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Soft Econometrie Models : General 

Soft econometrie models are econometrie models based on and estimated 

by soft information (for example, qualitative or ordinal information on the 

explanatory variables). Soft information means in general that the observa-

tions on certain variables are not measured in a metric sense (such as a car-

dinal or interval scale). Hence, non-metric measurement units are crucial in 

soft information analysis. 

The major part of modern econometrie models is based on metric informa

tion. The development of advanced models, however, has not kept pace with 

the data base required to estimate such models. Despite the progress in data 

collection and the improvement of information systems, much information is 

still non-metric in nature. This gives often rise to the problem of omitted 

variables and false specifications. Even many metric variables are essential-

ly pseudo-metric because of significant uncertainties and measurement errors, 

so that cardinal conclusions can hardly be inferred from such variables. 

Several phenomena can hardly be measured in metric terms (for example, 

happiness, welfare, quality of life, etc). Clearly, one may introducé cer

tain proxy variables which assign a cardinal value to such non-metric varia

bles, but this operation may easily lead to a biased view of reality (cf. 

Adelman and Morris [1974]). 

In the history of statistical and econometrie analysis several ways have 

been chosen to deal with soft information. . 

A first way to treat soft data (especially ordinal information) is the 

use of correlation analysis from non-parametric statistics (cf. Siegel [1956]), 

By regarding ordinal values as pseudo-cardinal information, one-may calculate 

among others correlation coefficients for series of ordinal data (for example, 

the Spearman rank correlation coëfficiënt). Despite the popularity of this 

approach, it has to be noticed that this correlation analysis rests in gene

ral on non-permissable numerical operations on ordinal data. Although the 

results are normally used to test the existence of rank correlation among 

ordinal items, one should be aware of the severe llmitations and stringent 

assumptions inherent in this approach. 

Another way to treat soft data (especially qualitative data) is the use 

of dummy variables. Such dummy variables are often used in econometrie model-

ling to take account of non-metric explanatory variables such as occupational 

status, marital condition, sex, etc. (see Johnston [1972] and Theil [l97l], 

e.g.). Dummy variables are natural numbers 0 and 1, which indicate whether 

or not a certain variable belongs to a nominal class. Dummy variables have 

1) The author is indebted to Leen Hordijk, Franz Palm and Piet Rietveld 
for their useful comments on a first draft of this paper. 
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often been applied in econometrics to integrate sociological and demogra-

phic variables (see, for example, Orcutt et al [1961]). A drawback of the 

use of dummy variables is that a situation of many distinct classes leads 

to a high number of dummy variables. In addition, a zero-one indicator for 

certain class characteristics does normally not make use of the available 

information in the most efficiënt way : usually more than purely zero-one 

information is available, for instance, in a qualitative sense such as 

'good, better, best'. In the latter case, adjusted methods may be more 

fruitful (see later). 

A third way of dealing with soft information in econometrie modelling 

is the use of path models. Path models are based on the assumption that in 

many theoretical constructs the variables of direct interest cannot be ob-

served directly, so that proxy variables have to be used which reflect a 

certain quantitative characteristic of the original variables (see Blalock 

[1964]). Path models are not primarily based on the traditional assumption 

of causal or functional relationships between variables mutually, but on 

causal or functional relationships (correlations) between qualitatively-

oriented clusters of variables (for example, economie growth efforts, poli-

tical conditions etc). Each cluster is made up by a set of underlying va

riables. These clusters can among others be constructed by means of prin-

cipal component techniques. Path models attempt to find significant corre

lations in terms of causal relationships between such clusters. Two multi-

variate techniques can be used to analyse further such correlations between 

clusters, viz. Lisrei (see Jöreskog [1977]) and Partial Least Squares (see 

Wold [1975, 1979]). 

The strength of a path model is its ability to deal with latent (indi-

rectly observed) variables. Such latent variables have usually only a soft 

qualitative meaning, but they can be represented by a vector profile of in

direct indicators. The techniques to deal with latent variables in path mo

dels differ substantially. The Lisrei technique is based on a maximum like-

lihood approach and needs precise information about the distribution of the 

observed variables and the specification of the theoretical model. Applica

tion of Lisrei can be found among others in Folmer [1979], Jöreskog [1977] 

and Jöreskog and Sörbom [1977]. 

The Partial Least Squares method attempts to identify a block structure 

for the latent variables and their indicators as well as between the latent 

variables (the 'inner' structure) on the basis of multivariate techniques 

(especially iterative regression analysis). Applications of this techniques 

can be found among others in Apel[l978], Hui [1978], and Wold [1977]. 
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The path models with latent variables are a specific example of models 

with non-directly observable Information, because the latent variables are 

ultimately reflected by a multidimensional set of relevant observable in

dicators. A more difficult problem, however, arises if (part of) the expla-

natory variables are only measured in ordinal terms. In that case, the Lis-

rel and Partial Least Squares technique cannot be applied. This paper is an 

attempt to address the problem of constructing an econometrie model based 

on purely soft (i.e., ordinal) information. It will be shown that multidi

mensional scaling techniques may provide a useful tooi tó deal with soft in

formation in econometrie model building. This will also be illustrated by 

means of an empirical example. 

Soft Econometrie Models 

Soft econometrie models use ordinal information as input. Ordinal data 

have seldom been used in econometrie modelling (see Van Setten en Voogd [1979]). 

It is clear that ordinal observations cannot be directly used in traditional 

estimation procedures for econometrie models, although it has to be noticed 

that rather frequently ordinal data have been treated as cardinal units. Sup-

pose now a model which incorporates both cardinal and ordinal data as expla-

natory variables : 

(2.1.) y = f (x , z) , 

where : y = endogenous variable 

3t = (J x 1) vector of cardinal explanatory variables 

z_ = (K x 1) vector of ordinal explanatory variables 

f = functional relationship describing the impacts of x_ and £ on y 

When this model is written as a linear regression model, one obtains : 

(2.2.) y = x £ + z X + _ £ ' 

with : y_ : I x 1 vector of observed endogenous variables 

X : I x J matrix of observed cardinal exogenous variables 

Z : I x K matrix of observed ordinal exogenous variables 

_e : I x 1 vector of disturbance terms 

j3 : J x 1 vector of unknown parameters 

j_ : K x 1 vector of unknown parameters 

Normal regression procedures aim at estimating a parameter set j3_ and y_ 

which reflects the quantitative impact structure of JC and z_ with respect to 

y. In the case of ordinal information, however, a traditional least squares 
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procedure cannot be applied, because this would require unpermissable nume-

rical operations. 

A meaningful approach in the case of ordinal data is to transform first 

the ordinal data matrix Z into metric data and, next, to apply a regression 

analysis to the transformed model. It is clear, however, that a metric trans-

formation of Z is only possible if either additional information is available or 

the transformed (metric) matrix has a lower diiaensionality. In the frame-

work of the present paper no additional information will be assumed, so that 

an attempt has to be made to construct a matrix Z* of order I x K* (K* < K), 

such that the metric values of Z* form a best representation of the original 

ordinal matrix Z. In that case, the transformed regression model becomes s 

(2.3.) y_ = X £ + Z * x * +_£*/ 

where yf is the new parameter vector of order K* x 1. 

Given the usual assumptions concerning the linear model, the unknown para

meters in (2.3.) can then be estimated by means of Standard regression 

techniques. When this regression analysis leads to satisfactory results, 

(2.3.) may then also be used as a prediction model for the endogenous va

riables y_. 

A major problem, however, is the question whether the transformation 

from Z to Z* is a possible and permissable operation. It will be shown in 

section 3 that the transformation of an ordinal matrix Z to a cardinal ma

trix Z* of a lower dimensionality can be carried out in a meaningful way by 

means of recently developed multidimensional scaling techniques. Therefore, 

the following steps have to be undertaken to estimate soft econometrie mo

dels : 

specification soft econometrie model 

> ' ' ' 

cardinal data ordinal data 

« ' 

multidimens ional 

scaling technique 

/ 
r 

cardinal data 

s / .L 
regression analysis 

Fig. 2.a. Estimation procedure of soft econometrie models. 
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Multidimensional Scaling Analysis 

Multidimensional scaling analysis aims at deriving quantitative, me-

tric information from qualitative, ordinal input data. This analysis, ori-

ginally developed in mathematical psychology, has recently become very po-

pular in many scientific fields (for example, geography, economics, marke

ting theory, physical planning, regional science and operations research). 

Multidimensional scaling analysis, sometimes also called polynomial con-

joint analysis or ordinal geometrie scaling, is a rather complicated ma

thematical technique which will not be described at length in this paper; 

mathematical expositions about this technique* are contained among others 

in Nijkamp [1979], Nijkamp and Van Veenendaal [1979] and Nijkamp and Voogd 

[1979]. Only a brief introduction to multidimensional scaling analysis will 

be given here. 

Multidimensional scaling methods take for granted that the aspects 

of a certain phenomenon can be described by means of a set of K ordinal in

dicators. The variation among these aspects is reflected by differences 

in ordinal numbers. One of the aims of multidimensional scaling analy

sis is thert to transform the ordinal data input into cardinal information 

of a lower dimensionality. This requires the Identification of elements in 

a K*-dimensional geometrie space (K* < K) such that the aspects or the 

attributes of the phenomenon concerned can be meaningfully depicted in a 

Euclidean space, so that the configuration óf the elements in this Euclidean 

space does not contradict the orginal ordinal input data.The criterion to 

determine this configuration in a K*-dimensional Euclidean space is that the 

interpoint distances between the coordinates of the attributes in this K^-dimen-

sional space show a maximum resemblance to the orginal ordinal ranking of 

the attributes. This means, that the Euclidean distances derived from 

the metric configuration should be consistent (in the sense of a monotone 

relationship) with the observed ordinal rankings (see later). 

There are various techniques in the field of multidimensional scaling 

analysis which aim at finding a maximum correspondence between the I or

dinal rankings of K attributes and the distances between I points in a K*-

dimensional geometrie space. The various steps to be undertaken in the ma-

jority of these algorithms can be illustrated as follows (cf. Nijkamp and 

Voogd [1979]). 

Suppose (without loss of generality) a symmetrie N x N paired compa-

rison table A in which the (dis)similarities between N objects ̂ regions, e.g.) 

are expressed in ordinal numbers. The elements of A are 6 , and represent or-
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dinal :rank numbers for the (dis)similarity between any two points n andn' 

Assume next that the N objects can be represented as a configuration of 

N points in a K-dimensional Euclidean space (K < H (N - 1)), so that 

each object can be characterized by a K-dimensional vector. When the co-

ordinates of each k point are denoted by x (k = 1, ....,K), the in-

terpoint distances d , between each pair of points n and n' are: 

(3.1.) d , = { I (x - x )V* 
nn' ,_. nk n'k 

The co-ordinates x and the distances d . can be included in an 
nk nn' 

N x K configuration matrix X and an N x N distance matrix D, respective-

ly. The latter distance relationship has metric properties and should 

have a maximum correspondence with respect to 6 , ; in other words, the 
nn' 

geometrie configuration x (n = 1, ...., N; k = 1, ... k) should be such 

that the distances from (3.1.) do not violate the (dis)similarity condi-

tions from the matrix A. A best fit wóuld be achieved by specifying a good-

ness-of-fit (or loss) function $ which minimizes the residual variance be

tween all distances d . and 6 ., but the ordinal nature of 6 , preclu-
nn' nn' nn' 

des the application of arithmetic operations to 6 
nn' 

Therefore, instead of introducing 6 , itself into''the qoodness-of-fit 
. nn' ^ 

function, a metric auxiliary variable d , is calculated which is in a-
nn' 

greement with 6 ,. This implies a monotonie relationship between 6 , and 
. nn' . . f . nn' 
d ,, so that the following condition is satisfied : d , < d ,,, when-
nn' _ nn' — nn' ' 
ever ö , < 6 ... The auxiliary variables d , will be called here order-

nn' — nn' ' . nn' 

isomorph values or disparities. They can be incorporated in an N x N ma

trix D.The diagonal elements of A, D and D are equal to zero. 

Therefore, the essential ideas of an ordinal multidimensional scaling 

method can be formalized in the following concise manner : f min <j> = f (D - D) X 

(3.2.) subject to 

D S A 

LD = g(x) 

where the symbol = denotes the above mentioned monotonicity condition be
tween d . and 6 .. The distance function g(X) is already defined in (3.1.) 

nn' nn' 

The determination of the matrix D with order-isomorph values can be based 

on various approaches, for example, a monotone regression (Kruskal [1964]). 
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This approach implies a constrained minimization problem, written as 

/ - _ J _ ... _ ï 2 #J1 : v2 

( 3 .3 . ) « 

min ty = (d , - d , ) ' 
n n ' nn ' nn ' 

s u b j e c t t o 
n n ' — n n ' ' n n ' — n n ' • V- nn ' — nn ' nn ' — nn 

So, in fact, monotone regression consists of finding a set of values d ,, 
nn 

which are monotone with the imputed rankings and also match the distances 

among all points. An alternative approach to arrive at order-isomorph va

lues is the rank-image procedure (Guttman [1968] and Golledge and Rushton 

[1972]). 

The goodness-of-fit function <f> may have the following specification : 

,3.4., ,J"f^'^')2^ 
\ n,n' nn' 

Alternative specifications of <j) can be found in Voogd [1978], 

The foregoing scaling technique is not only relevant for square paired 

comparison matrices (complete matrices), but can also be adjusted for rectargular 

ordinal rank order matrices (conditional matrices). Expositions 

of these alternative approaches and of problems of ties can be found among 

others in Roskam [1968], It is clear that the conditional approach is par-

ticularly important for our problem of soft econometrie models. 

After this brief presentation of the ingredients of ordinal multidi-

mensional scaling techniques the steps of the algorithmic procedure will 

be described. 

The purpose of the algorithm is to find the co-ordinates of N points 

- representing N objects (regions ,e.g. ) - in a K-dimensional geometrie s-pace 

such that the distances among these points are in apprex imately the same rank 

order as the imputed rankings of the (dis)similarities among N objects. 

The first step of the algorithm is the assessment of an initial configu-

ration X. in a K-dimensional space. This initial configuration can be deter-

mined in an arbitrary way, but frequently a principal component procedure 

with K components is applied to the ordinal input data in order to speed up 
1) 

the convergence of the algorithm (cf. Guttman [1968]). 

The second step is to calculate the resulting matrix of interpoint dis
tances D. from X„. 

1 1 
The next step is to determine the initial set of order-isomorph values 

1) See for a further discussion also Van Setten en V.oogd [1978]. /' 
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Dj on the basis o£ a monotonicity condition with respect to A, so that the 

disparities are in accordance with the (dis)similarities. 

Then the goodness-of-fit has to be maximized (i.e., the loss function 

<t> has to be minimized) . This procedure implies that the values of D are 

substituted into (3.3.), while the formal expressions for the elements of 

D (see 3.1.) are also substituted into (3.3.). Consequently, ij) is a nonli-

near function with N x K unknown arguments x , which has to be minimized 
nk 

by means of a numerical solution procedure (a gradiënt procedure, e.g.). 

The resulting values of x are in fact the elements of a new configuration 

X . Then again a new distance matrix D and a new order-isomorph matrix D 

can be calculated, so that <|> can again be minimized, etc, until finally 

a convergent solution is attained, for which the goodness-of-fit is at a 
maximum (see for a discussion of convergence properties Van Setten and Voogd 

L1978J)• 

The above mentioned steps are briefly summarized for a fixed number 

of dimensions K in the flow chart of Fig. 3.a. 

ordinal input rankings A 

i=0 

initial configuration X. 

« 

• 

k calculation of distances D, 
ï 

1 

i=i+l 

9 
calculation of distances D, 

ï 
1 

i=i+l 

< r 
1 

i=i+l 

order-isomorph matrix D. 

1 

i=i+l 
< r 

1 

i=i+l 

goodness-of-fit static $ 

1 

i=i+l 

<^satisfact 

1 

i=i+l 

<^satisfact 

1 

i=i+l 

stop 

Fig. 3.a. A brief flow chart of the algorithmic structure 

of an ordinal multidimensional scaling method. 
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The ultimate configuration depicts the N objects in a K-dimensional 

space. The interpretation of this configuration -more precisely : the 

interpretation of the axes of the K-dimensional Euclidean space- is to 

a certain extent a matter of personel inventiveness* of the researcher 

(just like in factor analysis). This ex post identification of the K at-

tributes of N objects can to a certain extent be tested (or at least jus-

tified) by confronting the K attributes with observable metric data on 

the characteristics of these attributes via a least squares procedure or 

via a two-stage multi-dimensional scaling procedure (see Nijkamp and Van 

Veenendaal [1978]). The latter approach is a prerequisite to arrive at an 

verifiable . multidimensional scaling procedure. 

It is:easily seen that the previous steps can also be vapplied to 

i transform the ordinal matrix Z from (2.2)into a cardinal matrix Z* (from 

(3.2.), so that next Z* can be used as a matrix of observations in a re

gression analysis (this step is to a certain extent analogous to the use 

of principal cómponents results in a regression analysis). In this way, 

ordinal data can be integrated in traditional econometrie estimation pro

cedures . 

1) 4. Empirical Illustration 

The empirical application of soft econometrie models is based here 

on an explanatory model for regional incomes in the Netherlands. The to

tal number of regions (provinces) taken into account in this study is 

equal to 11. This number is fairly small and it certainly affects the re

sults of a soft regression analysis, but for the sake of illustration this 

empirical example is satisfactory. 

The assumption underlying the model used in this section is that ave

rage regional income (y) can be explained from two categories of income 

dëterminants, viz. an economie profile (e) and a socio-geographical profile g 

(see for a general discussion of profile analyses Nijkamp [1979]). In 

other words : 

(4.1.) y = f (e_ , £) +e . 

The economie profile e_ is composed of 3 elements, viz. the average regional 

unemployment level u (percentage of unemployed male. and female persons), 

the average regional wealth w (measured in Dutch guilders) and gross regio

nal product p (also measured in Dutch guilders), i.e., 

1) The author is indebted to Wouter van Veenendaal fp.r his computational 
assistance. 
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(4.2.) e_' = (u : w : p) 

The socio-geographical profile g_ includes 4 elements,viz. regional agglo

meration phenomena a (for instance, population density measured as the 

number of persons per square kilometer), regional accessibility c (for 

instance, density of transportation network measured as regional road 

length divided by the regional area), educational opportunities s (for 

instance, measured as the weighted number of schools of different cate-

gories) and the regional attractiveness t (for instance, measured via the 

average distance to the economie heartland of the Netherlands). This im-

plies that the socio-geographical profile is composed as follows : 

(4.3.) g = (a : c : s : t) 

Next, model (4.1.) had to be estimated by means of a regional cross-

section for the year 1970. Data for the regression analysis were mainly 

derived from Blommestein et al [1978]. 

The Information concerning the economie profile could easily be ob-

tained from available statistics, so that the values of the elements of 

the economie profile could be measured in cardinal units (see Table 1). 

However, the data about the socio-geographical profile are much harder 

to obtain in a cardinal sense. As indicated above, some variables such as 

agglomeration factors or accessibility can be approximated by means of :car

dinal auxiliary variables, but it is clear that such proxy variables may 

not be regarded as precise cardinal indicators of agglomeration advanta-

ges or accessibility. Therefore, it is more plausible to use ordinal in

dicators for such variables. These ordinal indicators varying from 1 to 
1) 

11 may be derived from the auxiliary proxy variables suggested above. 

Consequently, the socio-geographical profile g_ is composed of 4 x 11 

ordinal indicators (see Table 2). Such data cannot be used directly in a 

normal regression analysis. Therefore, first a multidimensional scaling 

procedure has to be applied in order to extract metric information from 

the ordinal input data. The results of this scaling procedure are inclu-

ded as a one-dimensional configuration g in Table 3 (the stress value o r 

badness-of-'fit appeared to be low enough to justify only a one-dimensional 

representation of the ordinal input data). 

Next, a normal regression analysis was applied to model (4.1.), in 

which the four-dimensional socio-geographical profile was reduced to the 

one-dimensional configuration g from Table 3. The results of this regres

sion analysis are included in Table 4. 

1) Of course, one might also apply a multidimensional scaling prodedure to 
these proxy variables. 
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Clearly, the estimation of 4 parameters from a cross-section with 11 

observations is a heroic task and the outcomes have only a tentative and 

Indicative value. 

The results give rise to the following comments. The squared multiple 

correlation coëfficiënt appears to be rather high (0.928). The values of the 

t-statistic indicatie that the intercept is statistically significantly-

different from zero. The same holds true for w (regional wealth) and p (gross 

regional product). The parameter for the socio-geographical profile appears 

to be only marginally significant as its t-value is 1.29, but given the 

small number of degrees of freedom this result is not unplausible. Finally:, 

the unemployment variable appeared to provide no significant explanation to 

the regional income levels (this may be explained from the good social 

security system in the Netherlands). In general, the residual terms appear to 

be fairly low: the calculated values of regional incomes are in rather close 

agreement,with the observed values (see Table 5). 

Another advantage of the use of multidimensional scaling techniques in 

econometrie models is that it leads to a rise in the number of degrees of 

freedom. For example, the original model (4.1.) based on (4.2.) and (4.3.) 

had only 3 degrees of freedom, whereas the same model has 6 degrees of freedom 

after the application of the scaling technique. 

Clearly, the statistical properties of the parameter estimates are hard to 

investigate, as the multidimensional scaling preedure is a non-parametric 

statistical technique. When, however, the scaled outcomes (see Table 3) would 

have a certain statistical distribution (for example, a normal one), one may 

analyse the statistical characteristics of the parameter values according to 

the usual econometric-statistical methods. 

Finally, the results of this multiregional income model can be examined 

as fas as the presence of spatial autocorrelation is concerned. The value 

of the Moran coëfficiënt (see Hordijk and Nijkamp [1978].), however, clearly 

shows that spatial autocorrelation among the disturbances of the linear 

model does not exist at the spatial (provincial) scale chosen in the analysis. 

Conclusion 

Soft econometrie modelling appears to provide a useful approach in the 

case of inaccurate data (ordinal data, proxy data, large measuremént errors 

etc). In such situations the use of multidimensional scaling techniques 

is worth while to tackle uncertainties in the data input for econometrie' 

models. The numerical exercises carried out in the previous section show 

that soft econometrie techniques may be appropriate tools to deal- with 

ordinal or qualitative Information. -



^ s . province 

variable ^ " s ^ I 2 3 4 5 6 7 8 

y 4652.0 4353.0 4419.0 4501.0 4752.0 5438.0 5846.0 5850.0 4 

r u 3.2 3.3 4.3 2.3 1.7 1.2 1.8 1.5 

H w 5978.0 4825.0 4954.0 4837.0 5355.0 7134.0 6563.0 6559.0 7 

LP 8994.0 5202.0 3866.0 10938.0 17910.0 10242.0 30574.0 42300.0 4 

Table 1. Regional economie profile of the Netherlands (1970) 
1) 

N . province 

variable ^ ^ 1 2 3 4 5 6 7 8 

f a 4 2 1 5 6 9 10 11 

Jc 
10^5 10̂ 5 9 8 &h 4h 3 \h 

M • 2h 1 2h 5 Ih Ih \Qh 10^ u 11 835 Qh 6 4h 1 2*5 4h 

Table 2. Regional socio-geographical profile of the Netherlands 

province 

variable 

-2.04 -1.25 -1.02 0.25 0.25 0.28 1.38 1.38 

Table 3. One dlmensional metric represéntatiön of ordinal socio 

1) The provinces are: Groningen (1), Friesland (2) s. Drente (3 
Utrecht (6)., North-Holland (7), South-Holland (8), Zeeland 



intercept 

e 

intercept u w P g 

estimated coëfficiënt 

t-statistic 

2947.30 

5.46 

32.98 

0.28 

0.28 

4.84 

0.02 

2.90 

137.07 

1.29 

R 

Table 4. Parameter values associated with e and g. 

province 

variable 1 2 3 4 5 6 7 8 

observed 4652.0 4353.0 4419.0 4501.0 4752.0 5438.0 5846.0 5850.0 

calculated 4611.9 4324.9 4397.1 4613.5 4897.4 5209.6 5660.3 5901.1 

Table 5. Values observed and calculated income. 
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