Large-Scale Newscast Computing on the Internet

Mark Jelasity
Maarten van Steen
Vrije Universiteit, Amsterdam
{jelasity,steen}@cs.vu.nl

Internal report 1R-503
October 2002

This paper introduces the newscast model of computation for large-scale computing on the Internet. The
engine realizing this model is a lazy fully distributed information propagation protocol among the participants
which is responsible for membership management and communication. It maintains a constantly changing
communication graph over the participants. This graph has useful emergent properties like small diameter
and sufficiently random structure without deploying special purpose protocols to achieve these properties.
For adding a new participant only the address of an arbitrary member is needed and for removal no action is
necessary. We provide theoretical and empirical evidence that—besides being simple and lightweight—our
newscast computing engine is extremely scalable and robust. We also suggest some interesting application
areas including information dissemination, monitoring of large systems, resource sharing and efficient multi-
casting.

Keywords: Epidemic protocols, dissemination-oriented communication, large-scale distributed systems,
probabilistic reliable multicasting, complex adaptive systems

o

vrije Universiteit

Department of Computer Science

I. INTRODUCTION

The Internet is gradually making a transition from its original role as computer network to that of a dis-
tributed system. In contrast to a computer network, which essentially supports only data transfer in the form
of messages, a distributed system aims to provide a single coherent view on a potentially large collection of
independent computers [1]. In essence, a distributed system aims to make its underlying resources available
to applications, but such that the distribution of data, processes, and control is transparent [2].

Distribution transparency has been quite successfully realized for local-area systems, that is, distributed
systems that span a local-area network. However, combining scalability and transparency is difficult, and
simply trying to port local-area solutions to networks such as the Internet will generally fail for two reasons.

First, many existing solutions have been molded into a client-server architecture, which scales badly when
the number of clients grow. To alleviate scalability problems, special measures such as client-side caching
and server replication need to be taken. Applying these scaling techniques may require a considerable devel-
opment effort, notably when strong consistency issues are at stake.

The second reason why many local-area solutions cannot be simply ported to large-scale networks, is be-
cause these solutions are based on powerful multicasting facilities of the underlying hardware. Such facilities
are not available in the Internet, generally rendering the original solution useless. Again, special measures
need to be taken to adopt the original solution without too many changes. For example, the design of PGM,
a scalable reliable multicast protocol [3], has been strongly motivated by the need to support local-area pub-
lish/subscribe solutions that deploy multicasting.

A main advantage that multicast-based solutions have over client-server solutions is their often inherent
decentralized nature. This makes these solutions particularly attractive for large-scale networks, except that
building scalable reliable multicasting schemes is notoriously difficult [4], [5]. Fortunately, matters improve
when dealing with probabilistic schemes in which no hard guarantees are given concerning the delivery of a
multicast message. If a multicast message is required to be only eventually delivered with a high probability
to all current group members, it appears that scalable solutions are quite feasible [6], [7], [8].

The key idea underlying probabilistic multicasting is the use of a simple scheme for reliably disseminating
information. Epidemic protocols have shown to be highly effective for this purpose if sufficient information is
available over group membership. In this paper we describe a novel gossip-based scheme for information dis-
semination that distinguishes itself from other similar solutions by its simplicity and scalability. Our approach
deploys lazy propagation of information simultaneously disseminating membership and application-specific
data. The function of our information propagation protocol is maintaining a stable environment with minimal
effort that can still provide certain guarantees and interfaces for applications. We call this environment the
newscast model of computation. The applications of the model include not only evolutionary computation
(EC), a subfield of computational intelligence which originally motivated our research [9], but also prob-
abilistic effective and reliable multicasting, large-scale distributed file sharing, and resource discovery and
allocation. An important distinguishing feature of our scheme is that it requires only an extremely simple
membership protocol. To join a group, a process can contact any, arbitrarily chosen member and merely copy
that member’s list of current neighbors. No messages need to be sent to leave a group: a process merely stops
its communication.

In our model, computations are performed by agents whose main activity is to generate and process news.
Exchanging news is the only form of communication. A news item generated by an agent is overridden by

2

a fresher item from the same agent even if no other agent has ever processed it. The communication model
IS generative in the sense that agents are temporally and referentially uncoupled [10], [11]. In other words,
a news recipient need not be known or even exist at the time a news item is published, nor does a news item
need to explicitly identify its sender and receivers. However, as we shall see, referential coupling can easily
be implemented by newscast applications if necessary.

The key underlying idea is that the model works completely on a statistical basis. Both news and agents are
supposed to be present in large quantities. What is relevant is not the individual news items or agents but the
dynamics of the system as a whole. These dynamics can be such that it leads to a stable equilibrium (control),
it can follow the changes of its environment (information dissemination), it can react to some events with
very quickly reaching a special state (monitoring) or it can evolve towards some direction (problem solving,
etc). Like in the case of ant colonies or other swarms of insects, applications can define the dynamics of the
system by defining the behavior of the components in a way that leads to the desired “macro behavior.”

Such applications inherit the feature of graceful degradation without any extra investment. In other words,
if parts of the system are damaged and fail to work properly, the overall dynamics can continue to be the same
or similar so that the system will not even come to a partial or complete halt. Even though it is possible to
write badly designed applications in every model, as we will see, newscast applications can often be arbitrarily
partitioned with the resulting parts simply continuing their computation, but also be re-merged later on.

Our implementation of the newscast model does not rely on any central services or servers. Our main
contribution is that we present a highly reliable and fully distributed dissemination scheme for implementing
the two main functions: information dissemination and membership management. This scheme can scale to
extremely large networks such as the Internet. The features of the model given in Section 11l are emergent
from the implementation. For example, the full membership list is not known by anyone ever in the system,
only small portions of it are stored in a distributed fashion. Mathematical analysis and simulations will be
given to support our claims on scalability and robustness and to prove that the specifications of the newscast
model indeed hold. We also demonstrate that only simple local mechanisms are needed to establish highly
robust communication graphs that exhibit desirable small-world properties such as high connectivity and
small diameter [12].

Section Il gives an overview of related work. Section Ill gives the formal specification of the newscast
model of computation. Section IV elaborates on the possible types of applications. It gives a classification
illustrated with examples, including information dissemination, file sharing, and distributed resource allo-
cation. Section V describes the implementation of our model based on an epidemic protocol. Theoretical
and simulation results will be given to prove that our engine indeed fulfills the requirements specified in
Section I11.

Il. RELATED WORK

There are different ways to view our work in order to compare it to other systems. One view is to focus
on its model of computation, which describes the operations and their semantics as offered to applications.
Another is to concentrate on the algorithms and mechanisms by which that model of computation is realized.

We have intentionally provided an explicit description of the newscast model of computation. Such a de-
scription is important for application developers and is comparable to the separation between services and
protocols in reference models for computer networks [13]. Taking this functional perspective, the newscast

3

model is best compared to what Cheriton coined dissemination-oriented communication [14]. In these sys-
tems, a sender and receiver never explicitly establish a connection. Instead, a process attaches itself to a
channel without further need to reveal its identity. A channel generally allows M-to-N communication where
the number of receivers is potentially very large.

This model is currently deployed in many publish-subscribe systems in which each channel is associated
with a specific subject (see, e.g., [15]). A more advanced approach is content-based addressing by which,
in principle, arbitrary (attribute,value)-pairs can be specified to express a receiver’s interest in specific mes-
sages [16], [17], [18].

The newscast model forms a basis for dissemination-oriented communication by deploying lazy message
propagation in what is essentially a broadcast system. An important distinction with existing approaches,
is that broadcasting can be achieved only by special application-level measures. In particular, a sender will
either need to repeatedly pass its message to the news agency, or repeaters need to be deployed to assist in
message propagation. Filtering, either based on subjects or actual message content, is always done at the
receiver’s side.

In this sense, the newscast model is very different from the core components used in Internet-wide peer-to-
peer systems such as Chord [19], Pastry [20], Tapestry [21], and CAN [22]. These systems provide key-based
routing and searching, possibly using replication to improve fault tolerance and client-perceived performance.
A major difficulty in these systems is content-based searching [23], [24], an issue that is solved in the newscast
model by its disseminative nature, but potentially at the cost of higher resource usage.

From an implementation perspective, the newscast model is one of the many gossip-based systems that have
been developed since the 1980s. These systems deploy an epidemic protocol for disseminating information
across a collection of nodes. Well-known examples of this dissemination style can be found in replicated
databases [25], [26], [27] and probabilistic multicasting [6], [7], [8], but also in applications such as failure
detection [28], [29].

An important drawback of many gossip-based systems is that in order for the epidemic protocol to be
effective, each iteration requires that a node communicates with a randomly chosen other node. In other
words, at each iteration, the set of neighbors that each node has corresponds to a uniformly selected subset
of all nodes. As a consequence, it is necessary to know the entire set of nodes, in turn leading to scalability
problems. Moreover, a special membership protocol is often needed to let nodes join and leave, while keeping
randomness properties of the underlying communication graph.

In contrast, in the newscast model each node has only a fixed-size partial view on the total member set.
Moreover, we show that in order for a node to join it can contact any one of the current members. Within just
a very few iterations of the protocol, the underlying communication graphs will exhibit the same properties
as before. Likewise, leaving is simple: it requires no additional communication whatsoever. In other words,
the newscast model requires only the minimal membership protocol that one can think of, namely contacting
an existing member when joining. We see this as a major and important improvement over many existing
gossip-based systems.

From the perspective of information dissemination, the research on probabilistic reliable multicasting as
described in [30] is closest to our work, although multicasting is actually an application of newscast comput-
ing. Similar to our approach, nodes in this model maintain only a partial view of the entire system and there
is not a single node that has global knowledge on how nodes are connected to each other. Each node gossips

ti mestanp creation time of news item
cont ent news content, possibly empty

TABLEI
FIELDS OF A NEWS ITEM.

messages with nodes from its partial view, and by doing so dynamically adapts its current view. The authors
show that the size of partial views is O(log n) where n is the total number of nodes.

However, an important difference with our newscast model is that probabilistic reliable multicasting is
based on constructing and maintaining a random graph (see, e.g., [31]). To this end, a sophisticated member-
ship protocol is needed [32]. An advantage is that this protocol allows nodes to be grouped taking network
proximity into account, a property that we have not yet explored in our model. On the other hand, the protocol
is relatively complex. Moreover, it is unclear to what extent randomness in the underlying communication
graphs is actually maintained as this has not been proven or verified. From our own experience, we believe
that some caution is in place. For example, our initial assumption that newscast computing leads to random
communication graphs turned out to be false. Instead, we found the graphs to have a small-world topology, a
result that is much in line with analyses and experimental results reported on complex networks [33].

1. PROBABILISTIC NEWSCAST COMPUTING

The two main building blocks of a newscast computing application are a collective of agents and a news
agency. The basic idea is that the news agency asks all agents regularly for news and also provides them with
news about the other agents in the collective. The definition of what counts as news is application dependent,
in fact this is the most important aspect of an application. The agents live their lives (perform computations,
listen to sensors and the news, etc.) and based on the computations they have completed and the information
that have collected they must provide the news agency with news when asked. Examples on how to apply
this abstract framework to define useful applications are given in Section 1V.

Note that even though the news agency is presented as a sort of server in the model of computation, its
functionality can be implemented in a fully distributed fashion as we discuss in Section V.

A. Definitions of Operators

The operators are applied by the news agency exclusively, the agents are passive, they never initiate com-
munication with the news agency. The news agency applies two operators: get News() and newsUp-
dat e(news|[]) . Both have to be implemented by all agents and will be called by the news agency regularly.
The fields of a news item are shown in Table 1.

To be able to discuss the semantics of these operators let us introduce some notations. Let ¢ denote the
cache size. This is the maximal size of the array in the parameter of news Updat e. Let ¢, denote the refresh
rate. This defines a time interval which determines the frequency the operators are called for a given agent.
Let n denote the size of the agent collective. Note that even though we have to deal with the case when ¢ > n,
the intended normal setting is ¢ < n. The operators are defined as follows:

get News () :

1. This method must be implemented by every agent.

2. It must return data of unspecified type (possibly nul |) which is used by the news agency to initialize the
content field of a new news item (see Table I).

3. The news agency calls this method 1 + £ times in each ¢, time units for every agent where £ is a random
variable with a Poisson distribution. Its expected value and variance are p = 0% = 1.

newsUpdat e(news[]):

1. This method must be implemented by every agent.

2. It has no return value.

3. The news agency calls this method 1 + £ times in each ¢,. time units for every agent where £ is a random
variable with a Poisson distribution. Its expected value and variance are p = 0% = 1.

4. The array news[] contains min(c, n) random news items (see Table 1) submitted by other agents from
the collective.

5. In news[] there is at most one item from any agent from the collective. If n < ¢ then all agents will be
represented.

6. It is not guaranteed that the agent set defined by news|[] is statistically independent from the agent set
defined by the previous call to newsUpdat e. However, it is guaranteed that there is an unspecified subset
of size at least ¢/2 which represents an unbiased random sample of the n agents.

7. Itis not guaranteed that a given news item in news[] contains the latest contribution of the corresponding
agent.

8. Itis guaranteed that the timestamp of any item in news|[] is younger than ct,.

B. Additional Comments

Since this framework is not very usual, some comments may help to clarify the basic concepts. The most
characteristic feature is the concept of news. This term is used to emphasize the fact that every contribution of
an agent becomes immediately outdated by its next contribution. This does not mean that older submissions
become completely irrelevant. It means that in an application the optimal situation should be to know the
latest news from an agent and the fresher the news is the better.

This view on consistency forms a major difference from shared memory consistency models [34], [35]
where each and every piece of information put into the shared memory can count on the same consistency
defined by the model. In our case old information is treated differently, i.e. it is thrown away whenever a
fresher item from the same source is available. On the other hand, it is the only way information is removed,
it is not possible to remove news items from the news agency directly.

The model allows for some degree of control over information removal though. The implementation of
get News can keep returning empty content (i.e. no news). These no-news items will eventually replace the
previous news items (not immediately) in the news agency as follows from item 7 and 8 of the specification
of newsUpdat e. The time bound for the removal is determined by item 8.

Another major feature is the probabilistic nature of newscasting. A given agent has no control over the set
of news items it receives and it has no control over the time of reception either. However, note that both the
set of news items and the time of its reception obeys the probabilistic constraints given above. Our point is
that these constraints represent a sufficient basis for a quite diverse class of applications to be discussed later.

External input

Agent

Y

Processor

Filter ‘

newsUpdate ‘ Y getNews

News agency
Fig. 1. The general organization of an agent.

For the sake of completeness it should also be mentioned here that our newscast computing engine (de-
scribed in Section V) allows the size of the collective to change dynamically, i.e. the number of agents can
fluctuate during the lifetime of an application. As we will see, removing an agent requires no action at all.
Adding an agent is straightforward as well and has basically no costs.

IV. EXAMPLE APPLICATIONS

The core of a newscast application is formed by its agents. The general organization of an agent and its
relation to the news agency is shown in Figure 1. Delivered news items are generally passed to a local news
processor after they have passed a filter that selects only those items that the agent is interested in. Depending
on the type of agent, this processor will generate new items that can be passed to the news agency when
asked. In many cases, the processor will make use of external input for producing news items. Likewise, its
output may depend on previously accepted input and produced output (i.e., the processor is not stateless).

Based on this organization, we distinguish the following types of agents. A source agent produces news
items independent from the items that are delivered to it by the news agency. Such agents are typically used to
report information on local resources, such as resource usage in the case of system monitoring, or information
on file content in the case of file sharing.

A sink agent merely consumes incoming news items; it never provides news to the news agency. Typi-
cally, sink agents are used to attach external applications to the newscast system. We will discuss one such
application below.

A computing agent takes incoming news items as input for doing a computation, after which it reports the
results as another news item. Computing agents are typically used to aggregate results produced by other
agents. For example, in the case of systems monitoring, separate agents may process resource usage reports
in order to attain information on the global status of a system. This information may be fed back as news into
the system so that local measures can be taken to optimize the system.

Finally, a repeating agent simply takes the content of an incoming news item and produces a new item
with exactly the same content. The main purpose of a repeating agent (or, simply, a repeater) is to ensure that
certain news items are quickly spread to all agents.

A. Information Dissemination and Multicast

An important application of the newscast model is reliable dissemination of information. A simplistic
approach is a collective of source agents that merely report their states. The state of the agent can be defined by

7

weather sensors for example, consisting of data on pressure, temperature, etc. Looking at the news updates an
arbitrary agent receives or connecting a sink agent that serves as a user interface we can get random selections
of sensor information. It can be proved based on items 3 and 6 of the specification of newsUpdat e that
we eventually receive information from each agent with a waiting time of nt,/2c on average. Statistical
properties of the waiting time are extensively discussed in Section V-F.2.

We can do better however. To improve the speed by which a news item is disseminated, we can place
repeaters in the system that repeat certain types of news they receive. In fact we can implement an epidemic-
style multicasting scheme this way. Suppose an agent discovers important news such as a tornado (staying
with our previous weather example). Initially at time 0 the tornado is known by only one agent out of n. Let
p; be the probability that an agent in the collective does not know about the tornado at time it,.. WWe know that
pi =1ifi < 0and py = (n — 1)/n. To approximate p;,; we have to consider that an agent does not know
about the tornado at time (i + 1)¢, if it did not know about it at i¢,. (which has probability p;) and did not learn
about it in the meantime. According to this we can give a bound on this probability:

c/2
pis1 < pip"

For the term pff"c we used the assumption of having an unbiased random sample of size ¢/2 (item 6) and
assumed that all news items have the maximal age ct, (an thus the probability p;_. of reporting on the tornado)
based on item 8. We assumed that news Updat e is called only once within each ¢, time units which is a
lower bound based on item 3. After ¢ cycles (i.e. from ¢ — ¢ > 0 thus p; . < 1) this value starts to converge
to zero very quickly and the actual constant proves to be much less than ¢ in our implementation as shown in
Section V-F.3. Also note that in fact newsUpdat e is called twice on average in each ¢, seconds.

The expression is very similar to the pull epidemic protocol which assumes one contact with a randomly
chosen agent in each cycle to check whether it has tornado information [26]. In that case we have

DPit+1 = p?

Another implementation of multicasting can be realized outside the newscast model based on the member-
ship information gained from the news updates provided by the news agency. The get News operator has
to return the multicast address of the agent. When an agent sees a tornado or hears from it through its own
multicast address it sends this information to all addresses received in the latest news update. The theoretical
analysis of this approach can be done based on item 6 and the tools developed in [30]. Accordingly, the
probability p of reaching each agent from one source is given by

limp=e " if ¢/2=k+ O(logn)+ o(1)

n—o00

This means that in this case ¢ has to be increased logarithmically with n.

Finally (going back to the epidemic-style model implemented within the newscast model) consider that it
is possible to implement an arbitrary intermediate solution between the lazy dissemination and the epidemic-
style multicast scheme simply using probabilistic repeaters that repeat certain kinds of news items with dif-
ferent probabilities. In the lazy case this probability was O for each news item while it was 1 for hot news and
0 for the rest of the news items in the epidemic multicast scheme.

B. File-Sharing Applications

The popularity of Internet-based peer-to-peer systems comes from their capabilities for sharing files be-
tween users in a completely decentralized fashion. A newscast system also allows users to easily share files.
Each agent is assumed to maintain a local collection of files that it is willing to share with other agents. A
collection has an associated directory in which each entry identifies and describes a single file. There are two
different approaches for newscast file sharing that can be combined into a hybrid one.

In the push approach, the get News operator of each agent passes its local directory to the news agency.
Because this directory is repeatedly passed to the agency, it is guaranteed that it will eventually be delivered
to all agents. However, if we assume that a local file collection changes, no guarantees can be given that when
a local directory is delivered that it is still up to date.

When an agent receives an entry identifying a file it wants, it contacts the owner of that file and transfers
the file out-of-band to its own local file collection (to be able to contact the owner the content field of the
corresponding news item has to contain an address too). An agent can apply filtering techniques to prevent
the delivery of entries it is not interested in.

The push approach is not commonly applied to modern file-sharing peer-to-peer systems. Instead of dis-
seminating information on shared files, a user is forced to search for the files he or she wants. In a newscast
system, this behavior is mimicked through a pull approach by which a directory of wanted files is passed to
the news agency. When such a directory is delivered to an agent having one of the listed entries, the agent
contacts the agent identified in the directory, thus allowing the latter to transfer the required files to its own
local collection.

Of course, these two approaches can easily be combined: a directory can simultaneously list the files that
an agent is willing to share along with those that are being requested.

An interesting aspect of the newscast model is that as soon as a file becomes popular, that is, many different
collections have the same file, it is easy to find such a file. This is due to the fact that a search will soon be
delivered to an agent that has the file. On the other hand, the presence of popular files will also be announced
very often and may waste network resources. Therefore, when a file becomes popular, an agent should no
longer announce its presence, but instead accept only requests for such a file. Determining when to stop
announcing the presence of a file is subject to current research.

C. The Distributed Resource Machine

One application that is already implemented is the distributed resource machine (DRM) [36], [37] which
we sketch briefly here. The idea is that the participating agents all offer an environment (computational
resources and libraries) to perform computations. The collective consists of at least three different types of
agents: the controllers, the contributors and the observers. The content of news items has two fields: a list of
commands and the resources.

Observers are sink agents that are attached to some software that collects, organizes and displays informa-
tion that is received by news Updat e. These agents provide a user interface for people who want to monitor
the system.

There are only a few controllers which are normally controlled directly by human system administrators.
The implementation of operator get News returns the commands issued by the administrator within a given
time interval. These commands represent the only way the DRM can be controlled. A controller is normally

ti mestanp creation time of news item

cont ent news content, possibly empty
I D uniquely identifies agent
addr ess network address of the

correspondent of the agent

TABLE I
FIELDS OF A NEWS ITEM AS STORED BY A CORRESPONDENT.

an observer as well.

The vast majority of the agents is a contributor. They behave as repeaters with respect to commands and as
sources with respect to resource information. That is, operator get News returns a content field that contains
all commands the agent received and that have a timestamp not older than a given bound, in addition to a list
of resources that are currently available to computations. This behavior results in an effective multicasting of
commands and disseminating information on resources.

When running computations, one has to have access to a DRM contributor and launch the computation
there. This computation is allowed to listen to newsUpdat e as well so it can find the resources it needs
and can start spreading itself accordingly. The DRM is currently implemented in Java which makes it easy to
transfer code and implement certain security solutions.

V. THE NEWSCAST COMPUTING ENGINE

This section presents a fully distributed, scalable implementation of the specification of the newscast model
of computation given in Section III.

A. The Core Epidemic Algorithm

Let us assume that every agent is located on a host in a wide area network. Each agent is assigned a local
correspondent which represents the news agency from the point of view of the agent. The correspondent
is run on the same host as the agent. Each correspondent has a local cache containing news items. The
correspondent maintains two additional fields for each news item in the cache, the addr ess and the | D
as shown in Table Il. The field addr ess contains the network address of the correspondent of the agent
identified by the | D field of the news item. The field | D is generated by the correspondent of the agent in
question and uniquely identifies this agent. Every ¢, time units each correspondent runs the algorithm from
Figure 2. Figure 3 shows the overall architecture.

The algorithm is similar to the traditional push-pull epidemic protocol for spreading database updates,
in our case fresh news items [26]. There is an important difference however: no correspondent knows the
complete member list but only a random fraction of it. More importantly, the member list itself becomes the
subject of information dissemination as well. Since the partial member list and the known news items are
both represented by the news items stored in the cache, no correspondent has a copy of the complete database
of news items either, each one knows a very small random part of all the news items available in the system
if n > ¢ (which is the normal setting).

Even though time also plays an important role in the algorithm, no global time synchronization among all

10

1. Pick a random agent peer from cache such that peer is still in the
coll ective and is accessi bl e.

2. cache. add(new newslten{agent. get News()))

Renove itens ol der than ct, from cache.

sendCache(peer)

peer cache=r ecei veCache(peer)

agent . newsUpdat e(peer cache)

cache. addAl | (peer cache)

Keep the newest itemonly fromeach agent.

Keep the ¢ freshest itens according to the tinestanps.

© 0N O AW

Fig. 2. The algorithm run by each correspondent in each ¢,. time units. agent isthe local agent the correspondent serves which
implements the required interface i.e. methods get News and newsUpdat e. cache isalist the correspondent uses for storing
newsitems. Parameter ¢ givesthe maximal cache size. The agorithm run by the passive participant (i.e. the peer correspondent) is
the same only step 1 is missing and step 5 islifted to become step 1.

! WAN node WAN node

Agent Agent

getNews newsUpdate getNews newsUpdate

Correspondent

Correspondent

'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N

sendCache
receiveCache

News agency

Fig. 3. The newscast computing architecture for two agents. Note that normally a huge number of agents are assumed, thisfi gure
isfor illustration of the main concepts only. For fi ner details of the agent see Figure 1.

the correspondents is required. Keeping time consistent within a single cache is necessary but this can be
easily achieved by always exchanging local time when exchanging the caches so that both correspondents
can modify the timestamps of the received news items accordingly.

Filling in the field I D can be done by calculating an ID for the agent before the first call to get News and
then using this each time when constructing a news item. Note that it is the | D that identifies the agent, the
address of the correspondent can change during the lifetime of an agent.

B. Membership Management

Adding a new correspondent to the news agency is done by initializing its cache with one or more known
addresses of other correspondents. There are different ways to get such addresses as we explain later in

11

Section V-E. Removing a correspondent requires no action, in fact it is handled as a node failure. As
guaranteed by step 3 the correspondent will simply be forgotten in a limited time which is compliant with
item 8 of the specification of newsUpdat e (see also Section V-F.3). Furthermore, as will be shown in
Section V-G.2, the network is not sensitive to node removal so stability is not in danger either.

C. Communication Graph Series

The “knows” relation between the correspondents at time ¢ defines a communication digraph (directed
graph) D;. The vertex set V; of D, contains the correspondents. For correspondents a,b € V; we have
b € out,(a) iff the address of & is in the cache of a at time ¢, where out,(a) denotes the set of neighbors
defined by the edges directed out of a. Clearly, the above algorithm defines a random series of digraphs, if
started on some Dy, as information exchange sessions normally change the set of neighbors each time, and
the choice of the peer is random in step 1 of the algorithm in Figure 2. Other series can be defined as well by
decreasing or increasing the number of correspondents in different ways while the algorithm is running.

We define the communication graph G; which we get by dropping the orientation in D,. This graph ex-
presses the possibility of information flow. Recall that information flow is always bidirectional independently
of the initiator. In the remaining part of the paper we will mostly concentrate on the dynamic properties of
G,. In particular, we will examine the subseries G;;, (i = 0,..., N). The motivation is that in the interval
lit., (1 + 1)t,] each correspondent initiates exactly one information exchange connection. We say that in this
time interval a complete cycle is executed.

The simulations presented in the paper make the assumptions that the information exchange sessions are
run sequentially by a correspondent (i.e. the correspondent is single threaded) and each correspondent is able
to finish one communication it initiates within each time interval of length ¢, starting from time 0. If one
information exchange session is sufficiently short relative to ¢,, these requirements can be achieved. Given
the relatively low guaranteed calling frequency this assumption is not unrealistic.

We will not indicate the parameters of the simulation (¢, n and possibly other settings) in the graph notation
as they will always be clear from the context.

D. Statistical Properties of the Communication Graph

We show that the graphs in the generated random series cannot be described by traditional random graph
models. However—since many aspects of the theory of random graphs is well understood—we introduce a
random graph model to provide a basis for comparison. We adopt the model introduced by [38]. The random
digraph Dy c—out IS defined as follows: Each vertex v € V' chooses a set in(v) of £ random sources for
edges directed into v and a set out(v) of [random targets for edges directed out of v. We call such a digraph a
k-in, l-out digraph. The edges are chosen without replacement so the graph has (k-+1)n edges where n = |V/|.
When k£ = 0 we write D,_ ;.

In order to provide a basis for comparison, we have to be well aware of the properties of the model we
chose because relatively small differences result in significant changes in behavior. For example, for D._,.;
one has to increase ! logarithmically according to I = k£ + O(logn) to achieve the probability limit e "
for the reachability of each vertex from a specified source as n — oo [30]. However, for Dy_;, k—ous WE
have strong connectivity with high probability (i.e. probability 1 — o(1) as n — oo) if £ > 2 [38]. In other
words, the key feature is that if each vertex has at least 2 incoming edges, then the number of outgoing edges

12

4.5

0.35
P
4 , N
£ s o =
5 35 e 8
k5 T g o02s
% 3 T////‘E 3
[
) g £ 02 > -
g EE//E — A g \%\@\\@ﬁ_«% ,,,,,,,,,,,,,,,
g 25 5
= VS © 0.15
2N
2
h—" 0.1 e
15
1000 2000 5000 10000 20000 50000 1000 2000 5000 10000 20000 50000
n n

Fig. 4. Average path length from afi xed vertex (left) and clustering coeffi cient (right) as afunction of the collective size n. Points
connected by a solid line are averages over a fi xed vertex in Gsot, , - - - , Gs000t,.. POINts connected by a dotted line are averages
over 1000 verticesin Gso. Go = G.— o Was randomly generated. The symbols O, o and A correspond to ¢ = 20, ¢ = 40 and
¢ = 100 respectively. The symbol v means ¢ = 20 with LTM size of 10 (see Section V-G.1)

can remain a very small constant. Note also that this means that if we drop the orientation in Dy_;y, 2—ou: (OF
alternatively D,_,,;) the resulting undirected graph G4_,.; will be connected with high probability.

We examine here two properties which seem to be the most relevant in the context of random networks, in
particular for the newscast computing engine: the average path length from a fixed vertex and the clustering
coefficient. Other properties like degree distribution and connectivity are discussed later in the context of
robustness.

The average path length from v is the average of minimal path lengths to each other vertex. If the graph is
not connected this value is infinity. The clustering coefficient of vertex v is the fraction of pairs of neighbors
of v which are also neighbors of each other. Figure 4 shows these properties for our communication graphs
as a function of n and c. The average path length shows a clear logarithmic growth. This is important because
the speed of information dissemination depends mainly on the minimal path lengths within the network.
However, it is clearly shown that we have relatively high clustering. In the case of model G._,,; it is easy
to show that the clustering coefficient is 1 — (1 — ¢/n)? which is 0.002 for n = 20000, ¢ = 20 for example.
This tells us that the assumptions of randomness cannot be maintained, i.e. the sets out(v) for neighboring
vertices have a clear correlation.

These properties indicate that our communication graphs have a small-world structure which is defined
by short minimal path lengths combined with high clustering. These sorts of topologies tend to be emergent
topologies which result from a large number of components interacting without central control. A wide
variety of phenomena and structures can be described by small-world graphs. These include the WWW link
graph, the co-author graph in scientific publications, social relationships, food chains, chemical reactions in
cells, etc. [33].

Another notable aspect of these results is that both properties are very stable over the whole series, i.e. they
are conserved by the information exchange sessions. This can be seen by comparing the averages for one
vertex over the series and for 1000 vertices in one graph: these values agree very closely. In other words, no
matter which graph we look at from the series, we will see the same properties.

13

7 T T T T

T 1 v T T T T T
lattice ! lattice
growing by 50 each cycle (a) g growing by 50 each cycle (a)
2 6 growing by 50 each cycle (b) -~ 1 : random -
3 random 0.8 H 1
c 5| I
€ 2
2 5
£ 4r 3
2 3
= 3]
g 3r g
g 2
g2 1 8
o
(]
g 1r 1
ot 0
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
complete cycles complete cycles

Fig. 5. Convergence with different bootstrapping methods. For all experimentsn = 5000 and ¢ = 20. The methods differ in Dy
only. For “random” it is D 9_ ;. For “lattice” it isa 1-dimensional lattice in which the vertices are ordered linearly aswv 1, ..., v,
and out(vi) = {v;mod,ld = 1,--.,20}. For“growing” Vo = {vo} and Vii1)e, = Vie, U {vs0i+1,- -, Vs0its0} until [V = 5000
with one edge from each new vertex to (a) arandom old vertex or (b) vo. Clustering coeffi cients are averages over 10 fi xed vertices
and growing method (b) is omitted for clarity (very similar to (a)).

E. Bootstrapping and Convergence

We will argue that the communication graph series is not sensitive to initial conditions, i.e. it is convergent.
That means that our approach is not sensitive to the particular implementation of bootstrapping, i.e. the way
of building an actual news agency. It also suggests that the system converges to its equilibrium state quickly
if disturbed by an external event for instance. The property of convergence also validates our approach of
starting all simulations with an initial random communication graph and not paying special attention to the
problem of bootstrapping when discussing properties of communication graphs.

Figure 4 shows that the properties of the graph remain stable, but the first 50 cycles were ignored there and
the simulation was started from D._,.;. In order to support the claim of convergence simulation experiments
were conducted using different bootstrapping methods (see Figure 5). The less realistic is the random method
while the most realistic ones are the two growing methods.

Note the rapid convergence of the clustering coefficient. Even in the case of the growing methods, the
clustering coefficient reaches its final value way before reaching maximal size.

The evolution of the average path length from vertex v, is more interesting. The limit value is only slightly
larger than the corresponding random value in spite of the large clustering (small diameter was also illustrated
in Figure 4). The lattice method is started from a very large average path length of 132 which converges within
40 complete cycles.

Let us take a closer look at growing method (b) where each new vertex is connected to v,. This is the worst
possible case when we have only one server which is responsible for accepting newly added correspondents.
Since there are 50 new arrivals in each cycle and we have ¢ = 20 only, in each cycle the cache of v is
eventually filled with newcomers only, yet—instead of partitioning—this results in only a slight increase of
the average path length from vy. This is due to the fact that the newcomers that could talk to v, hold a link
to vy, and the first 20 newcomers hold links to the rest of the network too. When the final size is reached in
cycle 100, the limit value of the average path length is restored very quickly.

14

Even though the protocol can cope with this worst case scenario, note that much more efficient methods
can be implemented very easily, which are much closer to method (a). For example a server could easily
provide large lists, much larger than ¢, of members from which the newcomers can select one (or more) to
connect to initially. These addresses can be collected by simply adding the addresses that flow through the
cache to a database and storing them for a longer time than they are stored in the cache.

F. Conformance to the Specification

Since the calling frequency of get News and newsUpdat e is the same and in the case of get News this
is the only constraint to satisfy, from now on we refer only to newsUpdat e. The items in the specification
which are non-trivial to meet are the calling frequency (item 3) and the statistical properties of the news
updates (item 6). Even though the freshness of the received news items (item 8) is trivially satisfied by step 3
of the algorithm in Figure 2, we have to touch on the actual observed freshness during our simulations. This
is necessary because step 3 could violate the size specification in item 4 if it is called if n > ¢ creating a
sample smaller than both ¢ and n.

First note that the specification assumes that the size of the collective is constant. Extreme events like
serious damage (agent removal) or a significant growth have only a temporary effect on the satisfaction of the
specification as our simulation results of stability suggested and as further results on robustness will suggest.

F.1 Calling Frequency

The specification defines the calling frequency in item 3. This property is important as it gives a guarantee
that having a large number of connections in a short time interval has an extremely low probability, in fact
practically zero. The probability of having 10 or more sessions within ¢, time units is already 10~ for
example which means this is expected to happen once in every 115 days on average if ¢, = 10s. For a network
consisting of nodes with possibly only a low bandwidth network connection this property is essential.

The constant member of the sum 1 4 £ corresponds to the one actively initiated information exchange
connection, and & to the passively received connections. We will show that under relatively weak assumptions
on the communication digraph this property can be proved to hold and we also demonstrate empirically that
the observed distribution is close to the required one.

Let D; be a communication digraph randomly generated by our algorithm at time ¢. Let us pick a vertex
a randomly and assume that for each vertex v # « the probability P(v € out(a)) is the same value, i.e.
1/(n —1). We also assume that the events v € out(a) (a # v, a,b € V;) are completely independent. We
can expect this assumption to hold simply due to the fact that in the algorithm all vertices have completely
symmetric roles. Note that this assumption does not imply that these probabilities are the same if we take
more information about the relationship between v and a into account. For instance, results on clustering
suggest that neighbors of v have a higher chance to point to v, yet the assumption still holds if each vertex
has an equal chance to become a neighbor of v (recall that we are considering a digraph). This assumption is
therefore much weaker that the assumption that out(v) is randomly drawn from the vertex set independently
for each vertex.

Under this assumption, a fixed vertex v is picked by another fixed vertex with probability 1/(n — 1). There
are n—1 vertices that might pick v in a complete cycle, and due to the independence assumption the number of
vertices that pick v (i.e. £) has a binomial distribution with parameters 1/(n — 1) and n — 1. This distribution

15

0.5

P0iSSON(L) e
n=1000,c=20 —
N=10000,C=100 ====ss===
0.4
>
%
o 03
[e]
g
g
= 0.2
[oN
€
(3]
0.1

0 1 2 3 4 5 6 7
information exchange sessions

Fig. 6. Information exchange calls by other correspondents in a time interval of ¢,. The empirical probabilities come from a
sample of 10000, generated by recording the callsin each complete cycleto afi xed vertex through the series I, . . ., D1ggoo Where
D, was randomly generated. The average (1), empirical variance (o2) and maximum values for n = 1000 and n = 10000 are
respectively 0.9971, 1.0966, 7 and 1.0369, 1.25586, 7.

can be approximated closely with the Poisson distribution with A = 1 if n is large. We are interested in
networks with at least n» = 1000 which is sufficient.

Figure 6 shows the empirical distributions observed for two different collective and cache sizes plotted
against the Poisson distribution. The three cases are very similar confirming that the specification for calling
frequency indeed holds with an acceptable accuracy.

F.2 News Updates

Demonstrating that item 6 is fulfilled is not easy as the subset of size ¢/2 item 6 refers to is not specified.
We present indirect evidence as usual for verifying randomness. For this purpose let us define the random
variable 7., (or just n.) as the number of communication sessions until a news item from a member of
an agent set of size £ shows up in the news update, counted from a fixed time point. We will compare
this random variable with n}, the same variable with the assumption that the entire update set represents an
unbiased random sample. We expect that

P(n;>x) < P(me>x) < P(nly>z) v€R

when item 6 is satisfied and we also expect the shape of the distributions to be similar. Figure 7 shows the
distribution functions of nx., 7. and nj/2 for different parameter settings. The plot for different values of
n is very similar so only n = 20000 is shown. It is clear that P(n. > x) is indeed bounded the way we
expected and the shape of the distributions is obviously exponential. Furthermore, for ¢ = 100 the observed
distribution is much closer to the one which we get when the whole cache is an unbiased random sample
(n700) than to the case which is guaranteed by the specification (nZ,).

After looking at the distribution functions, let us elaborate on the expected values. From the inequality of
the distribution functions follows the same inequality of the expected values:

E(m;) < E(ne) < E(n})s)

16

0.1}

001 | i

P(waiting time > x)

0.001 |

0.0001 r

0 5000 10000 15000 20000
X

Fig. 7. Distribution functions of 7, (solid lines) and i (dotted lines) varying ¢ with n = 20000 and £ = 1 fi xed. Vertical axisis
log scale. The settings for 7, from left to right are ¢ = 100, ¢ = 40, ¢ = 20 with LTM size of 10 (see Section V-G.1) and ¢ = 20.
The values of ¢ for i from left to right are 100, 50, 40, 20 and 10.

2 2 F—B——tfr @g ::'::, N 5
1 i e e E,

Q 3///{}\{3/{) E\H
g 18 H/E g 18 }\E\B\ A Q]
2 o E\E
£ €
g E N
; 1.6 ‘_i 1.6 =
£ RN /7 £ V‘—V\V\v\f \
% <%
o o N i
E 1.4 E 1.4 \? "
= ¢ =
= 12 = 12 S =
s 4 A s Z’—A—A\A\g\é\:\@\ .

1 1

1000 2000 5000 10000 20000 0.005 0.02 0.1 0.5 2 10
n percentage of searched property in domain

Fig. 8. Experimental valuesof E(n.)/E(n}) (solidlines) and E(n:/z)/E(WZ) (dotted lines) varyingn and ¢ with k = 1 fi xed (left)
and for varying 100k /n and ¢ with n. = 20000 fi xed (right). Note that E(¢/2)/E(nj) = 2if k = 1 so dotted lines are omitted
from the left graph. The symbols O, © and A correspondto ¢ = 20, ¢ = 40 and ¢ = 100 respectively. The symbol v meansc = 20
with LTM size of 10 (see Section V-G.1)

Looking at the actual difference can give us more insight on the effect of the parameters ¢ and n on the
randomness of the news update. Using the independence assumption, n} has a geometric distribution with
P(p* = 1) = (1 — p)*~!p with E(n) = 1/p where p is the probability that a member of a set of agents of
size k shows up in a given news update, and

c—1

n—k—1i
=1-//——
P H n—1
=0
where we have p = ¢/n if k = 1. That means E(n;) = 2E(n;,) if k = 1.
Figure 8 shows experimental results on the expected waiting time. We can see that waiting time is almost
independent of n with a fixed & which indicates good scaling properties. Waiting time moves close to the

17

optimal value if the cache size is increased. This indicates that the factor 1/2 in the constraint is not a tight
bound, especially with a larger ¢, although a cache size of at least 20 is necessary. Another observation is
that with increasing £ we can also move towards more randomness. We have to add though that the figure
illustrating the effect of & is slightly misleading because with increasing & E(njﬂ) also approaches E(n?).
However the former is still an upper bound. Also note that for e.g. ¢ = 100 we found E(ni00) < 2.6 if
k > 100 (0.5%), and in particular, E(n100) = 1.00003 if £ = 2000 (10%). That is, in this region the search
is not interesting anymore because the set we are searching for is represented in almost all news updates.

We can draw the conclusion that even though we have seen high clustering earlier which proved that the
graphs cannot be described by a uniform random model, in this important aspect the dynamics of the newscast
engine approximates the assumption of randomness with reasonable accuracy.

F.3 Freshness of News Items

As already mentioned, we have to prove that step 3 of the information exchange algorithm never violates
the size specification in item 4, i.e. that it is called only if n < c.

In fact during any of the simulations this step never removed any news items. To give a stronger argument
however, we give the statistics of the age of the oldest value in the cache using a sample of size 10000 obtained
for n = 10000 and ¢ = 100. Note that the larger c is the higher the probability is to see older news items. The
largest cache we looked at was ¢ = 100. In comparison with the guaranteed 100¢, the observed statistics are
p = 2.48t,, 02 = 0.11t, and the maximum is 3.85¢,.. This suggests that if n >> ¢ which is the normal setting,
it is very unlikely that an item will be seen which reaches the age that activates step 3.

G. Robustness
G.1 Spontaneous Partitioning and Long Term Memory

When at some point in the series G;, 7 = 0, ... a graph G; becomes partitioned—i.e. a subgraph becomes
disconnected—we talk about spontaneous partitioning. Since the topology constantly changes according to
the information exchange algorithm it is important to understand the probability of this phenomenon as a
function of parameters n and ¢, and also to suggest techniques to help prevent it.

We face a methodological problem, however, because for the setting used in the previous simulations
we presented so far this phenomenon did not occur. We saw it only once, by accident during preliminary
experiments, in a simulation with n = 20000 and ¢ = 20 in cycle 13859 when a cluster of 32 vertices was
separated. Collecting statistical data directly is therefore infeasible. For the above reason statistics for smaller
graphs and caches were collected. In such settings it was possible to run long simulations and from the results
we can draw some cautious conclusions extrapolating to larger values and, more importantly, we can also test
the techniques which are supposed to prevent partitioning.

The results of the simulations are shown in Table I111. The table shows the statistics on both the cycle index
in which spontaneous partitioning happens first and the size of the smaller cluster which splits away from the
network as a result of partitioning. All values correspond to 50 independent runs until partitioning or 50000
complete cycles starting with Dy = D._,,;. The first line contains the percentages of the runs in which
partitioning happened before cycle 50000. Accordingly, the values marked with a x are only lower bounds,
because not all runs lead to partitioning. The empirical average and variance of the size of the separated small
cluster (partitioning always resulted in one large and one small component) was calculated from the runs that

18

c=15 ¢=16 ¢=17 c=18

<50000 (%) 100 100 92 38
average 358 3160 >20570* >40456*
maximum 1596 13096 >50000* >50000*
minimum 28 29 50 3812

u clustersize 33.24 30.08 31.02 31.21
o? cluster size 114.27 87.67 63.71 75.18

TABLE I
SPONTANEOUS PARTITIONING STATISTICS FOR n = 1000.

actually lead to partitioning.

Even though on average the waiting time for spontaneous partitioning seems to grow very fast (for ¢ = 17
and 18 we have only lower bounds and in fact we did not have the resources to be able to perform this
experiment with ¢ = 19), unfortunately the minimal observed waiting time does not grow fast enough to
allow us to conclude that partitioning is not likely with larger values of ¢ (although it may well be the case).

Lacking hard evidence that partitioning will not happen too often we suggest a solution for preventing
partitioning instead: the long term memory (LTM). To implement this idea, we add another cache, the LTM,
of size ¢;n,. A new parameter is needed as well, probability p;;,,,. The modifications of the algorithm in
Figure 2 are straightforward: in step 1 peer is picked from the LTM instead of the cache with probability
Puim, and when receiving a connection, peer isstored in LTM with a probability p;;,,,. When the size of LTM
exceeds ¢, We remove a random element.

Performing the same simulations with ¢, = 10 and p;.,,, = 0.1 we were unable to find a single case of
partitioning. So, to demonstrate the power of our approach ¢ had to be decreased even more. For ¢ = 6
without LTM Gy, is always already partitioned when started from Dy = Dg ., (aS mentioned already, it
is known that G, IS connected with high probability which is confirmed by our experiments as well). In
the next couple of cycles the graph falls apart forming more than 90 disconnected clusters. Yet, adding LTM
of size 10 with p;;,, = 0.1 keeps even this graph together. A simulation was run using n = 1000, ¢ = 6
until 106 complete cycles. The graph is usually partitioned during the simulation, the statistics of the number
of clusters during the run are the following (as calculated from the sample of size 10%): p = 1.50895, 02 =
0.506396, max = 5. However, after partitioning connectivity is always restored; Gigs;, IS connected for
example.

In general, the LTM does not interfere with the conformance to the specification, to the contrary, it moves
the important properties of the communication graphs towards those of a random graph. Figure 4 shows
results with ¢, = 10, ¢ = 20, pi,,, = 0.1. As can be seen clustering is decreased and the average path length
is slightly reduced as well. The same effect can be seen on Figure 8 as well.

At the same time, having demonstrated the ability of the LTM to repair damage in an extremely unstable
setting we can conclude that spontaneous partitioning can be restored effectively, especially considering that
damage itself happens very rarely with ¢ > 20.

19

350 T T T T T 6000 T T T

n C=20 e j szo‘
% ¢=20, random graph - ¢=20, random graph -
S 300 c=40 ------ee- H y 1 5000 | c=40 - 4
S ¢=40, random graph - E =100
= c=100 —— H i = all remaining nodes
L 250 - 3 R I}
° ¢=100, random graph ; @ 4000 |
L 200 ¢ . g
.E / : i S 3000
© 150 } g
[] o
-g @ 2000 |
3 100 r N
(]
g 50 L 1000 |
g
© e - S
1 b ST, 0 RN
70 75 80 85 70 75 80 85 90 95 100
percentage of removed nodes percentage of removed nodes

Fig. 9. Partitioning of the communication graph as a function of the percentage of removed nodes (node failures). The depicted
values are averages of 50 independent experiments with n. = 20000 fi xed, each time starting with Iy = D._,,: and performing
the simulation of node failureson G (random graph) and Gso.,..

G.2 Node Failures

The effect of node failures on the connectivity of the communication graphs was tested (see Figure 9). The
graph shows very similar behavior to the random graph G. .., especially if the cache is large. These results
indicate considerable robustness to node failures especially considering the size of the largest cluster. For
¢ = 100 we can see that it is possible to remove in fact any number of random vertices while the vast majority
of the remaining vertices still forms a single connected cluster.

Another important aspect is degree distribution. In particular, we know that if the network is scale-free,
i.e. if its degree distribution follows a power law, then even though the graph is more robust to random vertex
removal than G._ ., it is more vulnerable to the removal of vertices with a high degree [33]. Figure 10 shows
the degree distribution for a communication graph. We can see that the distribution is clearly non-linear on
the log-log scale which would be the case with the power law (although its tail is heavier than that of the
random distribution). Consider also that we have a graph series and not a single graph. It was also tested that
within this series the degree of a fixed vertex keeps changing over the whole range of the distribution which
makes it extremely unlikely in practice that many vertices with a large degree are removed at the same time.

V1. CONCLUSIONS

In this paper we have introduced the newscast model of computation. The specification of the model can
be implemented in a fully distributed fashion. The key component is a lazy probabilistic information dis-
semination technique which is responsible for membership management and communication. This technique
serves as the engine of the newscast model of computation which supports many different types of applica-
tions including efficient reliable multicasting, resource sharing, monitoring and controlling of large systems
and possibly—as a future result of our ongoing research—computational intelligence, distributed datamining
and modeling of social phenomena.

A major contribution of the paper is the protocol for information dissemination which is extremely scalable
and robust and also provides us with a continuously changing communication graph over the set of correspon-
dents which has useful properties like small diameter and a sufficient level of randomness in its neighborhood

20

T

0.09 T L{b T T T T T
° random o©
0.08 | converged e |
(o]

proportion of instances

70 80 90 100 110
degree

Fig. 10. Degree distribution on linear and log-log scale (inset) using the same range. The depicted values are averages of 50
independent experimentswith n = 20000 and ¢ = 20 fi xed, each time starting with Iy = D._,,: and collecting data from G,
and Go.

structure. These properties are emergent, i.e. they are achieved not by explicitly trying to increase randomness
using a special purpose protocol but as a natural consequence of the interaction of the correspondents which
is based on a very simple protocol that uses only local information.

Another consequence of this approach based on emergent behavior is that we do not need special protocols
for adding or removing correspondents either. For addition only the minimal information is necessary, i.e. an
address of a member and for removal no action is necessary at all beside stopping communication.

It has been demonstrated that the specifications of the model are indeed fulfilled by the proposed infor-
mation propagation approach. It has been shown that the system converges to the same state from very
different starting conditions. The system is also robust to node failures due to the random characteristics of
the emergent communication graph.

ACKNOWLEDGMENTS

The authors would like to thank the members of the DREAM project for fruitful discussions, the early
pioneers [9] as well as the rest of the DREAM staff, Maribel Garcia Arenas, Emin Aydin, Pierre Collet and
especially Mike PreuR with whom we worked on several aspects of the earlier versions of the framework.
This work is funded as part of the European Commission Information Society Technologies Program (Future
and Emerging Technologies). The authors have sole responsibility for this work, it does not represent the
opinion of the European Community, and the European Community is not responsible for any use that may
be made of the data appearing herein.

REFERENCES

[1] Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems, Principles and Paradigms, Prentice Hall, Upper Saddle River, N.J.,
2002.

[2] 1SO, “Open distributed processing reference model,” International Standard ISO/IEC IS 10746, 1995.

[3] T. Speakman, J. Crowcroft, J. Gemmell, D. Farinacci, S. Lin, D. Leshchiner, M. Luby, T. Montgomery, L. Rizzo, A. Tweedly, N. Bhaskar,
R. Edmonstone, R. Sumanasekera, and L. Vicisano, “PGM reliable transport protocol specification,” RFC 3208, Dec. 2001.

(4]
(5]
(6]
(7]
(8]
(9]

[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]
[24]
[25]

[26]

[27]

[28]

[29]

21

Brian Neil Levine and Jose J. Garcia-Luna-Aceves, “A comparison of reliable multicast protocols,” Multimedia Systems, vol. 6, no. 5, pp.
334-348, 1998.

Katia Obraczka, “Multicast transport protocols: A survey and taxonomy,” IEEE Communications Magazine, vol. 36, no. 1, pp. 94-102,
Jan. 1998.

Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu, and Yaron Minsky, “Bimodal multicast,” ACM Transactions
on Computer Systems, vol. 17, no. 2, pp. 41-88, May 1999.

Meng-Jang Lin and Keith Marzullo, “Directional gossip: Gossip in a wide area network,” in Dependable Computing — EDCC-3, Jan
Hlavicka, Erik Maehle, and Andras Pataricza, Eds. 1999, vol. 1667 of Lecture Notes on Computer Science, pp. 364-379, Springer-Verlag.
Patrick Th. Eugster and Rachid Guerraoui, “Probabilistic multicast,” in Proceedings of the International Conference on Dependable Systems
and Networks (DSN’02), Los Alamitos, CA., June 2002, IEEE, pp. 313-322, IEEE Computer Society Press.

Ben Paechter, Thomas Béck, Marc Schoenauer, Michele Sebag, A. E. Eiben, Juan J. Merelo, and Terry C. Fogarty, “A distributed resoucre
evolutionary algorithm machine (DREAM),” in Proceedings of the 2000 Congress on Evolutionary Computation (CEC 2000). IEEE, 2000,
pp. 951-958, IEEE Press.

Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli, “Mobile-agent coordination models for Internet applications,” IEEE Computer,
vol. 33, no. 2, pp. 82-89, Feh. 2000.

David Gelernter, “Generative communication in Linda,” ACM Transactions on Programming Languages and Systems, vol. 7, no. 1, pp.
80-112, Jan. 1985.

Mark E. J. Newman, “Models of the small world,” Journal of Statistical Physics, vol. 101, no. 3-4, pp. 819-841, Nov. 2000.

Andrew S. Tanenbaum, Computer Networks, Prentice Hall, Upper Saddle River, N.J., 4th edition, 2003.

David R. Cheriton, “Dissemination-oriented communication systems,” Computer Science Department, Stanford University, 1992.

Patrick Th. Eugster, Pascal Felber, Rachid Guerraoui, and Anne-Marie Kermarrec, “The many faces of publish/subscribe,” Tech. Rep. DSC
1D:200104, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, Jan. 2001.

Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and Tushar D. Chandra, “Matching events in a content-based
subscription system,” in Proceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing (PODC’99), Atlanta,
GA, Apr. 1999, ACM, pp. 53-61.

Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao, Robert E. Strom, and Daniel C. Sturman, “An efficient multicast
protocol for content-based publish-subscribe systems,” in Proceedings of the 19th IEEE International Conference on Distributed Computing
Systems (ICDCS’99), Austin, TX, June 1999, IEEE, pp. 262-272.

Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf, “Design and evaluation of a wide-area event notification service,” ACM
Transactions on Computer Systems, vol. 19, no. 3, pp. 332-383, Aug. 2001.

lon Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan, “Chord: A scalable peer-to-peer lookup service for
internet applications,” in Proceedings of the 2001 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM), San Diego, CA, 2001, ACM, pp. 149-160, ACM Press.

Antony Rowstron and Peter Druschel, “Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems,” in
Middleware 2001, Rachid Guerraoui, Ed. 2001, vol. 2218 of Lecture Notes in Computer Science, pp. 329-350, Springer-Verlag.

Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph, “Tapestry: An infrastructure for fault-tolerant wide-area location and routing,”
Tech. Rep. UCB/CSD-01-1141, Computer Science Division, University of California, Berkeley, Apr. 2001.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker, “A scalable content-addressable network,” in Proceed-
ings of the 2001 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM), San
Diego, CA, 2001, ACM, pp. 161-172, ACM Press.

Steven D. Gribble, Alon Halevy, Zachary Ives, Maya Rodrig, and Dan Suciu, “What can databases do for peer-to-peer?,” in Proceedings of
the 4th International Workshop on the Web and Databases (WebDB’2001), May 2001.

Matthew Harren, Joseph M. Hellerstein, Ryan Huebsch, Boon T. Loo, Scott Shenker, and lon Stoica, “Complex queries in DHT-based
peer-to-peer networks,” in Proceedings of the 1st International Workshop on Peer-to-Peer Systems (IPTPS’02), Mar. 2002.

Divyakant Agrawal, Amr El Abbadi, and Robert C. Steinke, “Epidemic algorithms in replicated databases,” in Proceedings of the 16th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’97), Tucson, AZ, May 1997, ACM, pp. 161-172.
Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry, “Epidemic
algorithms for replicated database management,” in Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing
(PODC’87), Vancouver, Aug. 1987, ACM, pp. 1-12.

Michael Rabinovich, Narain H. Gehani, and Alex Kononov, “Scalable update propagation in epidemic replicated databases,” in Advances in
Database Technology - EDBT’96, Peter M. G. Apers, Mokrane Bouzeghoub, and Georges Gardarin, Eds. 1996, vol. 1057 of Lecture Notes
in Computer Science, pp. 207-222, Springer.

Robbert van Renesse, Yaron Minsky, and Mark Hayden, “A gossip-style failure detection service,” in Middleware "98, Nigel Davies, Kerry
Raymond, and Jochen Seitz, Eds. 1998, pp. 55-70, Springer.

Sridharan Ranganathan, Alan D. George, Robert W. Todd, and Matthew C. Chidester, “Gossip-style failure detection and distributed
consensus for scalable heterogeneous clusters,” Cluster Computing, vol. 4, no. 3, pp. 197-209, July 2001.

[30]

[31]
[32]

[33]

[34]
[35]

[36]

[37]
(38]

22

Anne-Marie Kermarrec, Laurent Massoulié, and Ayalvadi J. Ganesh, “Probablistic reliable dissemination in large-scale systems,” IEEE
Transactions on Parallel and Distributed Systems, 2003, To appear.

Béla Bollobas, Random Graphs, Cambridge University Press, Cambridge, UK, 2nd edition, 2001.

Ayalvadi J. Ganesh, Anne-Marie Kermarrec, and Laurent Massoulié, “Peer-to-peer membership management for gossip-based protocols,”
IEEE Transactions on Computers, 2003, To appear.

Réka Albert and Albert-Laszl6 Barabési, “Statistical mechanics of complex networks,” Reviews of Modern Physics, vol. 74, no. 1, pp.
47-97, Jan. 2002.

David Mosberger, “Memory consistency models,” ACM SIGOPS Operating Systems Review, vol. 27, no. 1, pp. 18-26, Jan. 1993.

Sarita V. Adve and Kourosh Gharachorloo, “Shared memory consistency models: A tutorial,” IEEE Computer, vol. 29, no. 12, pp. 66-76,
Dec. 1996.

Maribel G. Arenas, Pierre Collet, A. E. Eiben, Mark Jelasity, Juan J. Merelo, Ben Paechter, Mike Preu3, and Marc Schoenauer, “A
framework for distributed evolutionary algorithms,” in Parallel Problem Solving from Nature - PPSN VII, Juan Julian Merelo Guervos,
Panagiotis Adamidis, Hans-Georg Beyer, José-Luis Fernandez-Villacafias, and Hans-Paul Schwefel, Eds. 2002, vol. 2439 of Lecture Notes
in Computer Science, pp. 665-675, Springer-Verlag.

DR-EA-M Project, “http://www.dr-ea-m.org/,” .

Trevor |. Fenner and Alan M. Frieze, “On the connectivity of random m-orientable graphs and digraphs,” Combinatorica, vol. 2, pp.
347-359, 1982.

