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I. Introduction cmments welcome

In this paper we consider large sample estimation and testing proce-~
dures for parameters of dynamic equation systems with moving average error
terms that are frequently encountered in econometric work, see e.g. Quenouille
(1957) and Zellner and Palm (1974}, As pointed out in Zellner and Palm (1974),
three equation systems that are particularly relevant in econometric model-
building are (1) the final equations (FEs), (2) the transfer functions (TFs),
and (3) the structural equations (SEs). In the present work, we specify
these equation systems and develop large sample "joint" or "system" estima-
tion and testing procedures for each system of equations. These "joint" or
"system" estimation procedures are iterative. They provide asymptotically
efficient estimates of the parameters at the second step of iteraticn. The
maximum likelihcod estimator is obtained by iterating until convergence.

The "joint" estimation methods provide parameter estimates that are more
precise in larpge samples than those provided by single-equation procedures
and the "joint" testing procedures are more powerful in large samples than
those based on single-equation methods,

The aim of the paper is to present a unified approach for estimating
and testing FE, TF and dynamic SE systems. In the paper we use the results
of previous work on the asymptotic properties of the maximum iikelihood
(ML) estimator of the parameters of a dynamic model, We extend the recent
work on efficient two-step estimation of dynamic models (e.g. Dhrymes and

Taylor (1976), Hatanaka (1976), Palm (1977b), Reinsel (1976,1977))}.

* Research financed by National Science Foundation Grants GS 40033 and

- B0C 7305547, income from the H.G.B. Alexander Endowment Fund, Graduate
School of Business, U. of Chicago, and the Belgian National Science
Foundation. The present paper is a revision of an earlier draft completed
in 1974. The first author is presently at the Free University of
Amsterdam,



Previous work related to present work includes that of Deistler
(1975, 1976), Hamnan (1969, 1971) and Hatanaka {1975), who have considered
the identification problem for dynamic SE systems with moving average error
terms, Maximum likelihood estimation of dynamic SEMs with moving average
errors has been considered by Byron (1973), Phillips (1966) and Wall (1976)
in the time domain, and for dynamic SEMs with stationary errors by Espasa
and Sargan (1975) in the frequency domain. Spectral estimation methods
for static SEMs with stationary errors have been proposed by Hamnan and
Terrell (1973) and by Espasa (1975). Among many other workers, Akaike
(1973), Anderson (1975), Box and Jenkins (1970), Durbin (1959), Hannan
(1975), Kang (1973), Maddala (1971), Nelson (1976), Nicholls (1976),
Osborn (1976), Pesaran (1973), Pierce (1972), Reinsel (1976}, and Wilson
(1973) have considered estimation of parameters of single-equation or multi-
equation ARMA and transfer function models. The problem of TF estimation
in a single-equation context has been extensively studied in the "distributed
lag" area. Closeiy related to our approach for FEs is the work of Nelson (1976 )who
considered joint estimation of a special FE system with diagonal MA matrices.

For a system of TFs, Wilson (1973) proposes an iterative procedure
leading to a ML estimator. With respect to ML methods for TFs (e.g. Wilson
(1973)) and dynamic SEMs (e.g. Byrom (1973), Phillips (1966) and Wall
(1976}), our approach is computationally more convenient to implement while
having similar asymptotic properties. Many of the spectral methods apply
to more general models, in the sense that the authors assume a stationary
error process, for an extensive review of the literature, the reader is
referred to Aigner (1971}, Nicholls, Pagan and Terrell (1975} and Rstedm
and Bohlin (1966). Finally, estimation methods for dynamic models with
autoregressive errors, which have a long tradition in econometrics, are
reviewed by Hendry (1976).

In what follows we shall specify the FE system that we consider in
Section II and then go on to develop estimation and testing procedures
for parameters of the FE system. In Section III, a TF system is specified
and inference procedures for it are developed, while in Section IV the SE
system is presented and procedures for analyzing it are developed. Section
V is devoted to summary and discussion of the results with particular
emphasis on relating them to the structure of econometric estimation procedures

and on pointing to problems that remain to be analyzed.



II. Specification of and Estimation and Testing Procedures for Pinal

Eguations
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generated by the following multivariate autoregressive-moving average (ARMA)

t) be a vector of observable random variables
process such as studied by Quenouille (1957):

(2.1.)  H(L) z, =g, + F(L) e t=1,2,40.,T
Pxp pxl pxl pxp pxi

where §6 = (51,52,...,Ep) is a vector of ccnstants, L is a lag operator
n_oo_ _ _ .
such that L'z = z, ., H(L} = {hij(L)} and F(L)} = {fij(L)} are pxp matrix

lag operators with typical elements being finite degree polynomials in L,
namely hij(L) and fij(L), respectively, and e is a pxl random error vector.

We assume that L is normally distributed with

{2.2.). Fe. = 0 and Ee et, = Gtt,Ip
for all t and t!' where Gttlis the Kronecker delta, Note that contemporaneous
and serial correlation as well as different variances for the error process
in (2.2.) can be introduced through appropriate specification of F(L). We
further assume that the inverse of H(L), H—l(L) = H*(L)/|H(L)], exisfs, where
H*(L) is the adjoint matrix associated with H(L) and JH(L)| is the determinant
of H(L) that is a scalar polynomial of finite degree in L with roots lying out-
side the unit cirele. |

The "final equations™ (FEs) associated with (2,1,), obtained by
multiplying both sides of (2.1.) on the left by H¥*(L), are given by:

]

(2.3a.)  [H(L) ]z,
or

(2.3b.)  6(L)z, = ¢ + AL)g,

St H*(L)F(L)Et

where o * H* (L) EO and ¢' = d"19'0 = d"l(CICQ,...,cp) are vectors of constants,
B(L) = |H(L)]/d and A(L)= H*(L)F(L)/d, with d being a normalizing constant. In
order to identify the system (2.3b.), we assume among other things that the roots
of [A(L)} are outside the unit circle, and that both sides of (2.3b.) do not

have common fractors. As pointed out in previous work, Zellner and Palm

(1974, 1975), the AR polynomial o(L) operates on each element of Zp Unless
there is cancelling, the AR parts of the equations in (2,3,) should be of
identical order and have the same parameters. Since it is often of interest

to test that the AR parameters are the same in different equations and also



for preater generality, we shall take up the problem of estimating para-

meters of the following system:

(2.4,) Bi(L)zit = ¢yt gﬁgt, i=1,2,04044Ds

n.
2 i . .
L Bi2L ‘e einiL , wWith n, given,

where Bi(L).= 1 - eil

i=1,2,...,p, and g& igs the ith row of A(L}.

In connection with convenient estimation of the parameters in (2.4.),

we express the error vector A(L)Et in (2.3b.) as

(2.5.) A(L)E%

AOEI + Algt—l + ... t Amgt—

m

= X{ + Glit-l + ... Gmxt—m

1

where Gi = AiAa s 171,2,...,m, A, is assumed to be non-singular, and 3%=A

0 0=t

2
which satisfies Egt = 0 and

t = 1 = o= 1
(2.6.) Ev.vi = AjAg = 0 and By, v1,20, t#Lr.

A typical element of E¢=A(L)§¢’ say the ith, €., may be represented as a

t
moving average in one random variable (see e.g. Ansley and al. (1977), Palm

(1977a) or Granger and Morris {(1976) ):

= al = ‘e
(2.7.) €, = ale Vit + Ailvit-l + + A

where the Aij's are such that they reproduce the autocorrelation structure

of €ips i.e,
m-j m-]
We, T A, A, = L a',  .a, , J=0,1,...,m,
llh=0 ih+j ih h=0 ih+j=-ih
s - - . s ' s
with AiO 1, Wess the ixi element of Qv, defined in (2.6.), and s being
the ith row of A, in (2.5.). Note that the v. 's on the r.h.s. of (2.7.) are

h ) it
normally and independently distributed, each with zero mean and common

variance Ws s

Each FE may be estimated separately using a single-equation non-
linear least squares or single-equation ML procedure. Joint estimation
of the parameters in the system shown in {2.4%.) will now be considered. We

write the system of FEs as in Palm (1977b)
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Assuming initial conditions to be zero*, the vector u may be expressed in

terms of v

u = Mv, where

—

1 o ] 0
D
6, I, 0 . )
6, & I o . .
M : - -
Gm Gm_l L] - IPO LA I} -
m - . . » - L BN K ) L)
I - T
— P

and i' - (:\!_ri Q-Y‘%’o.oa ,_Y{'[.)i

Under zerc initial conditions, the likelihood function is

(2.11.)  L(g,c,M0 »2)

~T/2 Aty e v ol -1, -1 _
| exp [-3(z-W,c-W, 0" M (1@ ") M~ (z-We - W)}
As shown in Palm (1977b), the first order conditions for a maximum of the

log-likelihood function are

39S _ -1 -1y -1
(2.12.) 58 = M (I, @9, ) M u=0
where S = =1 (z =~ W -~ W,8)" M1 (I (:)qu) Ml (z - W.ec - W8)
2 (2= Wl = W2 T &%, 2o HpS T W2
B' = {c', B', ¥")
x' = vee lg 6, ... Gm]' with "vec'" denoting the operation of

vectorizing a matrix, stacking column after column,

This assumption is basically made for the purpose of simplicity. One

can also ''backforecast™ +the values of the initial conditions for a set

of FEs, as Box and Jenkins (1970) do for single equation ARMA models,

or treat the initial conditions as unknown parameters (e.g. Phillips
(1966)). Whether backforecasting improves the properties of estimators under
all conditions is not knowm.



Wz W, W W]

0 1 2
T .
Wé = [ij] » Where i=1,,..,p, %&1,...,m, j=1,...,p, and with typical row
A [0
"Y'ij - . ’0’...’0. iognol Ovj O-oo . 0.0 T—Q, 0.--3]

p p times P elements ////r ””’,,w"”

1th position
For given QV, the set of equations in (2,12.) is non-linear in the para-

meters of M. The solution of (2.12,) requires an iterative procedure.

An alternative to the exact ML solutioﬁ-of (5;12.) consists in approxi-
mating the first order conditions (2.12.)., Using a lemma given by Dhrymes
and Taylor* (1976), a two-step estimator of B with the same asymptotic properties
as the ML estimator is

(2.13.) 8 =8 - N 2 (p)

lw
|l

e

where F(_fi) is a non~singular matrix such that

.1 - 1 3 S
plim T T (_[_3_) pllm - _B__ﬁ_-" (E-O) .

T & « T & =

—

EO is the true parameter value and B is a consistent estimator of EO
such that ¥T (B - B.) has some limiting distribution. It should be noticed that

—0 .
the matrix T and the vector 38/3@ in (2.13}) depend on the unknown parameters of

Qv . As the information matrix is block diagonal for B and Qv’ the use of a
consistent estimator ** for the unknown Qv in (2.12) will not affect the

asymptotic properties of the solution of (2.12).

Application of generalized least squares (see e.g. Palm (1977b} ) to

(2.14.) = + Wl 8+ W, v+ Mv,

2 =

+ |0
1

e

1
|T:DO

* For an earlier discussion on approximations to the ML solution, the reader is
referred to Iisher (1925), chap. 8, Kendall and Stuart (1961), pp. #8-51, and
Rothenberg and Leenders (1964).

**  The lemma given by Dhrymes and Taylor (1976) applies to all the parameters in
the likelihood function, i.e. to 6' = (8' , vec (8_)'). Using a block-diagonal
matrix T to approximate the Hesslan matrix of thevlog—likelihood function with
respect to 9 yields expression (2.13) for the subvector of parameters B, where
the unknown elements of QV are replaced by consistent estimates.



(2.17.)

q
LI f - N .
where y' = (Zi’ lé’ cie s 1%) and Yo T Bt hil let—h’ after evaluation
of the regressand, the regressors and the disturbance covariance matrix

at consistent estimates of R and QV, yields
z ~ - R T L U Y ~p ~oqe
- toar Py
(2.15.) g = Lwr o' = (I, (DG MW~ W ou (I, @8 ) Kyl

where M°N denotes that thf quantities are evaluated at consistent estimates,
for example w = (WO, 1° Wz). ' The two-step estimator in (2.15.),
which is similar to those proposed by Reinsel (1976) for other models, has the
same asymptotic properties as the ML estimator ignoring possible restrictions
on the parameters comlng from the spec1f1cat10n in {2.1). The estimator E is

consistent asymptotlcally normally dlStPlbUted and efflclent with a large

sample covariance matrix consistently estimated by

- s -

(2.16.) V(B) = [WMro (1T®9;1) w1 7L,

Expression (2,15.) is in fact an approximation to the second step of
the Newton=Raphson procedure. The approximation is such that it impliements

the second step of the Gauss-Newton* algorithm as is easily seen from writing

s:od v @) v=cte

where € = Pv and P is the matrix obtained from the decomposition of the
positive definite matrix (IT x Q;l) = P'P.

The derivative of ¢ with respect to B is

0
3

lu)

- - W'M'_lP'

k=

The second step of the Gauss-Newton procedure can be written as

1 %

(2.18.) B =86 - 55 (©55 (E) 7 (B) £ ()

- -1 o-ly m=lta-l s, -1 o-1
- _ t M
=8 - v T (I @0, ) MWl T w1, ®0 )

which is - using expression (2,14,) - equivalent to (2.15.).

¥ The reader, who is not familiar with numerical procedures to soclve
systems of nonlinear equations, is referred to Goldfeld & Quandt (1372),



It should be obviocus that the two-step Gauss-Newton approximation to
the two-step Newton-Raphson* procedure is one member of a class of estimators
which are asymptotically equivalent to the ML estimator. Further, expression
(2.18;) can be calculated either using the analytical derivatives given in
(2.17),evaluating them at consistent parameter estimates, as has been
done e.g.. . by Nelson (1976), or by numerical calculation of the partial
derivatives in (2.18.) of &€ with respect to B, as is proposed by Box and
Jenkins (1970) for univariate models. Other estimators of B asymptotically
equivalent to the ML estimator are characterized by a particular choice for
the matrix T(E) in (2.13).

Joint estimation of the parameters in the system in (2.4.) involves
the following steps:

1. Using the error representation shown in (2.7.), estimate the
parameters of each equation separately using, for example, the Box-Jenkins
(1970} non-linear least squares approach. The estimates so obtained will be
consistent but not efficient. However the main objective of this first
step is to obtain an estimate of Yys say Et’ t=1,2,...,T.

2. Use the Et's to form an estimate of the covariance matrix

= n
v EXTXT’ namely

(2.19,) nv =
t

v vl/T
gt

[T !

3. Express the i'th equation of the system (2.4.) as:

1=1,2,0..,P
2. . i - ) 1' B. T . . 1< 3 2
( 20a ) th Cl t "illt—l t g‘tll + vlt tzl,QQooosT
1 =
where it (Zit_l’zitug"‘°’zit—ni)
=
83 = (O31205p00ees8yp )

L
1

- ' 1
(VoL gseees¥y )
| J— t 1 t

Yi T gyeXigee e esdiy)

with Yij being the i'th row of Gj, j=1,2,...,m.
Expressing (2.20a.) for all t, we have

*
The second order derivative of 5 with respect to 8; and Bj is

2%s = 7 2% 1 e 2[?_5_]'[2&1
7B 08 38,96 laed Loe

Under the assumptions underlying our model, it can be shown by using the strong
law for martingales (see e.g. Feller (1966}, p. 238) that the first r.h.s. term
converges to zero in probability, so that the two-step estimator in (2.18) im-
plements expression (2.13) and therefore has the same asymptotic properties as
the ML estimator,
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(2.20b.) z; = ”1&91 + Qli V. iz3,2,..45pD

1 | . 3
wherelc_lit and q are typical rows of wl

We then apply ordinary least squares to each equation (2.20a,}, after

i and Q respectively,

replacing Q by 6, a matrix of the first step residuals Et’ to obtain
consistent estimates of Yy

4, Compute expression (2,15.)}. Iteration of the steps 1-4
yields the ML estimator* given known and fixed initial conditions. In small
samples it is not clear that the iterated estimator for B iz to be preferred to
E. For example, it is well-known that ML estimators fordbarameters cf many
models have poor finite sample properties relative to usually empleyed loss
functions**, Nelson (1976) provides Monto Carlo results pertaining to a system
similar to a particular set of FEs that indicate a substantial gain of
efficiency of the two-step estimators with respect to univariate procedures, The
finite sample properties of E in (2.15) and estimators obtained by iteration are

as yet not established.

The system of FEs (2,10.) can also be written as

(2.21.) z=We+WB+Wy+y

=" "1
Generalized least squares applied to (2.21.) lead to

(2.22.) = [wW! (1T®sz;l) we] 7L

- -1
1
Barg T W1, @8, )z

Since Qv and the elements of W., the lagged errors, usually have unknown

29
values, (2.22.) cannot be computed. However, we can compute

(2.23.) EGLS = [ﬁ' (IT@ﬁ;l) Wl "tow (I'T® 9;1) z

-

where W denotes that lagged errvor terms in W, have been replaced by their

2
sample estimates. Expression (2.23.) gives a consistent joint estimator for

g, but it usually is not efficient. From a comparison with (2.15.), it is

* Other iterative algorithms that may be computationally more efficient
can be employed to compute the ML estimate--- see e.g. Chow and Fair
(1973} who considered a dynamic system with AR errors.

*ok

See Zellner (1971) for some results relating to ML estimation of para-
meters of the log-normal distribution., For static simultaneous equation
models, ML estimators frequently are found to possess no finite moments
and hence have unbounded risk relative to a quadratic loss function, Last,
Stein's well-known results indicate that ML estimators are often inad-
missible relative to a quadratic loss function --- see references and

analysis in Zellner and Vandaele (1974),
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obvious that the estimator in (2.23.) is not a solution to the first order
conditions for a maximum of the likelihocod function, so that iterative solu-
tion of (2.23.) will not yield the ML estimator. (2.23.)_;5 a solution of

the first order conditions for a maximum of the likelihood function with

-

respect to B under the condition that W, = W2 impiying that 33/3B is linear

2
in B (see e.g. Maddala (1971) for a similar discussion on single equation models.

As mentioned above, FEs are often encountered in which the €, coefficient

vectors in (2.8) are all the same, that is El =8, = §3 = ... = Ep = E(r).

in such cases, the restricted matrix wl in (2.9) takes the form

2y % ' E-p+l
21 2% Z_ps2
(2.2”.) w(r‘) . -

b el

We then write the system (2.10,) as:

_ {(r) , (v)
(2.25.) =z = woﬁ + wl 8 +u
Then the approximate ML estimators for c, y and QFP) are given by:
S\ ln it n g Y Dy Sl (0
= ' NS -
(2.26a.) : L)t @ "W W)l = (W) & (g - Wy '8)
a{r) () (r)y -1 (r)°
. Ly 8= i
(2.26b.) 8" "=(w " "RW "] W' R§
with
_o-l -1 o NS -1 - o-1
R=Q 2 T(WgH,) [(HH )T 9 (W W,)] (W) @ R

-~

where Q@ is an estimate of Q = .[M‘(ITC)QV)M]andw2 is formed using lagged

residuals. The large sample covariance matrix for the restricted estimators

I T
in (2.26.), (é,‘g(r) » ¥'), denoted Vf, is consistently estimated by

. - - g i
-1 a1 () o-1
WOQ WO WOQ Wl WOQ W2
. Vo= (r)'=-1 (r)?'"-1 (r) (r)'=-1~
2.97.
( ) r Wl 2 WO Wl Y Wl Wl LY W2
\ t 1.
_Wzﬂ WO WQQ Wl WQQ W2 i
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In the case of general linear restrictions on the elements of B
in (2.14.), say CB = ¢, where C is a giﬁen matrix with g linearly indenendent
rows of rank ¢, and ¢ is a given gxl1 vector, an estimator of B satisfying
the restrictions is given by: '

. -~
-

(2.28.) B=p- e w o lcwaw et (C8 - c)

L= i S Sl e,
with 8 as shown in (2.15.), Q= [M (Lr()ﬂv M Tl

N\ . . '
and large sample covariance matrix, V(g), consistently estimated by:

-~ -

(2.29.) v = (e~ - e ™t o et e 1t et

While (2.28.) and (2.29.) are relevant for the case of general linear
restrictions, it should be appreciated that the matrices involved in the
expressions are quite large from a numerical point of view for systems
even of moderate size¥

(r)

To test the restriction that El = QQ CR—— Ep =8 , an nxl vector,
introduced in connection with (2.25.), we consider the following residual
sums of squares:

2 %) 2y, s R e
_ 2 Ay r)y, ~~1 2 Z(r r
(2.30.) 88 =(y-W "B R (F-wT 8
and s
(2.31.) 58
u

A~

3 <~ -
G - W) 27N - we)

PSR -~ RNy a 2 2
where 870" = a1, o7, 31) in (2.26.), W) = (W, wir) W),
2 2 oA .
= M (chggz )M_l and g in (2.31) is given in (2.15), with "= dencting that
v e

(r)

the quantities are computed using the second step estimates of § and B °. Thus,

the approximate likelihood ratio

(2.32.) N log (ssP/ssu)

is in large samples xi distributed where N = Tp and m= n(p-1), the number
of restrictions involved in Eq z 92 = ... =8 = EFP). Thus (2.32.) provides
a large sample x2 test of a frequently encountered hypothesis in model

. . . 2
construction. In a similar fashion, large sample ¥~ tests of the general
linear hypothesis CB = ¢ can be constructed.

* With respect to the large matrices that are encountered in joint estimation
procedures and that will usually lead to a multicollinearity problem, it is
worthwhile to mention the use of approximate Bayes estimates such as considered
by Zellner and Vandaele (1974). In a Monte Carlo study of the small sample (T=20)
properties of several estimators for a dynamic model with first order auto-
regressive errors, Swamy and Rappoport (1978) conclude that in terms of mean
square errors the ridge regression and the approximate minimum mean square error
estimates of the regression coefficients are significantly better than alter-
native estimates such as ML or Hatanaka's (1974) residual adjusted estimates.



- 13 -

III, Specification of and Estimation and Testing Procedures for Sets of

Transfer Functions

To specify a set of transfer functions (TFs), we partition the vector z

t
in (2.1.) as follows, E% = (X% ﬁ%) where Yy is a plxl vector of endogenous
variables and L is a p2xl vector of exogenous variables with_pl +p, = D-

With Et so partitioned, the system in (2.1.) becomes:

o

H (1) H (D) Iy

15 Fll(L) F.. (L)

12 21t
(3.1.)

b
+

H .(L}Y H_.(L)

”1 - LNy F, (L) F__(L)

2 21 22 Sot

[[eX!

The assumption that X is exogenous gives rise to the following restrictions

on the system in (3.1.):
(3.2.) Hzl(L) =0, FlQ(L) =0, and le(L) = 0.

With the restrictions in (3.2.) imposed on (3.1.), we have

(3.3a.) Hll(L)Xt + H12(L)§t c, * Fll(L)Elt

1

S, + Fyollde,,

(3.3b.) H,, (L)x,

The system in (3.3a.) is in the form of a set of linear, dynamic simultaneous
equations while that in (3.3b.) is a set of ARMA equations for the exogenous
variables.

The TFs associated with (3.3a.), obtained by multiplying both
sides of (3.3a.) by Hzl(L), the adjoint matrix associated with Hll(L) are

3.4 [, W]y, - BE(LH ,(L)x + HY (L)F (L)e, .

1

=g+ AL)x, + Kllde, o

where |H11(L)l is the determinant of Hll(L)’ <y is a plxl vector of constants,
r : q .
= - H¥* - 1 = 11k (] = ]

A(L)Y = Hll(L)H12(L) i§0 AiL and K(L) “11(L)F11(L) jEO KjL . In order

to identify (3.4.), we assume that |H11(L)| and |[K(L)| bave their roots outside
the unit circle and that the r.h.s. and the 1l.h.s. of (3.4.) have nc factors

in common. The ith equation of (3.4.) is given by:
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(3.5a.)  ¢(Llyg, = c .+ 81 X +kle)

1

where ¢{(L) = IHll(L)|, E& is the i'th row of A(L) and Ei is the i'th row
of K(I.). Just as with the FEs, the AR polynomial ¢(L) is the same in each .

equation if no cancelling occurs. To allow for possibly different ¢(L)

in different equations, we shall write the TF system*as:

= t 1
(3.5b.) ¢, (L)y,, = ¢y, + 81x +kie .,
M.

1
cow by L

. 2
with ¢i(L) =1 ~ ¢ilL - ¢i2L -

i=l,2,...,pl,

, with m, assumed known. Since

the error terms in (3.5b.) have a structure ‘similar to those in (2.4,), the

representations presented in (2.5.) and (2.7.) are relevant here.

Each TF can be estimated separately using single equaticn non-linear

least squares or the single equation ML procedure. Joint estimation of the

parameters of the set of TFs (3.5.) will now be considered. Therefore we

write the system (3.5.) as

(3.6.) gy = Y0 +X,e +XE+u,
where Yige1 Vg~ = ¢ y1t-m1
. 0 0
Yy
Py
Py¥iy ™
0 L} L} L] L] - » - - - - - L
1 -
L L I SV SRR ST PPRREETIL PO ¢
1 2
X =1
ot P;
*

We implicitly assume that the TF system has been normalized.




!
J

X X s X 0 .. 0% X .. X 0 .. 0
1t 1t-1 lt—rll 2t T 2t-2 2t Toy p2t rp2l
X x X
1t 1t-1 .. 11:--:012 0..90 x2t . xp o
. 20 P2
Xt =
"1t Xp t-r
20 PPy
Py
px(p2 + ‘E T?X rij)
i=1 :|—l,..,p:2
&' = vec [Al ﬂ2 ...ﬁr]‘ and, provided the values of the initial conditions are
zero, u, = K Ei , where g} = [(Kogll)' (Kong)' ces (Kong)'], E(Elt £14) ¢

1 -
KO KO = QE, and

T 0. .. ... 0
D, .
-
K. K .
i
- 0 0
K =
-1
K
qKO .
0 . .
1 -1
L] K
a0 Ko 'p,
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For a sample of T observations, we write the system (3.6.) as

(3.7.)

1

Yo ¢+ X c. + X§ + u

LT T RS T2,
ShA Yy
with Zl (Y,XO,X)
A= (0, el 8
As in the preceding section, the likelihood function for the unrestricted
gystem of TFs, conditional on zerc starting values¥, can be written as:
-T/2
(3.8.) L(Al, QE, K, y) « |9€| exp(S)
where S = -} (y2 A KT (1 @Y K Hy-z,2,)
2 AT T L%
The first order conditions for a maximum of the log-likelihood functions are
S _ ype-l -1, -1
(3.9.) ai—Zl( (I, @77 X u =0
here At s (A, Al), with A} = vec [K KL K _l]'
and

Z= [2 Z
17, 2,]
¥
Zé = [Eij], where i=l,2,..,pl, £=1,2,..,9, j=1,2,..,pl, and with typical
row

€.. 0..0 ..,.. 0. 0 e, 0,..0]
31, M \ v 3T-% 1

£pl times P, element;\\“\\kwff,/’fgz-elements

i'th position

As in to the preceding section, a fully** efficient iwo-step estimator

of X is obtained using expression (2.13.) to yield

g

PR SR | o1y omio-L (oo, -1 o1y o=
= ' 1 tit
(3.10.) A= 1[z2' K (I, @) K "z] ~ [2'K (I, ®e,7) K~ @

¥ As with the set of FEs, the starting values may be "backforecast”

using single TF equations. They may also be considered as unknown
parameters to be estimated (e.g. Phillips (1966)).

** This means, that the estimator is as efficient as the ML estimator for the
parameters of the TF form, ignoring restrictions coming from the vnderlying
structural form,



where """ denotes that the uncbserved gquantities are computed at consistent

estimates of l,‘l; and the sample residuals obtained from the estimates and

q

LA It

;..,E%), where W=

-1
z
1 5K e

The remarks made in the preceding section concerning expression (2.15.) also

apply to (3.10.). The steps in obtaining joint estimates of the parameters
in (3.5b.) are as follows:
1. Fit individual equations of (3.5b.) to obtain consistent estimates of
the contemporaneous residuals, Et’ t«.'rhel"egC Koglt’
2. Use the residuals to form a consistent estimate of the contemporaneocus
t = vt =
covariance matrix of g 1+ EetEt KOKO = QE, namely
- T .
(3.11.) @ = § EE/T.
E =1 —¢~T
3. Rewrite the i'th equation of (3.5b.) as:
" Ti1 1p2
(3.12a.) y._ =c .+ L ¥y, ..+ & ...+t ETx 8,
it - %11 =1 i,t-271% 4=0 1e-2112 2=0 p2,t 2 1p2£
¥ ¥ *
T Eeaa¥in Y E ¥ Y —a—t—qiﬂi,qi T e
or
(3.12b.) y. = CrbPY. gt Koy, + & tEL
= Jiﬂi + Ei 1=1,2,...,pl
where b8 has typical element Vit
Y, has typical row (ylt 12¥56-0%" Y i, )s
X, has typical row (X, X,  aveesXai,  seeesX  9X L iaeesX ),
i 1£°71t-1 it v p2t p2t 1 p,t rpzi
1
gi has typical row (at 1,3 2""Et“qi)’
€ has typical elementeit,
o' =
L3 (¢11’¢i2”°"¢imi)’
' = LI A | - - - " n -
éi (6 loa ll&"'S{Silr, ‘3 Salp 0,6.1p l’ ’6lp r .)9
o1 = (P, " 1i 2 2 2 p,i
21 =31°%§2°° "' °%=1 q,7°
J,o= (s Y, Kore) o
i — Tis iv =i
1t o= (1,1,...,1) Tx1
LI T ey T
.rli ( 1 ¢l°ll'¢,l)
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We then apply ordinary least squares to each equation (3.12b.},

after replacing £ by Ei’ a matrix of the first step residuals Et
te cbtain consistent estimates of Ei'

4, Compute expression (3.10.), using tEe residuals obtained in step 2 and
the consistent parameter estimates QE and ﬁi to evaluate the unknown
quantities in (3,10.). Iteration of (3.10.) yields the ML estimator
given known and fixed initial conditions. To compute the inverse of R? one
ought to exploit the block-triangular structure of this matrix. This
reduces the inversion of a Tpl matrix to addition and multiplication of
P{%P matrices, as discussed in Palm (1977.b.).

The large sample covariance matrix of the estimator proposed
in (3.10.) is consistently estimated by

-

gt | “-1, = -1mg-1
(3.13.) wvaAr (1) = [z2'K' (IT®9E ) Kk Tzl

In considering TP estimation, it is important to realize that the
number cof parameters in each TF can be large when there are several inpﬁt
variables in the vector X and lags relating tc them are long. In such
cases it will be expedient to consider reducing the number of free parameters
to be estimated by making assumptions regarding the forms of lagged respeonses
as is done in the distributed lag literature --- see e.g. Almon (196%),
Dhrymes (1971), Shiller {(1973) and Zellner (Ch. 7, 1971). And of. course,
introducing the restriction that ¢1(L) z ¢2(L) s ... = ¢p1(L) = ¢(L) in
(3.5b. ), when warranted, will lead to fewer free parametefs to be estimated.
A large sample x2 test of the hypothesis that ¢1(L) = ¢2(L) = ... ¢p (L) = 4(L)

can be constructed as in the case of PEs where a similar hypothesis wa%

considered.
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1V. Estimation and Testing Procedures for Structural Equations

The structural equations (SEs), shown explicitly in (3.3a.), will not
be considered., We shall assume that a sufficient number of zero restrictions
has been imposed on the parameters of the system such that the rémaining
free parameters are identified -~- see Hannan (1971) and Hatanaka (1975).

In what follows, we shall first take up "single-equation" estimation
techniques for parameters in individual SEs and then go on to develop a
"joint estimation" procedure that can be employed to estimate parameters

appearing in a set of SEs.

4,1, Single-Equation Estimation Procedure

The i'th SE of the system in (3.3a.) is given by:

Py b ) Py
(4.1.) LI h,.{l)y. + I h, (). =c .+ I Ff,.(Le.
j=1 1] Jjt j=pl+l 1] It 1i =1 ij jt

t21,2,...,T
Cn imposing identifying zero restrictions and a normalization rule,

h 1*¥, the remaining free parameters of (u4.l.) can be estimated utilizing

1307 _
the techniques described below.

As shown in connection with (2.7.) above, we can write

Py
(20 B g eg = 45008
where 0500085 = Bie * Pubieer T Paobien Tt fighieg

where q; = max %3 > with qij the degree of fij(L)’ and git is a non-

autccorrelated, normally distributed disturbance term with zero mean and
. . 2 s s s

constant finite variance, Ug , for all t. On substituting form (4.2.) in (4.1.), .

we have Py

(4.3.) 13

P -
; hij(L)yjt + by h"(L)xjt et ¢bi(L)£it . t=1,2,...,T

1 j:pl+l +J

with the property that xjt

Since more than one current endogenous variable appears in (4.3.),

and Eit.are independent for all j, t and t'.

along with lagged endogenous variables, and since the disturbance terms are
scrially correlated, it is well-known that usual estimation techniques such
as two-stage least-squares, etc., yield inconsistent structural coefficient
estimates. |

* = 2
Note hij(L) = hijo + hile + hisz + ... .
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T
t=17it
parameters of (4.3.) yield inconsistent coefficient estimates because of

Similarly, non-linear techniques for minimizing with respect to the
"simultaneous equation” complications¥.

To get consistent estimates of the parameters in (4.3.),
one can use an instrumental variables method using as instruments
for the current and lagged endogenous variables, the current and
lagged exogenous variables, One can also use the yjt—q.—ﬁ’ j:l,...,pl,
2=1,2,.,.. as instruments for the current and lagged t endogenous variables,
as these instruments are independent of the error term ¢i(L)£it.

The use of lagged endogenous variables as instruments has been proposed by

-

Phillips (1966).0n de basis of the instrumental variables estimates, c,. and
i §

Bij (L} j=1,2,...p in (4.3.), one can compute the residuals.

P1 . P - -
- _ - : t
fey™ jgl hij(L)yjt + j=p§+l hij(L) xjt tCyy and then fit a a} th order

MA model to the residuals to get consistent estimates of the ¢i2's
2:1,2,...qi.

Alternatively, as explained in Zellner and Palm (1874}, one may use
the FEs (or TI's) to substitute for current endogenous variables appearing
in {4.3.) with coefficients with unknown values, that is yjt’ j=1,2,...,pl,
for j#i. Tor example, the FEs for the th given in (2.4.) are:

(h.4.) o= e, +0.(Ly. +ale
Y50 7 %5 T U350 T 255

where §j(L) is the homogeneous part of—ej(L). On substituting from (4.4.)

in (4.3.) for y. 31,2,...,py > for j#i, we obtain:

it’
Py b
(%4.5.) Vi t jg hijo [cj + §j(L)yjt + g:!lgt] + 3‘51 hij(L)yjt s
j#i
p —
+ j=P§+l hij(L)xjt = et Gi(L)Eit, t=1,2,...T,

where Eij(L) is the homogeneous part of hij(L). On rearranging terms in (4.5.),
we can express (4.5.) as¥*

* N 3 7 Ll = - .
Explicitly the pdf for Ei (511’512""’git"‘°’€iT) is:

2 2.,-T . s
p(EJUE) = (2ﬂ0€) /2 exp{—EiEi/QUE} . This last expre581%n, however,
2] =iz

is not the likelihood function and thus minimizationcxftzl Eit does not
provide consistent maximum likelihood estimates. The difficuity is analo-
gous to that arising in application of OLS to estimate structural para-
meters in usual structural equations.

** One has to be cautious that the regressor matrix does not become singular,
as one substitutes linear combinations of lagged endogenous variables for
the current endogenous variables.
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(4.6.) Vi + j§1 hij0 [cj + Bj(L)yjt] + j§1 hij(L)y

j#1

jt

. p '
+ z hij(L)xjt =y ¥ wi(L)vit

]2p1+1
Py
+ - — 1
where we have introduced lpi(L)vit cI>J._(L.)%;:.Lt jgl hijOEjEt'
j#d

wi(L) is & polynomial lag operator of degree r ={max qi,rj|j =1,2,...,pl;j#i}
with rj = degree of the highest degree polynomial in the wvector g&. The
error terms, Vigpo t=1,2,...,T are normally and independently distributed
each with zerc mean and finite, common variance, 03..

Note that for given values of cj and the paramiters in §j(L), (4.6.)
is in the form of a TF that is linear in the parameters. In view of this

-

our estimation approach involvef analyzing (4.6.) as a TF with ¢, = cj
and Bj(L): Bj(L), ﬂhere Ej and §j(L) are consistent estimates cbtained

from estimation of the FEs in (4.4.) Since the Jacobian of the transformation
form the vii's to the yit's in (4.6.) is equal to 1, the likelihood function
is given by:

T .
(4.7.) p(li|5)X,X0) = (2n03.) T/Qexp —{tglvitfzci.}
i i

L. ' 0
where Xi (yil’yiQ""’yit’°"’yiT)’ E'denotes the vector of freé parameters
to be estimated in (4.6.), x is the matrix of observation on all exogenous
variables, including initial values, ¥ denotes initial values of the

endogenous variables appearing in (4.6.), and

P, P,
(4.8.) Vie T Y5 ~ O t jél hijO [cj + Bj(L)yjt] + jgl hij(L)yjt
j#i
p r
+ j=p§+l hij(L)th + jgl wijvit—j'

Given that consistent estimates of Cj and gj(L) are inserted in (4.8.),

a non-linear computational algorithm, e.g. Marquardt's, can be utilized
to obtain consistent estimates of the remaining free parameters of (4.6.),
The inverse of the information matrix, evaluated at the consistent esti-
mates, provides large sample standard errors. These results in conjunction
with the large sample normal distribution of the estimates provide a

basis for performing large sample tests of hypotheses.
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The above procedure for estimating parameters of (4.6.) can be
applied for i:1,2,...,p1 to obtain "single-equation’ parameter estimates

and residuals, ﬁit’ i=l,2,...,pl, and t=1,2,...,T. Since

P
l.
= - .z ! i
vit git j=lhij0§302t’ where Ej is a vector of constants,
' jFi
L] - 3 :“Q OZ - " .: LI
(4.9.) glt Vig ¥ j=1 hleEjOEt =1,2, °Py
3#i
A
is a consistent estimate of Ei where a;o_t denotes a vector of residuals
from the FE system in (4.4.) Also, from (3.3a.) and (4.3.), & "t = Fii081¢ ° Yo
t = 1 =
where Et (Elt’EQt""’gplt)’ u (ult’u2t""’up1t) and
(100 Fpy(Meyy = Frgofre ¥ FanaSre-r T oo ¥ FieSieen ©
= u + ngt l ave Rr—t—r
with R, = F,  Fi+ R =F,  F! Th : t in (4.10.)
1 1115110 *° » R, 11rf110 e error vector u i .10,
ig normally distributed with zero mean and covariance matrix Eu u'! =
¥ -4 T = ¥
FllOFllO s @ Py¥py pds matrix, for all t. Also Egtgt,‘o for t#t' and all
t, t'. Thus from (4.9,), it is possible to compute gt = Et once all

equations of the system are estimated. The Qt's thus computed will play

a role in the joint estimationprocedure to be described in the next section.

4,2, Joint Estimation of a Set of Structural Lquations

We now consider (4.1.) for i=1,2,...,pl,

1 O

(4,11.) H

L
o 11872

[E I e LA

e
* jEO Bips¥eg = Fiardat-h

L h=0

where the diagonal elements of H are equal to one. For a sample of T

110
observations, we can write the system (&.11,) as

(4.12.) gy = zLﬂl + Fv = Zlﬂl

tu
where y' = (111’253""2%)

=Xy Yy X))
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X! = [Ip ot L ]
1 P 1
pyupyT
Y, = (Y@glpl)
P1T¥Py
Vi Y vt Yt
y -
Y : 12 L]
Txpl v
1T .
_ Py ]
1 ¥ 1 * ] ]
Ipl®(10 ¥l eee Vige B EG oo Bloy)
T 1 I 1
Ipl()(lh Iy LAY
X, =
t 1 1 t
IP1®("7‘LT-1 Jp-s  Er ocer *op)
plT X pl(s+r+l)
k = [p, + p2 + p,(str+l) ]*
17 P TPy
f o= (ot 1 v
ny = (s 0y, 0g)
1 = -
n;, = vec (1 HllO)
L - - - - — L]
ng = vee (-Hygy = Hypy eer “Hygg “Hypg coe 7 Hpp)

* Of course, one has to impose restriction on the structural parvameters,
e.g.zero restrictions, for which some of the columns of Z1 will be
deleted,
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0
"0
-1 -1
0 . . 0 F FiTg +er FiygFryg Ipl
L 1 L] =
v'E Yy e Ypds By T Fppoy
+ - ] - e = 6 i
with E(v,) = 0, E(v, 1) = 8r FpygFlig 7 Sgprlye where 8, is the

Kvonecker'delta.

Since the ET'S are assumed to be normally distributed, the likelihood function

can be written as L(y, 21"31’ Zv, F) o«

(4.13.) [H N |zv|'T/2

-1 -1
110 exp {-3[(y -2, n ' F (1. @) |

F'l(x,-zl n)b

In order to keep the block-triangular structure of the matrix F, we proceed
in a way slightly different from Reinsel (1977) and write the first order
conditions for a maximum of the likelihood function as:

1

9 1n L ¢ ol -1, -1 _
— 2y P T (L @®L ) F Tu=0

(4.1u4a,)

(b) 3 In L ~1

-1 ..l -1
= - 1 ¥ =
T vec (Hj, )~ + Y'F (IT®ZV ) F u=0

-1
u

(e) —=—— =X

3]
=

-1 -1
1
F (ITQQEV ) F

3 In L _ oy ol o D
(@) LB s T (@) F

1
|o
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': - ¥ '
where 8 vec [1—“l F2 Fq]

t

]

L . .
[le ]9 1:1925-°-=Pl’ 2= 192s"°sqs 3:1329-'°9P1

2

with a typical row

gf

v,, = [0,0 .. 0 4 0 veu V.y +uu O 0 vee Var 000 ouv 0w, 0. 0]
—ij ' . i1 . 32 ) JT-%

pli times Py elements
i*th position

The first r.h.s. term of (4.14b.) may be written as

-1, -1
(4.15.) vec (Xv Y lelO)
- 1 T i
- el . 1 - T 1
where EV = 7 § ETET T vy with
=1
- =~
v v
: 11 pll
v =
Txp
1 ViT v
p,T
and ¥V Hiloz W is the matrix of reduced form disturbances. But
- vec (EHlV'W) = - (W'Gggﬂl) vee (V') = - (W I NI C)E_l)v
v v p1 T v -

We can write the set of first order conditions for a maximum of the likeli-

n

hood functicn with respect to n' (ﬂi’ B') after substitution of the first

- T
s . -1 '
order conditions for Zv, i.e. Ev =T ? tht’
t=1
d In L _ ,."1 -1 -1 -
(4,16, ) T = 2'F (1, ®I,)F " u=0

- _ L}
where 7 = (YO, Yl F(W @glpl), Xl, X2).

As discussed by Reinsel (1977), neglecting terms which, divided by T, have zero

probability limit as T -+ «, we have

N B 1 2-1, -1
(L)) = plim5 Z'F' ~ (1@ ) F " Z.

T > o

T 4w onon'

Using a lemma by Dhrymes and Taylor(1976) the following two-step estimator

for n has the same asymptotic distribution as the ML estimator:
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]

(5.17.) A=A - MR

where fi is a consistent estimator of n such that /T(ﬁ'— HO)’ L being
the true parameter value, has some limiting distribution and the matrix
r(fi) is such that

132 InL

r(a) = plim T -—a-ﬁé'i.-— (110

s 1
plim T
T+ o T+

)

Applying (4.17.) to the present problem yields

-~

_ - "l ﬁ"'l _1 - _1 - . _1 ‘-l a._l .
- rpt o
=7+ [2'F (I, @I, ) F " 2] " 2'F (I, @ F ~ 1

= s

(4.18.}

vwhere """ denctes that the unknown quantities are evaluated at consistent

parameters estimates., The first step consistent estimates can be obtained

using one of the single equation estimation method proposed in section 4.1.
As we can write the system in (4.12.) as

(4.19,) :_Z=[X'F(W'®Ipl)+}i“.‘i]=211+14_=Z£+F3’.=
we may apply generalized least squares to (4.19.) after having evaluated
the regressand i} the regressors Z and the disturbance covariance matrix
F‘(LFGDEV)F at consistent parameter estimates - this is in fact one way
of computing the two-step estimator in (4.18.) and it shows that the vwo-step
estimator (4.18.) can be interpreted as a residual-adjusted estimator, a
term introduced by Hatanaka (1974). Reinsel (1977) derives a slightly
different estimator to which he gives an instrumental variables interpre-
tation., It is obvious that the computation of the two-step estimator (4.18.)
which, if iterated until convergence, yields the ML estimator given fixed
and known initial conditions, invelves the inverse of the plTxplT disturbance
covariance matrix F‘(LTGDEQ)F. In the way, we have analyzed the -problem, this
involves the inversion of F which is a block-band triangular matrix, As shown by
Palm (1977b), it only requires multiplication and addition of matrices of order
P1%Pq-

As already discussed in section 2, the approximation in (4.18.) to
the second step of the Newton-Raphson algorithm, is in fact the second step
of the Gauss-Newton algorithm starting from consistent parameter estimates.

The large sample covariance matrix of §j is consistently estimated by



- 2 =

~ - ‘..l

(4.20.)  V(Q) = [zt (I, ® z;l) F .

7] "

will be approximately normally distributed in large samples, approximate

{Sh

Since
tests of hypotheses can be constructed.

As in the discussion of TF estimation, it is importént to emphasize
that (4.18.) involves rather large matrices when the dimensionality of n
is large. The situation is similar to that encountered in three-stage:
least-squares but here in addition to structural coefficients, there are
also parameters of the MA disturbance process to estimate. As with threce-
stage least-squares, the estimation approach described above can be applied

to subsets of the structural equations.

4.3, Single Equation Structural Estimation Reconsidered: 2 step LIML

Given that full information methods usually invelve complicated compu-
taticons and that the complete system is not always fully specified, we
consider in this section single-equation methods from a ML point of view.

Consider a structural equation, assumed to be identified by exclusion

restrictions, of the system (4.1.), say the first one

4,21, + =

(210 Y)Yy © %

where Y(l) = (Xl Yl) is the Txm(l) matrix of observations on the current
endogenous variables included in the first equation, with
m(l) = ml+1

(1) is the matrix of observations on included lagged endogencus ,
included current and lagged exogenous variables and a column
of 1's for the constant term.

N1y and E(l) are vectors of the non zero structural coefficients

in the first equation,

] -
o= ugy w, .- ng).
We write the unrestricted reduced form for Y(l) as
(4.22.) Y(1) =7 Il(l) + V(l) = zl H1.+ ZO HO. + v(l)
T = ' . t
where I (1) (Hl. : HO.)

Postmultiplying (4.22.) by-ﬂ(l) and comparing the result with (4.21.) indicates

the felleowing restrictions:
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(4.23.) I =0

0. A1)

n 8

1, 21y T A
From the assumptions on.the model , the rows of ﬁ(l) are normally distributed,
with zero mean and common covariance matrix R(l)’ Each row of V(l) can be
represented as a MA of order U1y In orger to get a simple structure for the
disturbance term covariance matrix, we vectorize the model (4.22.) as

follows

t

(4.24.)  vec (Yzl)) = [Zlqglm ] vec (Hl.) + [ZO@§Im 1 vec (H;.)

(1) (1)

+ vec (VEI)).

which we write as

(4,.25.) Y1y © wlll + WOEO +‘3(1)

and the MA.representation of Yy @s
(#.26.)  voyy = Frgy €01y
where —Im 0 0 ]
(L)
Foon
(4.27)
r
F(l) = (l)q(l)
0 0
0 0 F F 1

and (1) is normally distributed with covariance matrix Q(l) and zerc serial

correlations. The likelihood function may then be written as

N -T/2

(4.28.)  Lly iy Wys Wos 345 30, 21y F(l)) |9(1)| “exp (3)
-1

where S = =3 () = WXy = Wonp)' 87 (g - Wymy - Wonp)

and Q=

Flyy (I ®98(y) Fryy-
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We define the LIML estimator in a way slightly different from the usual
definition¥ as the estimator which maximizes (4.28.) with pespect to

T j = 0. icti
Tyo Tgo F(l) and‘ﬂ(l) subject to "O;Q(l) 0. The restrictions mgy also be
vectorized as:

(4.29.) [Im®'—1{1)]' Ty =0

The Lagrangean expression is

—__T, - t L)
(4.30.) 2z =-7 log |9(l)l +5 -2 {[Im(l)®_q(l)] LN
where A\ is the kO ¥ 1 vector of Lagrange multipliers.

The set of first order conditions for a maximum is

9z _ -1

= €
i
a1, 1 (1)

(4.31.a.) =9

Az '
(4.31.b.) == =W R " ¢ - (I EOn .} A=0

(4.31.c.) 22 = w! @

T ST CP R

]t

H|

where 91 = vee TF(y )55 Frayzores Frayg,

W
W2

|

9! . - s '
[Eij] s 1-1,2,...,m(1) . £~1,2,...,q(l) . J«l,?,...,m(l) and

= - . L0 . €. 0:..0
, = [.o,o...g,lo...bjl,o...o.,lo “e €400 o.,.. 0 0 jr- .J

) times ﬁ(l) elements \ 4’/,4~'

i'th position

A m(l

9z
(#.31.d.) =—— = (1 @r')Ba, =0
My M °
1
- - \!
B:{ B, and B, = [Im(.l)®f”— ]._]
m
(1y e'i = {0,0..012 0 .. 0]

i'th position

9z _ ' =
(4.31.e.) T [Im(1)®ﬂ(l)] Ty = 9

In terms of asymptotic properties of the LIML estimator it does not matter

whether we maximize the likelihood function concentrated with respect to Q1)

or use a consistent estimate forfl in the first order conditions for a maxi-

mum of the likelihood function wi%%)respect to the remaining parameters,
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We can solve (b) for w_, to get

PR B | g
(4.32.) m = (Wp@ W) " Ly, - W, (Im(l)()fklj) Al

Substituting (%.32.) into (4.31.e.) and solving for X gives

- -1 -1
(4.33.) A= (I Gnl W2 " W ®n,, 1 Tl ®@n!.\)
ey (1) 70 0" meyy (1) 1) (1)

-1 1

W) T (yy - Wm )l

T
(Wy @ = W,

The set of first order conditions for a maximum in (4.31.) is clearly
nonlinear in the parameters. We can approximate the solution by a two-
step Newton-Raphson procedure, as has been done in (2.13.), starting with
congistent estimates for s Tys ¢ and D{l)’ computing A from expression

(4.33,) and evaluating¥

38

(1.34.) =8 - IO [BZ] -

jo |@

where 6 = (n',¢",7',nt. . ,A"), is a consistent estimate of 6 satisfying
- —1*+ *=0°—(1)°~ =

the requirement in (2.13.) and

1 -1 : h

r(8) = | ”ig_lwl Wi, WeTH 0 0
Wie lwl w59“1w2 WQ lwo 0 0
(4.35.) w;jsz‘lwl wén'lw2 waﬂ'lwo “B'A ~(Im(l)®p_£l))
0 0 -A'B 0 B'BT,
0 0 -(I, @n'(;)) 1g8'B 0
L (1) | -

-

The2probability limit of the matrix‘%r(g) in (4,835.) usually is the matrix
% %E%ET (EO) where 8 is the vector of true parameter values of ©. 0f course,
one can iterate the expression (4.34.) to get the exact solution of the first
order conditions for a maximum of the likeiihood function, which is the
limited information ML estimator given fixed and known initial conditions. In
terms of asymptotic efficiency, it is not necessary to continue the iteration

after the second step.

*The unknown elements of R( will also be replaced by consistent estimates.

1)



V.  Some concluding remarks

1. In this paper, we have presented several estimateors for the three forms

of a dynamic SEM with moving average disturbances, and we have discussed

their asymptotic properties. The results essentially rely upon

a)  the asymptotic properties of the ML estimator of the parameters of

dynamic models and

b) upon a result given by Fisher (1925}, Kendall and Stuart (1961),
Rotherberg and Leenders (196#) and later by Dhrymes and Taylor (1976}
concerning the asymptotic porperties of a two-step iteration of the first
order conditions for a maximum of the likelihood functiom.

0f course, the starting values for the iteration and the matrix T

approximating the matrix of second-order derivation of the log-likelihood

function have to satisfy some conditions (see e.g. (2.13.)), which we give

in the text, but which we do not verify explicitly for the estimation

problems considered. It ought to be clear that the requirements such as

stated in (2.13.) have to be checked in practical situations.

2. Computation of the estimators presented above generally involves

operations on large matrices. For ex., in each case cne has to compute the

inverse of the covariance matrix of a vector-MA proces,

The estimation methods presented here open an immense field of application

for good numerical matrix inversion procedures exploiting the special features

of the covariance matrix of an MA process.

3. Despite the fact that the field of application of the methodé presented

is probably limited to small models, the results of the paper clarify a number of

questions concerning the asymptotic properties of estimators for dynamic and
static models. For example, if the disturbances of the TF system in (3.6) are

not correlated, i.e. Khzo, h=1,2,...,q9, then the two-step estimator given
in (3,10,) specialises to Zellner's estimator for seemingly unrelated
regressions.

Aé a second example, assume that Hll(L) in (3.3a.) is an unimedular

matrix, i.e. |H11(L)|= constant, then the expression given

in (3.10.) specializes to an expression with Z' = (X§,X3Z4%)

and the covariance matrix of the estimator in (3.10.) will be asymptotically

a block-diagonal matrix as plim<% [(X&X')ZQI =0 under suitable conditions.,
T+ o
Therefore it will be sufficient to have consistent estimates of A, to efficiently

2
estimate (Ei=§')-i“ (3.7.). A similar result has been established by Amemiya

(1973).
4, It is to be expected that the estimation results can - at least -
for samples of the size encountered in applied work - be improved by using

two-step estimators approximating the first order conditions for a maximum
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of the exact likelihood function. One step in the direction of using

the exact likelihood function is to "backforecast" the values of the

initial conditions for FE, TF or structural equation systems., This

aspect however deserves additional work.

5. The discussion has been in terms of large sample properties of the esti-
mators for dynamic models. Small sample properties of the estimators have

to be investigated yet. However the Monte Carlec results obtained by

Nelson (1976) justify some optimism about improving in small samples the

efficiency of the estimation results by computing the second-step of iteration,
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