2 1 - XY 

Finally notice that the matrix E (Z'X) for the control variates of 

the IV estimator is obtained in a similar way. 
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As the ASE's for p for the IV and the 2S-estimators are divided by the numbêr 
used in the estimation, T-l and T-2 respectively , the ASE's for the 2S-estimat 
than those for the IV estimator. 
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Table 4. Efficiency Gains for the Bias through the Use of Control 
Variates,. defined as the Ratio of Variances in (4.16). 

(y = -95 , a2 = 10) 

p X T 0. 
1 

IV 2S IGN 

0 .3 30 °1 5.12 4.48 4.19 

30 X 5.60 2.89 2.99 

60 
1 

8.99 5.48 5.85 

60 X 9.16 4.52 4.96 

.9 30 al 
3.92 1.01 1.01 

30 X 2.08 • 1.00 1.00 

60 al 
3.97 1.00 1.00 

60 X 3.54 .99 .99 

.5 .3 30 a l 3.13 3.78 3.71 

30 X 2.05 1.47 1.49 

30 p 1.56 2.71 2.64 

60 a l 6.3 0 6.87 6.55 

60 X 6.50 6.05 5.39 

60 p 2.81 4.01 2.75 

.9 30 a l 
3.79 1.01 1.02 

30 X 2.13 1.00 1.02 

30 p 1.06 1.15 .76 

60 OU 

1 
4.12 1.02 1.01 

' - 60 X 2.87 .96 .99 

60 P .89' 1.22 .98 

.85 .3 30 al 
1.45 3.24 3.30 

30 X 1.01 1.41 1.73 

30 p .87 1.38 1.38 

60 a l 2.52 4.65 4.71 

60 X 3.45 2.75 2.86 

60 p 1.78 2.82 2.82 

.9 30 
?1 

2.91 1.10 1.11 

30 X 2.09 .94 .93 

30 p .64 1.03 1.02 

60 a l 3.95 1.15 1.07 

60 X 2.77 1.04 1.02 

! 
i 
* 

60 p .66 1.47 1.06 



Table 5 . Response Functions for a in Model 1 

Estiiriai'or Dep. 
Variable Response Function 

R2 

IV B -JL [- 11.10 + 10.25 X + 1.37 a2] 
V (3.03) (3.09) (3.30) 

.500 

2S B 4 [- 4.90 
Vi (13.46) 

.860 

IGN B 
Vi (18.96) 

i ii n ° ^ 1 .820 IGN B 
Vi (18.96) < ! « ; > < i - » « i - T > ] 

.820 

IV BCV 4 t 1-0.94 
V1 (1.46) 

- 1.65 X - .75 a2] 
(1.49) (.15) 

.460 

2S BCV w [- 6-51 
Vi (13.18) 

l 3-3 Xy 1 

( ! 2 2 ) ^ ^ ] 
.864 

IGN BCV 
V (18.66) + (!32) ^ - ^ ^ 3 

.824 

IV In SSE .93 In ASE 
(.018) 

1 rt2 1 
+ 29.82 i - 2.75 ~ - 20.08 ± 
(2.99) (.23) (2.19) 

.883 

2S In SE .886 In ASE 
(.019) 

- .217 (~~) + 69.06 
(.125) W y (6.32) 

(X > .7)(XY)
2 

T 
.636 

IGN In SE .890 In ASE 
(.215) 

- .211 C ~ j ) + 67.65 
(.14) W y (7.3) 

(X > .7)(XY)
2 

T 
.505 

IV In SSE CV .98 In ASE 
(.014) 

+ 7.30 i - 9.44 A 
(1.72) (1.94) 

.970 

2S In SE CV .89 In ASE 
(.020) 

- .20 (~g-) + 69.90 
(.14) i_/y (6.94) 

(X > .7)(XY)
2 

T 
.622 

IGN In SE CV .89 'In ASE 
(.022) 

- .20 (~~) + 68.90 
(.15) W y (7.67) 

(X > .7)(Xy)2 

ï 
.518 



Table 6. Response Functions for A in Model 1 

E s t i m a t o r Dep. 
V a r i a b l e 

Response F u n c t i o n R2 D 

IV B - 4 [ 29.93 - 2.48 (—•) - 2 . 51 o2] 
V ( 3 . 7 4 ) ( . 2 0 ) ( . 4 4 ) 

.760 

2S B -4 [ 18.70 - 2.46 n . ^ L ^ J 
^ ( 1 4 . 4 7 ) ( . 2 4 8 ) U A K 1 - ^ - > 

.747 

IGN B W [ 1 4 - 1 7 " 3 ' 1 8 7TTT?TTT] 

V T ( 8 . 8 7 ) ( . 1 5 2 ) d - A ^ l - Y ) 

.928 

IV BCV - 4 [ 5.60 - 1.60 (—-) - .18 a 2 ] 
V i ( 1 . 8 9 ) ( . 1 5 ) X ( . 2 2 ) 

.790 

2S BCV w [cil!:S," (?iï? <-><^> ! .741 

IGN BCV * cd:,1," <!£ <i-»<ï->] .929 

IV In SE 
1 A r r 2 

.86 I n ASE + 13 .14 (±) - 10 .04 ( £ ) - 2 .27 — 
( . 0 3 8 ) ( 7 . 2 8 ) ( 6 . 1 5 ) ( . 6 3 ) 

.710 

2S In SE 
2 

- .413 ( - ~ ~ - ) + .799 I n ASE + 69 .73 „U > .'?)(.Xy)m_ 
( . 2 3 2 ) ( . 0 2 6 ) ( 1 2 . 8 4 ) X 

.721 

IGN In SE 
2 

- .211 ( - — • ) + .890 I n ASE + 67 .64 ( A > • 7 ) ( A y ) 

( . 1 4 4 ) ( . 0 2 2 ) ( 7 . 3 0 ) 
.505 

IV In SSECV .91 In ASE - 5.67 ( 4 + 3 .99 (£•) 
( . 0 2 7 ) ( 3 . 5 3 ) ( 4 . 5 8 ) 

.•90 1 

2S I n SE CV - . 4 5 ( 1 _ X ) + .80 I n ASE + 70 .08 <* > .-JX *Y> 
( 1 . 2 3 ) ( . 0 2 7 ) ( 1 3 . 1 2 ) 

.710 1 

IGN I n SE CV 
2 

- . 3 2 ( 1 _ X ) + .83 I n ASE + 81.67 < * > - 7 ) U Y > 

( . 1 9 ) ( . 0 2 2 ) ( 1 0 . 5 4 ) 
.817 



TabIe 7. Response Functions for o in Model 1 

Estimator Dep. 
Variable 

Response Function R2 

IV In 0 
4 

1.15 In a2 + 24.98 (h - 17.37 i + 44.7 &-
(.074) (10.85) (7.83) (12.13) 

.704 

2S -2 

In a 
1.19 In ö2 - 10.74 J + 102.64 (X>

 ^ ) ( A Y ) 

(.105) (8.07) (11.46) 
.726 

IGN ~2 
In o 1.18 in O2 - 10.77 * + 98.26 ' ( X > V ^ ^ . 

(.105) (8.06) . (11.45) 
.711 



Tablë 8. Response Functions for a in Model 2 

E s t i m a t o r Dep. 
V a r i a b l e 

Response F u n c t i o n R2 DD.W. S. 
1 

IV B - 4 [ .4-4- o2 - 2 .36 X + .13 p + 9 .68 \2y] 
V 1 ( . 1 1 ) ( 1 . 6 7 ) ( . 5 8 ) ( 1 . 8 9 ) 

.27 1.39 .76 

2S B - 4 [ -46 .2 + 95 .37 X2p. + 198.33 X 3 ( l - p ) ( l + Y 2 ) ] 
V ( 1 1 . 2 5 ) ( 3 0 . 3 7 ) ( 1 6 . 6 3 ) 

.573 1.40 15 .20 

IGN B ~ [ -55 .75 + 119 .24 X2p + 268 .82 X 3 ( l - p ) ( l + Y 2 ) ] 
V ( 1 5 . 2 0 ) ( 4 1 . 0 4 ) ( 2 2 . 4 9 ) 

.576 1 .09 20 .54 

IV BCV -4- [ .08 O2 + 1.37 X + 2 .84 p + 3 .44 X2
Y ] 

V ( . 0 6 ) ( . 9 4 ) ( . 3 2 ) ( 1 . 0 6 ) 
.32 1.19 .43 

2S BCV - i r [ -43 .29 + 1 1 7 . 6 9 X 2 Y+132 .67 X 3 ( l - p ) ( 1 + Y
2 ) ] 

V ( 1 0 . 9 1 ) ( 3 8 . 1 1 ) ( 1 5 . 3 4 ) 
.564 1.40 1 5 . 3 1 

IGN BCV - 4 [ -53 .73 + 1 6 1 . 3 1 X2Y + 183 .84 X3 ( l - p ) ( l + Y 2 ) ] 
V ( 1 4 . 6 4 ) ( 5 1 . 1 4 ) ( 2 0 . 5 8 ) 

.574 1 .11 20 .54 

IV I n SSE 
, 2 , 2 

- 38 .80 ( i ) + .63 I n ASE + 25 .15 (1"^ ' - 1.18 %^ 
( 2 . 1 2 ) ' ( . 0 3 3 ) ( 5 . 7 6 ) ( . 5 4 ) 

- . 4 4 2 .46 .41 

2S I n SE 
3 2 

- . 2 4 7 ( * „ ) + .891 I n ASE + 36 .47 X ( 1 - p ) ( 1 + Y > , 
( . 0 4 2 ) X ^ ( . 0 1 3 ) ( 1 . 5 2 ) l 

.419 2 .13 .27 

IGN I n SE 
3 2 

- . 1 9 6 i-^—r) + -923 I n ASE + 28 .42 X ^ - P ^ 1 * ? } 

( . 0 4 3 ) 1 _ / y ( . 0 1 2 ) ( 1 . 4 6 ) 
;563 1.18 .26 

IV I n SSECV .43 ( i ) + .97 I n ASE 
( . 4 2 ) ( . 0 6 9 ) 

.99 1.44 .09 

2S I n SECV - . 2 3 ( 1 ) + .89 I n ASE + 3 6 . 5 4 X ( 1 - P ^ 1 + Y } 

( . 0 4 3 ) ( . 0 1 3 ) ( 1 . 5 5 ) 
.447 2 .13 .27 

IGN I n SECV 
3 2 

- . 1 9 ( „ , * ) + .92 I n ASE + 28 .70 X <+-P>(1 +Y > 
( . 4 1 ) : ^ ( . 0 1 3 ) ( 1 . 5 0 ) l 

.576 1 .21 .27 



Table 9. Response Functions for X in Model 2 

Estimator 
Dep. 
Variable Response Function R2 D.W. S± 

IV B i [ .16 O2 - .96 X + 1.71 p - 13.90 X2y] 
V (.11) (3.45) (1.19) (3.91) 

.20 .74 1.57 

2S B i [29.99 - 184.82 X3 (l-p)(l+Y
2)3 

V (22.56) (27.89) 
.247 2.39 34.66 

IGN B -4r [52.70 - 271.47 X3 (l-p)(l+Y
2)3 

V (19.76) (24.44) 
.470 1.69 30.37 

IV BCV i [ .48 CT2- 9.76 X - 2.22 p - 2.14 X2y ] 
V (.11) (1.52) (.53) (1.73) 

.43 1.90 .69 

2S BCV -ir [28.10 - 181.29 X3 (l-pKl+y2)] 
V (22.60) (27.95) 

.240 2.40 37.72 

IGN BCV i [50.82 - 267.93 X3 (l-p)(l+Y
2)] 

V (19.85) (24.56) 
.461 1.70 30.51 

IV In SE 
2 2 

- 31.32 (h + .69 In ASE - 1.82 ̂ _ + 23.72 (-1~® ) 

(6.19) (.033) (.62) (6.54) 
.150 2.15 .47 

2S In SE 
3 2 

- .255 (*„) + .848 In ASE + 45.99 X (1-p)(1+Y .) 
(.057) l~Z (.014) (2.29) 

.659 2.06 .37 

IGN In SE 
3 2 

- .140 (TT4Q-) + -888 In ASE + 37.07 X (1-P>(1+Y ) 
(.051) W y (.013) (2.07) T 

.810 1.11 .34 

IV In SECV - 3.20 (i) + .93 In ASE + .45 (T<30)( X>.7)(y> .7) 
(.91) (.012) (.07) 

.970 1.66 .19 

2S In SECV - .27 (/- ) + .85 In ASE + 46.27 *3<1-P)<1+Y2> 
(.058) i_^y (.014) (2.32) 

.661 2.00 .38 

IGN In SECV - .15 (/ ) + .89 in ASE + 37.31 ^ ( 1 ' P } ( 1 ^ 2 ) 

(.052) (.013) (2.09) 
.810 1.08 .34 



Table 10. Response Functions for p in Model 2 

E s t i r a a t o r 
Dep. 
V a r i a b l e 

Response F u n c t i o n R2 D.W. S. 
1 

IV B - 4 [ 6 .56 - 1 0 5 . 5 1 p + 109 .54 A 3 ( l - p ) ( l + y 2 ) J 
V ( 8 . 0 6 ) ( 1 0 . 2 6 ) ( 1 0 . 9 2 ) 

.740 3 . 0 4 1 1 . 7 1 

2S - B - 4 [ - 1 1 . 8 8 - 70 .07 p + 53 .18 A 3 ( l - p ) ( l + y 2 ) ] 
V ( 4 . 2 9 ) ( 5 . 4 7 ) ( 5 . 8 2 ) v 

.775 2 .82 6 .24 

IGN B 
o 

- 4 [ -17 .12 - 7 1 . 0 1 p + 35 .08 A ( 1 - p ) ( 1 + y 2 ) ï 
V ( 3 . 8 7 ) ( 4 . 9 3 ) ( 5 . 2 5 ) 

.769 2 .28 5.62 

IV BCV - 4 [ - 7 . 9 5 - 83 .70 p + 1 1 3 . 1 1 A ( 1 - p ) ( l + y 2 ) 3 
( 7 . 4 4 ) ( 9 . 4 6 ) ( 1 0 . 0 8 ) 

.738 2 . 9 5 1 0 . 8 1 

2S BCV 
1 <? 2 

«-rr [ - 12 .10 - 37 .02 p + 56 .52 A ( 1 - p ) (1+y ) ] 
V i ( 3 . 7 8 ) ( 4 . 8 1 ) ( 5 . 1 2 ) 

.713 2 . 6 1 5.49 

IGN BCV 
1 o " 2 

- 4 [ - 1 7 . 3 3 - 37 .97 p + 38 .42 A° ( 1 - p ) (1+y ) ] 
V ( 3 . 3 9 ) ( 4 . 3 2 ) ( 4 . 6 0 ) 

.678 1.86 4 . 9 3 

IV In SE 
1 2 

- 8 . 3 0 ( i ) + .955 In ASE + 24 .44 jp- - 3 .10 £ 
( . 8 0 ) ( . 0 0 8 ) ( 1 . 2 1 ) T ( . 3 9 ) T 

.867 1.60 .087 

2S I n SE 
3 2 • • 2 ' 

- 5 . 9 4 d ) - ' + . 9 4 2 m ASE + 6 .92 X ^"P^+Y ) + 1 8 # 8 3 P 
Cl . 09) (.;011) ( . 5 6 ) ( 1 . 6 1 ) 

.857 1.90 .12 

IGN I n SE 
3 2 2 

- 6 . 9 6 (h + .909 I n ASE + 9 .07 - L i l z E i l i l X J . + 1 6 . 5 9 ( £ _ ) 
( 2 . 0 2 ) ( . 0 2 0 ) ( 1 . 0 3 ) : ( 2 . 9 6 ) T 

.655 1.47 . 2 1 

IV In SECV 
2 

- 5 . 8 4 ( - ) + . 9 1 In ASE + 18.76(•?=-) - 6 . 0 2 ( ^ ) 
( 1 . 4 5 ) T ( . 0 1 5 ) ( 2 . 1 7 ) ( . 5 0 ) 1 

.836 1.73 . 1 1 

2S 
i 

In SECV 
3 2 2 

r 6 . 5 9 (h + .qn In ASE + 5 .79 A ( l - p ) ( 1+Y ) + 9 n ?>>(£_) 
( 3 . 4 8 ) (.035) ( 1 . 7 8 ) T ( 5 . 1 0 ) T 

.340 1.94 .37 

IGN In SECV 
3 z " 2 " 

- 6 . 5 3 d) + .88 I n ASE + 6 . 6 2 A ( l - p ) ( l + Y ) + 1 9 . 3 3 ( ^ _ ) 
( 2 . 2 9 ) (.023) ( 1 . 1 7 ) l ( 3 . 3 6 ) 

.543 1.78 .24 



Fig. 2. The logarithm of the Estimated Standard Errors (ESE) for the 2S estim 
' ' (For odd numbers, T = 30 , for even nurabers, T = 60). 
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