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In this paper we consider large sample estimation and testing proce­

dures for parameters of dynamic equation systems with moving average error 

terms that are frequently encountered in econometrie work, see e.g. Quenouille 

(1957) and Zellner and Palm (1974). As pointed out in Zellner and Palm (1974), 

three equation systems that are particularly relevant in econometrie model­

building are (1) the final equations (FEs), (2) the transfer functions (TFs), 

and (3) the structural equations (SEs). In the present work, we specify 

these equation systems and develop large sample "joint" or "system" estima­

tion and testing procedures for each system of equations. These "joint" or 

"system" estimation procedures are iterative. They provide asymptotically 

efficiënt estimates of the parameters at the second step of iteration. The 

maximum likelihood estimator is obtained by iterating until convergence. 

The "joint" estimation methods provide parameter estimates that are more 

precise in large samples than those provided by single-equation procedures 

and the "joint" testing procedures are more powerful in large samples than 

those based on single-equation metnods. 

The aim of the paper is to present a unified approach for estimating 

and testing FE, TF and dynamic SE systems. In the paper we use the results 

of previous work on the asymptotic properties of the maximum likelihood 

(ML) estimator of the parameters of a dynamic model. We extend the recent 

work on efficiënt two-step estimation of dynamic models (e.g. Dhrymes and 

Taylor (1976), Hatanaka (1976), Palm (1977b), Reinsel (1976,1977)). 

* Research financed by National Science Foundation Grants GS 40033 and 
SOC 7305547, income from the H.G.B. Alexander Endowment Fund, Graduate 
School of Business, U. of Chicago, and the Belgian National Science 
Foundation. The present paper is a revision of an earlier draft completed 
in 1974. The first author is presently at the Free University of 
Amsterdam. 
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Previous work related to present work includes that of Deistier 

(1975, 1976), Hannan (1969, 1971) and Hatanaka (1975), who have considered 

the identification problem for dynamic SE systems with moving average error 

terms. Maximum likelihood estimation of dynamic SEMs with moving average 

errors has been considered by Byron (1973), Phillips (1966) and Wall (1976) 

in the time domain, and for dynamic SEMs with stationary errors by Espasa 

and Sargan (1975) in the frequency domain. Spectral estimation methods 

for static SEMs with stationary errors have been proposed by Hannan and 

Terrell (1973) and by Espasa (1975). Among many other workers, Akaike 

(1973), Anderson (1975), Box and Jenkins (1970), Durbin (1959), Hannan 

(1975), Kang (1973), Maddala (1971), Nelson (1976), Nicholls (1976), 

Osborn (1976), Pesaran (1973), Pierce (1972), Reinsel (1976), and Wilson 

(1973) have considered estimation of parameters of single-equation or multi-

equation ARMA and transfer function models. The problem of TF estimation 

in a single-equation context has been extensively studied in the "distributed 

lag" area. Closely related to our approach for FEs is the work of Nelson (1976)who 

considered joint estimation of a special FE system with diagonal MA matrices. 

For a system of TFs, Wilson (1973) proposes an iterative procedure 

leading to a ML estimator. With respect to ML methods for TFs (e.g. Wilson 

(1973)) and dynamic SEMs (e.g. Byron (1973), Phillips (1966) and Wall 

(1976)), our approach is computationally more convenient to implement while 

having similar asymptotic properties. Many of the spectral methods apply 

to more general models, in the sense that the authors assume a stationary 

error process. For an extensive review of the literature, the reader is 

referred to Aigner (1971), Nicholls, Pagan and Terrell (1975) and Rström 

and Bohlin (1966). Finally, estimation methods for dynamic models with 

autoregressive errors, which have a long tradition in econometrics, are 

reviewed by Hendry (1976). 

In what follows we shall specify the FE system that we consider in 

Section II and then go on to develop estimation and testing procedures 

for parameters of the FE system. In Section III, a TF system is specified 

and inference procedures for it are developed, while in Section IV the SE 

system is presented and procedures for analyzing it are developed. Section 

V is devoted to summary and discussion of the results with particular 

emphasis on relating them to the structure of econometrie estimation procedures 

and on pointing to problems tiiat remain to be analyzed. 
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II. Specification of and Estimation and Testing Procedures for Final 

Equations 

Let z! = (z„ , , z„J_,...,z _,_) be a vector of observable random variables —t lt 2t' ' pt 

generated by the following multivariate autoregressive-moving average (ARMA) 

process such as studied by Quenouille (1957): 

(2.1.) H(L) z^ = cn + F(L) e^ t=l,2,...,T 
—t — 0 —t 

pxp pxl pxl pxp pxl 

where c! = (c ,c9,...,c ) is a vector of constants, L is a lag operator 
Tï 

such that L z = z^ , H(L) = {h..(L)} and F(L) = {f..(L)} are pxp matrix 
—t —t-n 13 xj 

lag operators with typical elements being finite degree polynomials in L, 

namely h..(L) and f..(L), respectively, and e_ is a pxl random error vector. 

We assume that e is normally distributed with 
(2.2.) Ee,_ = 0 and Ee._e' = 6 'I 

—t — —t—t' tt' p 

for all t and t' where 6 is the Kronecker delta. Note that contemporaneous 

and serial correlation as well as different variances for the error process 

in (2.2.) can be introduced through appropriate specification of F(L). We 

further assume that the inverse of H(L) , H (L) = H*(L)/|H(L)|, exists, where 

H*(L) is the adjoint matrix associated with H(L) and 'JH(L)| is the determinant 

of H(L) that is a scalar polynomial of finite degree in L with roots lying out-

side the unit circle. 

The "final equations" (FEs) associated with (2.1.), obtained by 

multiplying both sides of (2,1.) on the left by H*(L), are given by: 

(2.3a.) |H(L)|_zt = cQ + H*(L)F(L)e_t 

or 

(2.3b.) 6(L)z_t = £ + A(L)e_t 

•x - - 1 - 1 

where cQ = H "(L) cQ and c' = d c' = d (c c ,...,c ) are vectors of constants, 

0(L) = |H(L)|/d and A(L)=r H*(L)F(L)/d, with d being a normalizing constant. In 

order to identify the system (2.3b.), we assume among other things that the roots 

of ïA(L)l are outside the unit circle, and that both sides of (2.3b.) do not 

have common factors. As pointed out in previous work, Zellner and Palm 

(1974, 1975), the AR polynomial 0(L) operates on each element of %_ . Unless 

there is cancelling, the AR parts of the equations in (2.3.) should be of 

identical order and have the same parameters. Since it is often of interest 

to test that the AR parameters are the same in different equations and also 
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for greater generality, we shall take up the problem of estimating para­

meters of the following system: 

(2.4.) e.(L)z.4. = c. + a!e . i=l,2,...,p, 
1 at ï —x—t 

2 "i 
where 9.(L) = 1-6..,L-6.L - . . . - 0 . L , with n. given. 

ï il i2 xn. ' i & 
x 

i=l,2,...,p, and a_'. is the ith row of A(L). 

In connection with convenient estimation of the parameters in (2.4.), 

we express the error vector A(L)e_ in (2.3b.) as 

(2.5.) A(L)e^ = A.e,. + A.e^ , + ... + A e. 
—t 0—t 1—1-1 m—t-m 

= v^ + Gnv^ , + . . . + G v, —t 1—1-1 m—t-m 

where G. = A.A , 1=1,2,...,m, A is assumed to be non-singular, and ̂ t
= A ^ , 

which satisfies Ev. = _£ and 

(2.6.) Ev v' = AnA' = ü and Ev v' =0, t^t'. 
—t—t 0 0 v —t—t' 

A typical element of £t
=A(L)e_ , say the ith, e. may be represented as a 

moving average in one random variable (see e.g. Ansley and al. (1977), Palm 

(1977a) or Granger and Morris (1976) ): 

(2.7.) e.^ = a'.e. = v.̂ _ + A..V. . + ...+ A. v.. 
xt —x—t xt xl xt-1 lm xt-m 

where the A..'s are such that they reproduce the autocorrelation structure 

of e.., i.e. xt5 

m-j m-j 
u).. E A., .A., = E a'., ,.a.,, j = 0,l,...,m, 
ii, „ ih+i ïh , . — ïh+n—ïh ' 
h=0 J h=0 J 

with A. =1, CÜ.., the ixi element of 0. , defined in (2.6.), and a' being 
xO xx v —xh 

the ith row of A, in (2.5.). Note that the v 's on the r.h.s. of (2.7.) are 
h ( xt 

normally and independently distributed, each with zero mean and common 
variance u... 

xx 

Each FE may be estimated separately using a single-equation non-

linear least squares or single-equation ML procedure. Joint estimation 

of the parameters in the system shown in (2.4.) will now be considered. We 

write the system of FEs as in Palm (1977b) 



( 2 . 8 . ) 

(L) O 

e2(D 

o e (L: 
P . 

i t 
22t 

L p t j 

m 
c + v, + E G, v. , — —t , . h—t-h h=l 

or a l t e r n a t i v e l y as 

(2 .9 . ) zt = wQt £ + w l t e t ^ 

with >L = I 
Ot p 

W 
l t 

pxk 

Z l t - 1 Z l t - 2 z1+_ 0 
l t - n 

Z 2 t - 1 Z 2 t - 2 - ' - Z 2 t - n 2 . ° • ' • ° 

p t - n 

lxk 
1 1 ' 12 ' 13 In » 2 1 ' 

• • • • ö _ * . 

2n„ P n . 

k = E n . 
i = l X 

m 

—t —t , , h—t-h 
h=l 

and for a sample of T observations 

( 2 . 1 0 . ) £ = W £ + W i £ + ü 
Tpxl (Tpxp) (pxl ) (Tpxk) (kxl ) (Tpxl) 

where z ' = ( z ' ,z i , z £ , . . . , z p , w- = ( I I , . . . , 1 ) , W- (W W' 
^ 1 1 ' W 1 2 ' ' W' ) 

J " -, rp 1 1 

and u ' ( u ^ , u 2 , . . . ,up ] 
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Assuming initial conditions to be zero*, the vector u_ may be expressed in 

terms of v 

u = Mv , where 

0 
I 0 

M = 

1 P 
G„ G„ I 

m m-1 

m 

I 0 
P 

0 G ... I 
m P-

and v' = (\r̂ , v^ ,... , v;,j,). 

Under zero initial conditions, the likelihood function is 

(2.11.) L(9_s_c,Msft ,z.) «c 

-T/2 -L ..-1 
in | *"" exp [-iu-w^-w^)1 M' (iiSnv ) M U-WQC - w^)]. 

As shown in Palm (1977b), the first order conditions for a maximum of the 

log-likelihood function are 

(2.12.) |~ = W'M'"1 {I Q ü 1 ) M _ 1u = 0_ 

where S = -\ (z - W_c - W..6)' M , _ 1 ( ^ © S f 1 ) M _ 1 (z - W c - W -8) 

3/ = (£», _e', x') 

Y' = vee [G., G0 ... G ]' with "vee" denoting the operation of — 1 2 m o r 

vectorizing a matrix, stacking column after column, 

This assumption is basically made for the purpose of simplicity. One 
can also " backforecast" the values of the initial conditions for a set 
of FEs, as Box and Jenkins (1970) do for single equation ARMA models, 
or treat the initial conditions as unknown parameters (e.g. Phillips 
(1966)). Whether backforecasting improves the properties of estinators under 
all conditions is not known. 
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W = tW W W ] 

W' = [_y_. .] , where i=l,...,p, ï,= l,...,m, j=l,...,p, and with typical row 
^ J 

v.. = [0,0,...,0 0,... 0 v 0...0 0...0 v. 0...0„0...0 v._ „ 0...0] 
X 1 . . I 1 ± 1 l Jf ÏZ i. A_—Jt—Ji±IZ . 

j, p times p elements 

ith position 

For given ft , the set of equations in (2.12.) is non-linear in the para­

meters of M. The solution of (2.12.) requires an iterative procedure. 

An alternative to the exact ML solution of (2.12.) consists in approxi-

mating the first order conditions (2.12.). Using a lemma given by Dhrymes 

and Taylor* (1976), a two-step estimator of j3_ with the same asymptotic properties 

as the ML estimator is 

(2.13.) £ - 5 -r_1(£) || (h 

where T(£) is a non-singular matrix such that 

2 
plim - r (B_) = plim - J^T (£Q) , 

3_ is the true parameter value and £ is a consistent estimator of J3_ 

such that /T (£ - J5_ ) has sorne limiting distribution. It should be noticed that 

the matrixTand the vector 9S/3g in (2.13) depend on the unknown parameters of 

ft . As the information matrix is block diagonal for 3 and ft , the use of a 
v ° - v 
consistent estimator ** for the unknown ft in (2.12) will not affect the 

v 
asymptotic properties of the solution of (2.12). 

Application of generalized least squares (see e.g. Palm (1977b) ) to " 

(2.14.) y_ = WQ £ + V1 6_ + W2 jy + Mv, 

v_ "= W_3 + u_ 

* For an earlier discussion on approximations to the ML solution, the reader is 
referred to Fisher (1925), chap. 9, Kendall and Stuart (1961), pp. 43-51, and 
Rothenberg and Leenders (196f). 

** The lemma given by Dhrymes and Taylor (1976) applies to all the parameters in 
the likelihood function, i.e. to 0' = (B' , vee (ft )'). Using a block-diagonal 
matrix T to approxlmate the Hessian matrix of the log-likelihood function with 
respect to 6 yields expression (2.13) for the subvector of parameters §, where 
the unknown elements of ft are replaced by consistent estimates. 



q. 
where y_' = (y_' y_' ... , y_') and y_ = z + X G,v , after evaluation 

h=l 
of the regressand, the regressors and the disturbance covariance matrix 

at consistent estimates of 3 and ü , yields 
— v J 

(2.15.) 3 = [W M'"1 (Lg)!!"1) M _ 1W] - 1 [W M'^Cl^Qfl"1) M-1y] 

where "~" denotes that the quantities are evaluated at consistent estimates, 

for example W = (W , W , W ). The two-step estimator in (2.15.), 

which is similar to those proposed by Reinsel (1976) for other models, has the 

same asymptotic properties as the ML estimator ignoring possible restrictions 

on the parameters coming from the specification in (2.1). The estimator 0 is 

consistent^asymptotically normally distributed and efficiënt, with "a large 

sample covariance matrix consistently estimated by 

(2.16.) V(£) = [W'M1"1 (^©ff 1) M"1 W] _1. 

Expression (2.15.) is in fact an approximation to the second step of 

the Newton-Raphson procedure. The approximation is such that it implements 

the second step of the Gauss-Newton* algorithm as is easily seen from writing 

S = 4 v' (^©fi 1) v = ete 

where e = Pv and P is the matrix obtained from the decomposition of the 

positive definite matrix (I x P. )=P'P. 

The derivative of _e_ with respect to £ is 

9£ -1 
(2.17.) - T Ö - = - W'M' P' 

Ë. 

The second step of the Gauss-Newton procedure can be written as 

(2.18.) £ = £ - Ijg (£)gj (£)'] j£ (£) _e (£) 

= 3 - [W'M'"1 (Ltxjfi"1) M - 1 W ] _ 1 W'M'"1 (IT©fi
_1)v 

— T *-s v T ̂-̂  v — 

which is - using expression (2.14.) - equivalent to (2.15.). 

* The reader, who is not familiar with numerical procedures to solve 
systems of nonlinear equations, is referred to Goldfeld & Quandt (1972). 
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It should be obvious that the two-step Gauss-Newton approximation to 

the two-step Newton-Raphson* procedure, is one member of a class of estimators 

which are asymptotically equivalent to the ML estimator. Further, expression 

(2.18.) can be calculated either using the analytical derivatives given in 

(2.17),evaluating them at consistent parameter estimates, as has been 

done e.g.. , by Nelson (1976), or by numerical calculation of the partial 

derivatives in (2.18.) of £ with respect to _3_, as is proposed by Box and 

Jenkins (1970) for univariate models. Other estimators of J3 asymptotically 

equivalent to the ML estimator are characterized by a particular choice for 

the matrix r(£) in (2.13). 

Joint estimation of the parameters in the system in (2.4.) involves 

the following steps: 

1. Using the error representation shown in (2.7.), estimate the 

parameters of each equation separately using, for example, the Box-Jenkins 

(1970) non-linear least squares approach. The estimates so obtained will be 

consistent but not efficiënt. However the main objective of this first 

step is to obtain an estimate of v , say v , t=l,2,...,T. 

2. Use the v 's to form an estimate of the covariance matrix 

0. = Ev v' , namely 
v —t—t 

T 
(2.19.) Ü = E 0 v!/T 

V t=l - t _ t 

3. Express the i'th equation of the system (2.4.) as: 

(2.20a.) z. = c. + w' 0. + q!Y. + v.. 1=]'l""'% it ï —lit—ï -̂-H-1 it t=l,2,...,T 

where w' = (z l Sz. ,...,z , 
—lit it-1 it-2' ït-n.) 

1 

—ï il' i2' ' m . 
ï 

Il = (lli.ll2»"-»lLn> 

with y! . being the i'th row of G., j=l,2,...,m. 

Expressing (2.20a.) for all t, we have 

* 
The second order derivative of S with respect to g ̂  and .g • is 

2 
3 S = 2 93.83. 

[ d2£_ l' £ + 2 |3e "I ' [9e "] 
bB.33.-1 L93.J L3B.1 

Under the assumptions underlying our model, it can be shown by using the strong 
law for martingales (see e.g. Feller (1966), p. 238) that the first r.h.s. term 
converges to zero in probability, so that the two-step estimator in (2.18) im-
plements expression (2.13) and therefore has the same asymptotic properties as 
the ML estimator. 
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(2.20b.) z. = W..6. + Qy. + v. i=l,2,...,p 
— ï li—ï — i — ï s » >JT-

wherew' . and q' are typical rows of W . and Q respectively. 

We then apply ordinary least squares to each equation (2.20a.), after 

replacing.Q by Q, a matrix of the flrst step residuals _v , to obtain 

consistent estimates of Y., 
—i 

4-„ Compute expression (2.15.). Iteration of the steps 1-4-

yields the ML estimator* given known and fixed initial conditions. In small 

samples it is not clear that the iterated estimator for 0 is to be preferred to 
* • • • ~ ~ 

_3_. For example, it is well-known that ML estimators for parameters of many 

models have poor finite sample properties relative to usually employed loss 

functions**. Nelson (1976) provides Monto Carlo results pertaining to a system 

similar to a particular set of FEs that indicate a substantial gain of 

efficiency of the two-step estimators with respect to univariate procedures. The 

finite sample properties of J3 in (2.15) and estimators obtained by iteration are 

as yet not established. 
The system of FEs (2.10.) can also be written as 

(2.21.) z = Wnc + W.0 + W_Y + v — U— J.— Z.— — 

Generalized least squares applied to (2.21.) lead to 

(2.22.) J^g = [W» (^©fi"1) W] _1 W' U T © ^ 1 ) ! 

Since Q and the elements of W_, the lagged errors, usually have unknown 

values, (2.22.) cannot be computed. However, we can compute 

(2.23.) 1^3= [W« ( I T © ^ 1 ) W] _ 1 W' ( I - J , ® ^ 1 ) Z 

where W denotes that lagged error terms in W have been replaced by their 

sample estimates. Expression (2.23.) gives a consistent joint estimator for 

0, but it usually is not efficiënt. From a comparison with (2.15.), it is 

* Other iterative algorithms that may be computationally more efficiënt 
can be employed to compute the ML estimate see e.g. Chow and Fair 
(1973) who considered a dynamic system with AR errors. 

** See Zellner (1971) for some results relating to ML estimation of para­
meters of the log-normal distribution. For static simultaneous equation 
models, ML estimators frequently are found to possess no finite moments 
and hence have unbounded risk relative to a quadratic loss function. Last, 
Stein's well-known results indicate that ML estimators are often inad-
missible relative to a quadratic loss function see references and 

analysis in Zellner and Vandaele (1974). 
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obvious that the estimator in (2.23.) is not a solution to the first order 

conditions for a maximum of the likelihood function, so that iterative solu­

tion of (2.23.) will not yield the ML estimator. (2.23.) is a solution of 

the first order conditions for a maximum of the likelihood function with 

respect to g under the condition that W = W implying that 3S/9_g_ is linear 

in 3 (see e.g. Maddala (1971) for a similar discussion on single equation models), 

As mentioned above, FEs are of ten encountered in which the 6_. coëfficiënt 
1 (r) vectors in (2.8) are all the same, that is 0. = 8. = 6„ = ... = 0 = 0 

—1 —2 —3 —p — 
In such cases, the restricted matrix W 1 in ( 2 > 9 ) t a R e s t h e f o r m 

(2.24.) ,(r) 

*o 5-1 

5i *-2 

-T-l * 

-2-p+l 

--p+2 

JT-p 

We then write the system (2.10.) as: 

(2.25.) z = W_c + W* r ) 6 ( + u 
*-— U — X •—" *— 

(r) 
Then the approximate ML estimators for c, y and 8 are given by 

(2.26a.)( 7j= [(W0W2)' fi
_1(WQW2)]

 _ 1 ( W ^ ) ft_1(£ - W^r)6_) 

(2.26b.) I ^ ^ C W ^ ^ H ^ ^ -1 W<r)* R£ 

with 
_1 - fi-1(w0w2) [(w0w2)

f a 1(w0w2)]
 x (wQw2)' n

 x 

where ü is an estimate of ü = [M'(IT(x)P )M]andW is formed using lagged 

residuals. The large sample covariance matrix for the restricted estimators 

2 ~(r)' 2 
in (2.26.), (_c, _0_ , y.'), denoted V , is consistently estimated by 

(2.27.) Vr ~ 

w-a- iw0 

(r)'"-l 

vq ; a wQ 

w2"
-1w0 

~-l (r) 

w^'^w^ 

-1 (r) 

w2^ w^ ; 

Ŵ ft ^ 2 

n(r)':-r; 

w2fl
 xw2 
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In the case of general linear restrictions on the elements of g 

in (2.14.), say CB = £, where C is a given matrix with q linearly independent 

rows of rank q, and £ is a given qxl vector, an estimator of £ satisfyir.g 

the restrictions is given by: 

(2.28.) j3 = 3. ~ (Wln'1wr1 C' [C(W'fi~1W)~1 C']"1 (Cg - £) 

with j3 as shown in (2.15.), ü= [M T 1(I ©^~ 1)M _ 1] 

and large sample covariance matrix, V(_g_), consistently estimated by: 

(2.29.) v(£) = (wsfSo""1 - (H'Ü"1»)"1 c tc(wln~1w)~1c1]""1 c(w^ 1w)~ 1. 

While (2.28.) and (2.29.) are relevant for the case of general linear 

restrictions, it should be appreciated that the matrices involved in the 

expressions are quite large from a numerical point of view for systems 

even of moderate size? 
(r) 

To test the restriction that _8_ = _6_ = . . . = _6_ = _6_ , an nxl vector, 

introduced in connection with (2.25.), we consider the following residual 

sums of squares: 

( 2 . 3 0 . ) SS = ( f - W ( r ) J5_ ( r )) ' tt'1 (£ - W ( r ) 3_ ( r )) 

a n d *z * -il 
(2.31.) SS = ( f - WJ3)' fi-1(£ - WJ3) 

^ T r i ' " T r O ' " T r i (T) 
where JT ' - (5 / , 0/ ' , V) in ( 2 . 2 6 . ) , VT ' - (W VT ; W ) , 

ft= M' (I (x)ft )M and g in (2.31) is given in (2.15), with "~" denoting that 
(r) 

the quantities are computed using the second step estimates of J3 and j3 . Thus, 
the approximate likelihood ratio 

(2.32.) N log (SS /SS ) 
r u 
2 

is in large samples x distributed where N = Tp and m= n(p-l), the number 
m / \ 

of restrictions involved in 6 = 0 = ... = 8 = 0 . Thus (2.32.) provides 
2 - 1 - 2 -p -

a large sample x test of a frequently encountered hypothesis in model 
2 

construction. In a similar fashion, large sample x tests of the general 
linear hypothesis Cg_ = £ can be constructed. 

* With respect to the large matrices that are encountered in joint estimation 
procedures and that will usually lead to a multicollinearity problem, it is 
worthwhile to mention the use of approximate Bayes estimates such as considered 
by Zellner and Vandaele (1974). In a Monte Carlo study of the small sample (T=20) 
properties of several estimators for a dynamic model with first order auto-
regressive errors, Swamy and Rappoport (1978) conclude that in terms of mean 
square errors the ridge regression and the approximate minimum mean square error 
estimates of the regression coefficients are significantly better than alter-
nat ive estimates such as ML or Hatanaka's (1974-) residual adjusted estimates. 
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III. Specification of and Estimation and Testing Procedures for Sets of 

Transfer Functions 

To specify a set of transfer functions (TFs), we partition the vector jz 

in (2.1.) as follows, z] = (y! x!) where y_ is a p.,xl vector of endogenous 

variables and JC is a p„xl vector of exogenous variables with p1 + p_ = p. 

With ith _z so partitioned, the system in (2.1.) becomes: 

H U(L) H12(L)\ / y_\ / c A /F U(L) F12(L) 

(3.1.) 
H21(L) H 2 2(L)/ \ x 1 \ c l \F21(L) F ^ L ) 

The assumption that x is exogenous gives rise to the following restrictions 

on the system in (3.1.): 

(3.2.) H2i/L) E °» F12 ( L ) ~ °' a n d F21 ( L ) ~ °' 

With the restrictions in (3.2.) imposed on (3.1.), we have 

(3.3a.) H u ( L ) Z t + H12(L)xt = ̂  + Fn(L)elt 

(3.3b.) H22(L)-t = '-7 + F22(L)-2f 

The system in (3.3a.) is in the form of a set of linear, dynamic simultaneous 

equations while that in (3.3b.) is a set of ARMA equations for the exogenous 

variables. 

The TFs associated with (3.3a.) , obtained by multiplying both 

sides of (3.3a.) by H* (L), the adjoint matrix associated with H (L) are 

O.H.) |H n(L)| Z t = £ l - H*1(L)H12(L)xt + H ^ U F ^ D e ^ 

= cx + A(L)xt + K(L)e_lt 

where |H (L)| is the determinant of H ^(L), _c is a p..xl vector of constants, 

r • 1 
A(L) = - H*(L)H (L) = .Z A.L1 and K(L) = \l*AD?.AL) = .2. K.L]. In order 

11 12 i=0 1 11 11 j-O 3 

to identify (3.4.), we assume that |H (L)| and |K(L)| have their roots outside 

the unit circle and that the r.h.s. and the l.h.s. of (3.4.) have no factors 

in common. The ith equation of (3.4.) is given by: 
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(3 .5a. ) * a ) y i t = c u + «• 2St + k l e l t 

where <J>(L) = |H (L)|, 6_'. is the i'th.row of A(L) and 1<! is the i'th i=ow 

of K(L). Just as with the FEs, the AR polynomial <j)(L) is the same in each 

equation if no cancelling occurs. To allow for possibly different $(L) 

in different equations, we shall write the TF system*as: 

(3.5b.) <f>.(L)y.+ 1 Jit 
c. . + ö'.x̂. + k'.e 
li —ï—t —ï—lt 

i=l,2,. 
V 

2 mi 
with é.(L) = l-(b.,L-<|)._L -...$>. L , with m. assumed known. Since 

ï il i2 ïm. ï 

the error terms in (3.5b.) have a structure'similar to those in (2.4.), the 

representations presented in (2.5.) and (2.7.) are relevant here. 

Each TF can be estimated separately using single equation non-linear 

least squares or the single equation ML procedure. Joint estimation of the 

parameters of the set of TFs (3.5.) will now be considered. Therefore we 

write the system (3.5.) as 

(3.6.) 2 t "- Y t i + X o t £ l + Xt6 + ult 

where 

p^x.E. m. 
1 i = l ï 

y l t - l y l t - 2 y l t -m, ° 

y 2 t - l * y2t-m„ ' ' ° 

P l t -m 

-' = l \ l +12 * ' • +lm1 +21 2m. 
X P l 

* 
We implicitly assume that the TF system has been normalized. 
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Xlt Xlt-1 '• Xlt-ri1 ° - ° X2t X2t-2 •' X2t-roi -
 X

p t-r . ° " ° 
11 21 r2 p i 

Xlt Xlt-1 .. Xlt-r12 O .. O x ... 

klt 

^V 

x 
2 P2

P1 

px(p + E max 
i=l j=l,..,pr 

r..) 
13 

6' = vee [A A ...A ]' and, provided the values of the initlal conditions are 

zero, u = K z_ , where _e' = [(K^^) 1 (Kr£l2^' *" ^K0-lT-)'-'' E("-lt — lt^ 

K. KL = ü , and 0 0 e' 

I 0 

K„K 
1 0 

K K 
q o 
o 
0. . . K K"1 K,K* I 

q o 1 0 p ï J 
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For a sample of T observations, we write the system (3.6.) as 

(3.7.) y = Y(|> + Xe, + Xó + u, j - — 0—1 — —1 

= Z„A., + u, 
1-1 -1 

with Z = (Y,X ,X) 

As in the preceding section, the likelihood function for the unrestricted 

system of TFs, conditional on zero starting values*, can be written as: 

(3.8.) UK, & , K, y_) a \ü | ~T/2 exp(S) 

where S = -\ (j-Z^)'K'_1 (^©iT 1) K'^-Z.^) 

The first order conditions for a maximum of the log-likelihood functions are 

(3.9.) || = Z ' K ' " 1 ^ © ^ 1 ) K" 1^ = 0_ 

where V = (V±, Xp, with X^ = vee [K^K"1,. . . ,K K^ 1]' 

and Z = [Z r Z2] 

Z' = [_£..], where i=l,2,..,p , £=l,2,..,q, j=l,2,..,p , and with typical 
Z. XJ X X 

row 
0 I 

e.. = [0,0,... 0 , 0,... 0 e.. 0..0 0... 0 e .„ „ 0...0J 

£p times p elements ̂ «s. ^-^^Pi elemen"ts 

i'th position 

As in to the preceding section, a fully** efficiënt two-step estimator 

of _A_ is obtained using expression (2.13.) to yield 

(3.10.) X = [Z' K,_1 (I T©«~
1) K - ^ ] " 1 [Z'K'"1 (^©tT 1) K_1 w] 

* As with the set of FEs, the starting values may be "backforecast': 

using single TF equations. They may also be considered as unknown 
parameters to be estimated (e.g. Phillips (1966)). 

** This means, that the estimator is as efficiënt as the ML estimator for the 
parameters of the TF form, ignoring restrictions coming from the underlying 
structural form. 
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where "**" denotes that the unobserved quantities are computed at consistent 

estimates of A_, A_» anc^ t n e sample residuals obtained from the estimates and 

q -1. w' = <;»•_,...,w,p, where v^ = y_t + h|i
 K

h K~ f.lt_h 

The remarks made in the preceding section concerning expression (2.15.) also 

apply to (3.10.). The steps in obtaining joint estimates of the parameters 

in (3.5b.) are as follows: 

1. Fit individual equations of (3.5b.) to obtain consistent estimates of 

the contemporaneous residuals, ê . where £_,_ = K.e14.. 
—t —t o—±t 

2. Use the residuals to form a consistent estimate of the contemporaneous 
covariance matrix of e , Ee e' = K„K' = ü , namely 

—t —t—t 0 0 e ' J 

T 
(3.11.) ü = E e \ ê ' /T . 

E t= l - t _ t 

3. Rewrite the i ' t h equation of (3.5b.) as : 

'm . r . . r . 

(3.12a.) y. t = c±.+^ y i f t_£* i4+ J Q * l t _ £ « m + . . . + ^ x ^ ö ^ 

—t-lxil — t-2xi2 —t-q.—x,q. ït 
or 

(3.12b.) v. = c L + Y é. + X Y • + 5.*, + e. 
**-! ll~ 1—1 X—X X—1 —X 

Pr 

= J.n. + e. i=l»2,...,p, 
x—x —x *x 

where y_ has typical element y. , 

Y1 has typical row ( y ^ . ^ ^ ,. • •>yit_m.)> 

X. has typical row (x^.x^.^ ... ^lt_v^-.. . x ^ x ^ ^ , .. ̂ t - r _ ) , 

E,, has typical row (e' .,,£' „,..,£' ), 
x Jr —1-1 — t-2 —t-q. 

x̂ 
e. has typxcal element e. , 

••i ~~ ^il'^'-'-^im.^ 

*-i = <6ilOl6ill»-"»6ïlr1.
ï--"6ip.O'6ip.l"-"6ip(,r > 

*i=(iil,ll2.....liiq>)i
1 

J. = (i: Y.: X.; e.) X 

X — X- X« — X 

_l_' = (1,1,. . . ,1) Txl 
n'. = (c,. <f>! :Y I :$ 1) —x lx —x—x—x 
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We then apply ordinary least squares to each equation (3.12b.), 

after replacing _£. by £., a matrix of the first step residuals ê. 

to obtain consistent estimates of jp. . 

4. Compute expression (3.10.), using the residuals obtained in step 2 and 

the consistent parameter estimates fi and rj_. to evaluate the unknown 

quantities in (3.10.). Iteration of (3.10.) yields the ML estimator 

given known and fixed initial conditions. To compute the inverse of K, one 

ought to exploit the block-triangular structure of this matrix. This 

reduces the inversion of a Tp. matrix to addition and multiplication of 

p..xp matrices, as discussed in Palm (1977.b.). 

The large sample covariance matrix of the estimator proposed 

in (3.10.) is consistently estimated by 

(3.13.) var U ) = [z'K'"1 (^©sT 1) K _ 1 z ] _ 1 ' 

In considering TF estimation, it is important to realize that the 

number of parameters in each TF can be large when there are several input 

variables in the vector x and lags relating to them are long. In such 

cases it will be expediënt to consider reducing the number of free parameters 

to be estimated by making assumptions regarding the forms of lagged responses 

as is done in the distributed lag literature see e.g. Almon (1965), 

Dhrymes (1971), Shiller (1973) and Zellner (Ch. 7, 1971). And of course, 

introducing the restriction that <|>..(L) ~ ̂ „(L) = ... = <j> (L) '= <f>(L) in 
x z p^ 

(3.5b.), when warranted, will lead to fewer free parameters to be estimated. 
2 _ 

A large sample x test of the hypothesis that <j>.,(L) = <j>9(L) = ... = <|> (L) = <j)(L) 
x z p̂. 

can be constructed as in the case of FEs where a similar hypothesis was 

considered. 
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IV. Estimation and Testing Procedures for Structural Equations 

The structural equations (SEs), shown explicitly in (3.3a.), will not 

be considered. We shall assume that a sufficiënt number of zero restrictions 

has been imposed on the parameters of the system such that the remaining 

free parameters are identified see Hannan (1971) and Hatanaka (1975). 

In what follows, we shall first take up "single-equation" estimation 

techniques for parameters in individual SEs and then go on to develop a 

"joint estimation" procedure that can be employed to estimate parameters 

appearing in a set of SEs. 

4.1. Single-Equation Estimation Procedure 

The i'th SE of the system in (3.3a.) is given by: 

P l p P l 
( 4 . 1 . ) E h . . ( L ) y . + E h . . ( L ) x . = o. . + E f . . ( L ) e . 

. _ . i ] J ] t ._ ,.. 13 j t l i ._ 1 13 ] t 
3 = 1 D^P-L+I 3 = 1 

t=l,2,... ,T 

On imposing identifying zero restrictions and a normalization rule, 

h... =1*, the remaining free parameters of (4.1.) can be estimated utilizing 

the techniques described below. 

As shown in connection with (2.7.) above, we can write 

Pl 
(4.2.) E f. .(L)e.. = cJ).(L)̂ .̂  

j = l 1: 3"t 1 it 

1 ït ït il it-1 i2 it-2 ïq ït-q. , 
1 

where q. = max q. . , with q. . the degree of f. . (L), and E,. ^ is a non-
1 j iD 1: 13 ' it 

autocorrelated, normally distributed disturbance term with zero mean and 
2 

constant finite variance, o , for all t. On substituting form (4.2.) in (4.1.), 

we have p 

(4.3.) E h (L)y + ? h (L)x = 'e + * (L)5it , t=l,2,. 
3 = 1 J D=P1+1 

with the property that x. and £. are independent for all j, t and t'. 

Since more than one current endogenous variable appears in (4.3.), 

along with lagged endogenous variables, and since the disturbance terms are 

serially correiated, it is well-known that usual estimation techniques such 

as two-stage least-squares, etc, yield inconsistent structural coëfficiënt 

estimates. 

* Note h . . ( L ) = h . .„ + h . M L + 'h. . L2 + . . . 
13 13O 13I 132 

,T 
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T 2 
Similarly, non-linear techniques for minimizing E £. with respect to the 

parameters of (4.3.) yield inconsistent coëfficiënt estimates because of 

"simultaneous equation" complications*. 

To get consistent estimates of the parameters in (4.3.), 

one can use an instrumental variables method using as instruments 

for the current and lagged endogenous variables, the current and 

lagged exogenous variables. One can also use the y.._ 0, j=l,...,pl5 
jt q̂ -x* 1 

£=1,2,... as instruments for the current and lagged endogenous variables, 

as these instruments are independent of the error term <f>.(LK.. . 

The use of lagged endogenous variables as instruments has been proposed by 

Phillips (1966). On de basis of the instrumental variables estimates, c„. and 
li 

h. . (L) j=l,2,...p in (4.3.), one can compute the residuals. 
Pi . p -

n. = .E. h..(L)y._,_ + . E .. h..(L) x.,. + c. . and then fit a q! th order 
ït 3 = 1 13 J3t 3^-L+I 13 3t li Hi 

MA model to the residuals to get consistent estimates of the <f>..' s 

Alternatively, as explained in Zellner and Palm (1974), one may use 

the FEs (or TFs) to substitute for current endogenous variables appearing 

in (4.3.) with coefficients with unknown values, that is y-±, j=l52,...,p , 

for j^i. For example, the FEs for the y. given in (2.4.) are: 
3̂-

(4.4.) y. = c. + 9.(L)y. + a'.ê  
3t 3 3 3t -3-t 

where 6.(L) is the homogeneous part of-ö.(L). On substituting from (4.4.) 

in (4.3.) for y. , j=l,2,...,p , for j/i, we obtain: 
3^- -*• 

P x P X 

( 4 . 5 . ) y + .E h . . _ [ c . + 8 . ( L ) y . . + a ' . e j + .E h . . ( L ) y . . 
J i t 3 = 1 13O 3 3 J 3 t - 3 - t 3 = 1 13 J3± + 

J5*i 

P 
+ . E . h . . ( L ) x . = c . . + 8 . ( L ) Ê . . , t = l , 2 , . . . T , 

3=P 1 +1 13 3 t l i 1 i t ' 

where h..(L) is the homogeneous part of h..(L). On rearranging terms in (4.5.), 

we can express (4.5.) as** 

* Explicitly the pdf for j^ = (?il>?i2'•••>^it>•••»^iT)
 is: 

9 9 — T/9 9 
p(5.| a_) = (2iro._) exp{-£'. £./2ar} . This last expression, however, 
"2 5 C -1-1 £ T 2 

is not the likelihood function and thus minimization of ,E„ E. does not 
t=l ït 

provide consistent maximum likelihood estimates. The difficulty is analo-
gous to that arising in application of OLS to estimate structural para­
meters in usual structural equations. 

** One has to be cautious that the regressor matrix does not become singular, 
as one substitutes linear combinations of lagged endogenous variables for 
the current' endogenous variables. 
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P l P l 
( 4 . 6 . ) y . . + .Z. h . . . [ c . + 8 . ( L ) y . . ] + .E, h . . ( L ) y . . 

J i t x 3=1 i ] 0 3 3 J ] t : = i 13 J^t 
in 

+ . Ex1 h . . ( L ) x . . = c, . + i ( L ) v . + 

D = P 1 + I i : : t i i r i i t 

p i 
where we have introduced ip.(L)v._,_ = <t>.(L)£.__ - .E, h. ._a'.e . 

ï ït ï ït 3=1 13 0—3—t 

3*1 

ip.(L) is a polynomial lag operator of degree r = {max q.,r.|j =1,2,...,p ;j^i} 

with r. = degree of the highest degree polynomial in the vector a_'.. The 
error terms, v. , t=l,2,...,T are normally and independently distributed 1 2 
each with zero mean and finite, common variance, a 

v. 
1 

Note that for given values of c. and the parameters in 8.(L), (4.6.) 

is in the form of a TF that is linear in the parameters. In view of this 

our estimation approach involves analyzing (4.6.) as a TF with c. = c. 
- - 3 3 

and 0.(L)= 6.(L), where c. and 0.(L) are consistent estimates obtained 
3 3 3 3 

from estimation of the FEs in (4.4.) Since the Jacobian of the transformation 
form the v. 's to the y. 's in (4.6.) is equal to 1, the likelihood function 

lt "'lt - 1 5 

is given by: 
T o -T/9 0 9 

(4.7.) p(z iil»
X»X0

) = (2lT°v } e x p "{tilVit /2av } 

i i 

where v_'. = (y. ,y. ,...,y. ,...,y. ), jj_ denotes the vector of freë parameters 

to be estimated in (4.6.), x is the matrix of observation on all exogenous 

variables, including initial values, y_ denotes initial values of the 

endogenous variables appearing in (4.6.), and 

P l P l 
( 4 . 8 . ) v . . = y . . - c . . + .S h . . . [ c . + 8 . ( L ) y . . ] + .1, h . . ( L ) y . . 

l t J i t l i 3=1 13O 3 3 Jjt 3=1 13 J 3 t 

p r 
+ ._ Zx1 h. .(L)x._ + .£, i|). .v.. .. 3=px+l 13 3t 3=1 13 it-3 

Given that consistent estimates of c. and 8.(L) are inserted in (4.8.), 
: 3 

a non-linear computational algorithm, e.g. Marquardt's, can be utilized 

to obtain consistent estimates of the remaining free parameters of (4.6.). 

The inverse of the information matrix, evaluated at the consistent esti­

mates, provides large sample Standard errors. These results in conjunction 

with the large sample normal distribution of the estimates provide a 

basis for performing large sample tests of hypotheses. 
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The above procedure for estimating parameters of (4.6.) can be 

applied for i=l,2,...,p to obtain "single-equation" parameter estimates 

and residuals, v. , i=l,2,...,p1, and t=l,2,...,T. Since 

Pl 
v. = E. - .E„n . . a ' e^ , where a ' i s a vec to r of c o n s t a n t s , ï t xt 3 = 1 i j0-q O- t ' -3O * 

2H 
P1 1 - A 

( 4 . 9 . ) £ = v... + . | , h . . _a , . _e . i = l , 2 . 
ï t x t 3=1 X3O—3O—t 

in 
A 

is a consistent estimate of £._,_ where a' e^ denotes a vector of residuals 
xt —3O—t 

from the FE system in (4.4.) Also, from (3.3a.) and (4.3.), E = F-i10£lt
 = ü ; 

where £< = ( ^ , 5 ^ , . . . , ^ ) , u^ = ( u u .u^,. . . ,Up^) and 

(4.10.) F.JDe.. = F, ...e... + F.^e.. + ... + F1. e.. = 
11 —lt 110—lt 111—lt-1 llr—lt-r 

= u + R.u ' + . . . + R u 
—t 1—1-1 r—t-r 

-1 -1 
with R, = F...F... ..... , R = F... F. - _ . The error vector u in (4.10.) 

1 111 110 ' r llr 110 —t 

is normally distributed with zero mean and covariance matrix Euu| = 

F F ' =E , a p.xp1 pds matrix, for all t. Also Euu' =0 for t^t' and all 

t, t'. Thus from (4.9.), it is possible to compute _u = _£ once all 

equations of the system are estimated. The u. 's thus computed will play 

a role in the joint estimation procedure to be described in the next section. 

4.2. Joint Estimation of a Set of Structural Equations 

We now consider (4.1.) for i=l,2,... ,p1 , 

where the diagonal elements of H1 n are equal to one. For a sample of T 

observations, we can write the system (4.11.) as 

( 4 . 1 2 . ) y_ = ZLju + Fv = Z rj^ + u 

where y_' = (y_' ^ y ^ , . . . ,y_,p 

\ - (xo Yi V 
p^Txk 
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[I 
PlxPlT 

Pl Pl 

P.lTXPl 

Y = (Y©I ) 
p1 

I ] 

Y 

Txp. 

Yll Y21 

12 

1T 

'PI1 

V 

^1 

i ©dl ^ 

V © (4-i 

— stl -1 -O 

XT •T- s -T 

—r+1 

ïi r+2) 

^ - , » 

p T x p1(s+r+l) 

k = [p1 + p 1 + p1(s+r+l)]
J 

Ui = (£Ï' Ü2' Hp 

n^ = vee (I - H11Q) 

Ü3 = V e C (-Hlll " H112 " Hlls * H120 12r 

* Of course, one has to impose restriction on the structural parameters. 
e.g.zero restrictions, for which some of the columns of Z will be 
deleted. 
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F = 

P l T x P l T 

° • • ° F l lqF110 F v ~ I 
111 F 110 p 

v» = (v< . . . v j , ) , v t = F u o e l t 

with E(vt) = O, E(vtv't) = 6tt, F110F'10 = S ^ , where 6^, is the 

Kronecker delta. 

Since the v^'s are assumed to be normally distributed, the likelihood function 

can be written as L(;v_, Z , n_ , E , F) oc 

(4.13.) |H11()|
T |Sv|"

T/2 exp {-£[(£ - Z ^ V F'"1 (^©E"1) 

^ ( ï - z ^ i ) ^ 

In order to keep the block-triangular structure of the matrix F, we proceed 

in a way slightly different froni Reinsel (1977) and write the first order 

conditions for a maximum of the likelihood function as: 

(4.14a.) 8 l n L = Z^ F' 1 (IT©Z
 1) F 1 u = £ 

3 £ 

(b) 3 ln L 

3 n 
~2 

-T vee (H11n)
 1 + Y'F' X (^©jf 1) F_1u = £ 

110' 

(c) 3 ln L 
3 Ho 

l[ F'"1 (^©if1) F 1u = 0 

(d) ^ p = X' F'"1 (^©T1) F \i = 0 
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where B' = vee [F, F„ ... F ]' 
— • 1 2 q 

X 2 = ''-ii ̂ ' i = 1 » 2 ' * • • »pi' A~ 1»2»*"-'q' J-1»2,... ,p1 

with a typical row 
01 

v.. = [0,0 ... 0 , 0 . . 
x1 i i t J f**""i,L^ * 

p l times p elements 

ï'th position 

0 VjT-£ ° 

The first r.h.s. term of (4.14b.) may be written as 

(4.15.) -vee (Ê"1 V'VH~^Q) 

where E - - E v v' = i V'V with 
v 1 . ..—t—t i 

t=l 

V 

Txp. 

11 

v 1T 

* 1 

V 
and V H = W is the matrix of reduced form disturbances. But 

- vee (E_1V'W) = - (W'^E"1) vee (V») = - (W © I )(I © Z * 1 ) ^ 

We can write the set of first order conditions for a maximum of the likeli-

hood function with respect to rj_' = (n_' , j5_' ) after substitution of the first 

* 1 T 

order conditions for E , i.e. E = — E v v', 
v v T _,_ . —t—t 

t=l 

(4.16.) 9^ln L = Z'F'"1 (I_ © E _ 1 ) F_1 u = 0 
on i ̂^ v — — 

where Z = (YQ, Y± - F(W' @ I ), X ^ X2). 
'1 

As discussed by Reinsel (1977), neglecting terms which, divided by T, have z 

probability limit as T -*• °°, we have 

P l i m 4 d„ fn,L (Ev) = plim ^ Z'F' X (^©E"1) F X Z. 
T ->• oo T T 3n3n' '~v' ~ J"~^"' T " " V " T ^ " v 

Using a lemma by Dhrymes and Taylor (1976) the following two-step estimator 

for n has the same asymptotic distribution as the ML estimator: 
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(4.17.) n_ = _n - r(n_) -g- (_n) 

where n_ is a consistent estimator of JJ_ such that /r(n_ - Hn)> Hn being 

the true parameter value, has some limiting distribution and the matrix 

r(fj) is such that 

plim Y r(jl) = Pllin f 8n3n' \ V 
T -»• oo T -> 

Applying (4.17.) to the present problem yields 

(4.18.) n = fi + [Z'F'"1 (^©Z - 1) F"1 Z ] _ 1 Z'F'"1 (I_© E_1)F_1 Ü 
— — X ̂ -* v 1 ̂ ^ V — 

where "~" denotes that the unknown quantities are evaluated at consistent 

parameters estimates. The first step consistent estimates can be obtained 

using one of the single equation estimation method proposed in section 4.1. 

As we can write the system in (4.12.) as 

(4.19.) i = tj " F(W' (5)1 ) t u - v ] = Z r j i + u = Z j T _ + F v , 
Pl 

we may apply generalized least squares to (4.19.) after having evaluated 

the regressand y_, the regressors Z and the disturbance covariance niatrix 

F'(I (S?)I )F at consistent parameter estimates - this is in f act one way 
i ^"^ V 

of computing the two-step estim'ator in (4.18.) and it shows that the rwo-step 

estimator (4.18.) can be interpreted as a residual-adjusted estimator, a 

term introduced by Hatanaka (1974). Reinsel (1977) derives a slightly 

different estimator to which he gives an instrumental variables interpre-

tation. It is obvious that the computation of the two-step estimator (4.18.) 

which, if iterated until convergence, yields the ML estimator given fixed 

and known initial conditions, involves the inverse of the p-Txp T disturbance 

covariance matrix F'(IT(X)^ )F. In the way, we have analyzed the problem, this 

involves the inversion of F which is a block-band triangular matrix. As shown by 

Palm (1977b), it only requires multiplication and addition of matrices of order 

P lxp r 

As already discussed in section 2, the approximation in (4.18.) to 

the second step of the Newton-Raphson algorithm, is in fact the second step 

of the Gauss-Newton algorithm starting from consistent parameter estimates. 

The large sample covariance matrix of fi is consistently estimated by 
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(4.20.) V(fp = [Z'F'_1 ( ^ © r 1 ) F X Z] _ 1 

Since f[ will be approximately normally distributed in large samples, approximate 

tests of hypotheses can be constructed. 

As in the discussion of TF estimation, it is important to emphasize 

that (4.18.) involves rather large matrices when the dimensionality of jq 

is large. The situation is similar to that encountered in three-stage 

least-squares but here in addition to structural coefficients, there are 

also parameters of the MA disturbance process to estimate. As with three-

stage least-squares, the estimation approach described above can be applied 

to subsets of the structural equations. 

4.3. Single Equation Structural Estimation Reconsidered: 2 step LIML 

Given that full Information methods usually involve complicated compu-

tations and that the complete system is not always fully specified, we 

consider in this section single-equation methods from a ML point of view. 

Consider a structural equation, assumed to be identified by exclusion 

restrictions, of the system (4.1.), say the first one 

(4.21.) Y(1)II(1) + X ( 1 )£ ( 1 ) --n± 

where Y, > = (y. Y ) is the Txm^-. matrix of observations on the current 

endogenous variables included in the first equation, with 

m ( 1 ) = m1+l 

(1) is the matrix of observations on included lagged endogenous , 

included current and lagged exogenous variables and a column 

of I's for the constant term. 

jq, v and jj, , are vectors of the non zero structural coef f icients 

in the first equation. 

u' = ( u n u12 ... u 1 T ) . 

We write the unrestricted reduced form for Y^s as 

(4.22.) Y(1) = z n ( 1 ) + v ( 1 ) = z i n i i + z 0 n 0 > + v ( 1 ) 

where n-(1) = (11^ '. n^) 

Postmultiplying (4.22.) by JJ_, , and comparing the result with (4.21.) indicates 

the following restrictions: 
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(4.23.) Y n ( 1 ) = o 

ni. ^(D = h 
From the assumptions on the model, the rows of V, •. are normally distributed, 

with zero mean and common covarlance matrix ^ ^ N - Each row of V, , can be 

represented as a MA of order q̂ -v- In order to get a simple structure for the 

disturbance term covariance matrix, we vectorize the model (4.22.) as 

follows 

(4.24.) vee (Y' ) = [Z. © I ] vee (IL ) + [ Z n © I ] vee (H. ) 

+ vee (VJ1}). 

which we write as 

(4.25.) y_(1) = HlIl + w ^ + v ( 1 ) 

and the MA representation of v, •. as 

(4.26.) v ( 1 ) = F(1) £ ( 1 ) 

where 

(4.27) 

(1) = 

0 0 F 
(l)q(1) "(Dl \ ± ) 

and _£/1 \ is normally distributed with covariance matrix ^/^ and zero serial 

correlations. The likelihood function may then be written as 

T/2 
(4.28.) L( X ( 1 ), W ^ WQ, 1±, 1 Q, n(1), F(1)) - |n(i)| -<• exp (S) 

where S = -\ (Z(1) - W ^ - W ^ ) ' $f (X(1) - W ^ - W ^ ] 

and ü = F^1} (I T©Q ( 1 )) F(i; 
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We define the LIML estimator in a way slightly different from the usua.1 

definitiont as the estimator which maximizes (4.28.) with respect to 

jr, , TT , F,., and n_. . subject to ]i JT, . = 0. The restrictions may also be 

vectorized as: 

(4.29.) [^©nji)] 1 0 = 0 

The Lagrangean expression is 

(4.30.) z =-| log |n(1)| + s - A_'([im ©nf^] IQ) 

where A_ is the k x 1 vector of Lagrange multipliers. 

The set of first order conditions for a maximum is 

(4.31.a.)||^W 1Q-
1
£ ( 1 ) = 0 

(4.3i.b.)fo = W^-
1
£ ( 1 )-(i m ( i )©n ( 1 )) x = o 

(4.31.c.)| ^ ^ e ^ - O 

where i' = vee [ F ( m , F(1)2,..., ? a ) q ^ 

w2 ~ [£i'] ' i=152,...,m(1) , «,=l,2,...,q(1) , j = l,2,. .. ,m(1) and 

EV. = [0,0...0,0...e. ,0...0,0 ...e ,0..0,...0 . 0 e £0...0] 
— 1^ ! 8 I 1 ± 1 I i- • " • J - « . 

T 
i, s txmes m,^ 

l m,..,-, times m,nN elements 1 

i'th position 

(4.31.d.) || = (I © X ' ) B TT = 0 
3Ü1 m(l) - ~° 

and B. = [I © e ' J 
m(l) " X 

ai 
' = [0,0..0 1 0 .. 0] 

i'th position 

3z _ ( t |- 3 1- e Jf = [ 1m ( 1 )®^(l)
]^0 = 0. 

* In terms of asymptotic properties of the LIML estimator it does not matter 
whether we maximize the likelihood function concentrated with respect to Q.r^\ 

or use a consistent estimate forft, , in the first order conditions for a maxi­
mum of the likelihood function with respect to the remaining parameters. 
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We can s o l v e (b ) f o r _n , t o g e t 

(4.32.) 1Q = (w- n"
1 w^" 1 [Zl - HlJLl - (i r a ( i )©n ( 1 )) A] 

Substituting (4.32.) into (4.31.e.) and solving for A_ gives 

(4.33.) x - [(im(i)©nh))(Wi ü'1 w0)(im(i)©n(1))] ^ [ ( ^ © n ^ ) 

(W^ fi 1 W Q)
 X (yx - W ^ ) ] 

The set of first order conditions for a maximum in (4.31.) is clearly 

nonlinear in the parameters. We can approximate the solution by a two-

step Newton-Raphson procedure, as has been done in (2.13.), starting with 

consistent estimates for jn , ir. , $_ and n, . , computing X_ from expression 

(4.33.) and evaluat ing * 

(4.34.) 6 = 0 - r(6) 
_3_z 
90 

where _6_ = (jLi »JL* »Z.n 3-Hr 1 "> 'A* ̂ ' — i-s a c o nsistent estimate of £ satisfying 

the requirement in (2.13.) and 

T ( 0 ) 

( 4 . 3 5 . ) 

w^ _ 1 w 1 

ŵ Q S* 

w n̂ 1w1 

w[fi_1w2 

w^ - 1 w 2 

ŵ ft 1w2 

w p 1wQ 

w2^-1wQ 

w'n"\ 

-X'B 

-B'A - ( i @ n M x ) 
m ( i ) ( 1 ) 

B'BTT 
0 

- ( i m ( i © ü ' ( 1 ) > I 0
B ' B ° 

The probability limit of the matrix ™-r(_0) in (4.35.) usually is the matrix 
1 3̂ z 
— ,.„„„, (6„) where ö„ is the vector of true parameter values of 0. Of course, 
1 °0_oö_ —0 —0 — 

one can iterate the expression (4.34.) to get the exact solution of the first 

order conditions for a maximum of the likelihood function, which is the 

limited information ML estimator given fixed and known initial conditions. In 

terms of asymptotic efficiency, it is not necessary to continue the iteration 

after the second step. 
*The unknown elements of ft ^ will also be replaced by consistent estimates. 

(1) 
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V. Some concluding remarks 

1. In this paper, we have presented several estimators for the three forms 

of a dynamic SEM with moving average disturbances,. and we have discussed 

their asymptotic properties. The results essentially rely upon 

a) the asymptotic properties of the ML estimator of the parameters of 

dynamic models and 

b) upon a result given by Fisher (1925), Kendall and Stuart (1961), 

Rotherberg and Leenders (196*f) and later by Dhrymes and Taylor (1976) 

concerning the asymptotic porperties of a two-step iteration of the first 

order conditions for a maximum of the likelihood function. 

Of course, the starting values for the iteration and the matrix r 

approximating the matrix of second-order derivation of the log-likelihood 

function have to satisfy some conditions (see e.g. (2.13.)), which we give 

in the text, but which we do not verify explicitly for the estimation 

problems considered. It ought to be ciear that the requirements such as 

stated in (2.13.) have to be checked in practical situations. 

2. Computation of the estimators presented above generally involves 

operations on large matrices. For ex., in each case one nas to compute the 

inverse of the covariance matrix of a vector-MA proces. 

The estimation methods presented here open an immense field of application 

for good numerical matrix inversion procedures exploiting the special features 

of the covariance matrix of an MA process. 

3. Despite the fact that the field of application of the methods presented 

is probably limited to small models, the results of the paper clarify a number of 

questions concerning the asymptotic proDerties of estimators for dynamic and 

static models. For example, if the disturbances of the TF system in (3.6) are 

not correlated, i.e. K =0, h=l,2,...,q, then the two-step estimator given 

in (3.10.) specialises to Zellner's estimator for seemingly unrelated 

regressions. 

As a second example, assume that H (L) in (3.3a.) is an unimoüular 

matrix, i.e. |H (L)|= constant, then the expression given 

in (3.10.) specializes to an expression with Z' = (XQ,XJZ£) 

and the covariance matrix of the estimator in (3.10.) will be asymptotically 

a block-diagonal matrix as plim — [(X'X')Z ] =0 under suitable conditions. 
T -> oo 

Therefore it will be sufficiënt to have consistent estimates of A_ to efficiently 

estimate (_c' ,_6_' ) in (3.7.). A similar result has been established by Amemiya 

(1973). 

4. It is to be expected that the estimation results can - at least -

for samples of the size encountered in applied work - be improved by using 

two-step estimators approximating the first order conditions for a maximum 
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of the exact likelihood function. One step in the direction of using 

the exact likelihood function is to "backforecast" the values of the 

initial conditions for FE, TF or structural equation systems. This 

aspect however deserves additional work. 

5. The discussion has been in terms of large sample properties of the esti­

mators for dynamic models. Small sample properties of the estimators have 

to be investigated yet. However the Monte Carlo results obtained by 

Nelson (1976) justify some optimism about improving in small samples the 

efficiency of the estimation results by computing the second-step of iteration. 
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