
Globule: a Platform for Self-Replicating Web
Documents

Guillaume Pierre
Maarten van Steen

Vrije Universiteit, Amsterdam

Internal report IR-483
January 2001

Abstract

Replicating Web documents at a worldwide scale can help reducing user-perceived
latency and wide-area network traffic. This paper presents the preliminary design
of Globule, a platform which automates all aspects of such replication: server-
to-server peering negotiation, creation and destruction of replicas, selection of
the most appropriate replication strategies on a per-document basis, consistency
management and transparent redirection of clients to replicas. To facilitate the
transition from a non-replicated server to a replicated one, we designed Globule as
a module for the Apache Web server. Therefore, converting normal Web documents
should require no more than compiling a new module into Apache and editing a
configuration file.

vrije Universiteit

Faculty of Mathematics and Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15453241?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Globule: a Platform for Self-Replicating Web Documents 1

1 Introduction

Large-scale distributed systems often address performance issues by way of caching
and replication. In the Web, attention has traditionally concentrated on caching and
in much lesser extent to replication. Recently, Web hosting services have started to
emerge as the solution to achieve scalability through replication. In this approach,
content is replicated to places where user demand is high. Web hosting services
have the advantage over static mirroring of Web sites in that decisions on where to
replicate content can be made automatically. However, current hosting services ap-
ply a single system-wide policy concerning which consistency is needed and how
it is to be realized (see, e.g., [2]).

Many protocols have been proposed to achieve caching or replication, each of
which presents specific advantages and drawbacks. We have shown in a previous
article that no single policy is efficient for replicating all documents. Significant
performance improvements can be obtained by replicating each document with the
policy that is most suited to its access pattern [6].

To associate a replication policy with each document separately, we consider
a document and all its replicas as a single replicated distributed object. All repli-
cation issues are encapsulated inside the object. Such an architecture allows a
document to monitor its own access pattern and to dynamically select the replica-
tion policy that suits it best. When a change is detected in access patterns, it can
re-evaluate its choice and switch policies on the fly [5].

Although we have demonstrated the feasibility of this approach, we have not
yet addressed its integration in the existing Web infrastructure. There are two prob-
lems that need to be addressed. First, servers need to be adapted so that they can
support per-document policies. Second, servers need to cooperate to allow repli-
cas to be dynamically installed and removed, and to redirect clients to the nearest
replica. One additional requirement is that adaptations should fit into the current
Web infrastructure, requiring minimal modifications to existing servers.

This paper presents the preliminary design of Globule, a platform for host-
ing adaptive Web documents. It is designed as a module for the popular Apache
server [1]. Converting normal Web documents should require no more than com-
piling a new module into Apache and editing a configuration file. Globule handles
all management tasks: discovering and negotiating with remote sites for hosting
replicas; replicating static and some dynamic documents; and transparently redi-
recting clients to their closest replica.

The paper is structured as follows: Section 2 describes our document and server
models; Section 3 details the architecture of the system. Finally, Section 4 shows
how such a system can be implemented as an Apache module, and Section 5 con-
cludes.



Globule: a Platform for Self-Replicating Web Documents 2

2 General Model

Our system is made of servers that cooperate in order to replicate Web documents.
This section describes our document and server models.

2.1 Document Model

In contrast to most Web servers, we consider a Web document and its replicas as a
single distributed entity, and not as a collection of files. Each distributed document
is implemented as a single distributed object replicated across the Internet. Each
such object implements a standard interface (put(), get(), . . . ) to allow for
reading and modification of its content.

Our system is based on Globe, a platform for large-scale distributed objects [8].
Its main novelty is the encapsulation of issues related to distribution and replication
inside the objects. We designed documents which dynamically select their own
replication policy. Our “documents-are-objects” model is also a key to replicating
dynamic Web documents.

2.1.1 Adaptive Replicated Web Documents

We have shown in previous papers that significant performance improvements can
be obtained over traditional replicated servers by associating each document with
the replication strategy that suits it best [5, 6]. Such per-document replication
policies are made possible by the encapsulation of replication issues inside each
document.

The selection of the best replication policy is realized internally to each doc-
ument by way of trace-based simulations. Replicas transmit logs of the requests
they received to their master site. When significant access pattern modification
is detected, the master re-evaluates its choice of replication strategy. To do so, it
extracts the most recent trace records and simulates the behavior of a number of
replication policies with this trace. Each simulation outputs performance metrics
such as client retrieval time, network traffic and consistency. The “best” policy is
chosen from these performance figures using a cost function.

2.1.2 Replicating Dynamic Web Documents

Many documents are not made from static content, but are generated on the fly. For
each request, a Web server executes a request-specific piece of code whose output
is delivered to the client. This code can access external resources such as databases,
execute shell commands, and issue network requests for generating a view of the
dynamic document.



Globule: a Platform for Self-Replicating Web Documents 3

Replicating dynamic documents requires replicating the code as well as all data
necessary for its execution. Since our object model does not differentiate between
static and dynamic documents, dynamic documents are considered as objects im-
plementing the same interface as other documents. They distinguish from other
documents only by their implementation: whereas static documents use always the
same implementation to access various internal states, dynamic documents differ
in both their internal states and method implementations.

The real issue with respect to dynamic documents arises when trying to convert
existing dynamic documents to objects. The Web server must be able to determine
automatically which resources are accessed by each dynamic document in order
to include them inside the object. This can be difficult for documents such as
CGIs, where the server delegates request handling to an arbitrary external program.
However, a large portion of dynamic documents such as PHPs and ASPs are in fact
scripts interpreted by the Web server itself. In this case, the server knows the
semantics of the document, and can often automatically detect which resources are
required by the document.

Dynamic documents that the server can not analyze cannot be encapsulated
into objects. Therefore, they are not replicated in our approach.

2.2 Cooperative Servers

One important issue for replicating Web documents is to gain access to computing
resources in several locations worldwide (CPU, disk space, memory, bandwidth,
etc.). On the other hand, adding extra resources locally is easy. Therefore, the idea
is to trade cheap local resources for valuable remote ones. Servers automatically
negotiate for resource peering. The result of such a negotiation is for a “hosting
server” to agree to allocate a given amount of its local resources to host replicas
from a “hosted server.” The hosted server keeps control on the resources it has
acquired: it controls which of its clients are redirected to the hosting server, which
documents are replicated there and which replication policies are being used.

Of course, servers may play both “hosting server” and “hosted server” roles at
the same time: a server may host replicas from another server, and replicate its own
content to a third one. We use these terms only to distinguish roles within a given
cooperation session.

By allowing hosted servers to use their local resources, hosting servers will
gain the ability of deploying replicas of their own content. The details of this
negotiation still have to be figured out.



Globule: a Platform for Self-Replicating Web Documents 4

management

Event
monitors

Redirector

Resource
management

Client

Resource

monitors

Redirector

Replication
meta-object

Object
wrapper

Upcall

Event Document
delivery delivery

Document

interface

Hosted server Hosting server

Replicator Replicator

Replicator

Figure 1: General Architecture

3 System Architecture

Figure 1 shows Globule’s architecture. It provides several distinct features: ne-
gotiating with remote servers for resource allocation and resource management,
document replication and consistency, and automatic client redirection.

3.1 Delegated Resource Management

When a server notices that replicating its documents would improve the quality of
service for its clients, it identifies one or more locations where replicas would be
needed. Those locations are determined, for example, as the Autonomous Systems
from which most of the requests originate.1 It then locates suitable hosting servers
in those locations and negotiates resource allocation.

When a hosted server has acquired appropriate resources on a hosting server,
it can use them to create replicas, and redirect clients to them. Its only obliga-
tion is to not exceed the amount of resources that have been allocated. This rule is
enforced by the hosting server: to prevent excessive use of storage space, a replace-
ment module similar to those of caches is associated to the set of replicas from this
hosted server. If a hosted server tries to allocate more resources than allowed, the
hosting server will automatically delete other replicas from the same server. Simi-

1Usually, a small number of origin Autonomous Systems account for a large fraction of the re-
quests, as shown for example in [6].



Globule: a Platform for Self-Replicating Web Documents 5

lar mechanisms can be setup to enforce limitations in resources such as bandwidth
usage [3].

A hosting server having allocated resources for several different hosted servers
manages each resource pool separately. Therefore, it must have several replace-
ment module instances, each of which enforces resource limitations to one of the
hosted servers. This mechanism is similar to those of partitioned caches [4].

Even though resource limitation is enforced by the hosting server, the hosted
server remains in control of its allocated resources. It does so by attaching priority
flags to its documents, indicating how important each replica is. When making
replacement decisions, the hosting server will take these flags into account in addi-
tion to standard parameters such as the frequency of requests and replica size. The
more important a replica, the less likely it is to be removed.

3.2 Document Replication

As is also shown in Figure 1, a replica is made of two separate local objects: a
document’s state which is available in the form of delivery components capable of
producing documents, and a replication meta-object which is responsible for en-
forcing the document’s replication policy. Each object can either reside in memory
or be marshaled to disk. State transitions between memory and disk are dictated
by the per-hosted-server resource limitation module described in Section 3.1.

All replication meta-objects implement a standard interface, but they can have
various implementations depending on the replication policy they represent. Each
time a request is issued to a document, the server first invokes the document’s meta-
object. Depending on its policy and internal state, the meta-object decides how to
process the request. It can for example decide to reply immediately based on the
local replica, or require to first check for freshness, etc.

Once the replication meta-object has authorized for it, the Web server uses one
of its standard document delivery modules to answer the request. These can be
modules that deliver static documents, or modules that generate a document on
request.

Certain replication policies require taking actions at other times than request
time, such as periodically checking for a document’s freshness, sending invalida-
tions to replicas when the master copy is updated, and processing incoming inval-
idations. To do so, meta-objects can register to local services for being invoked
when certain events take place. For example, a meta-object can request to be wo-
ken up periodically or when a given file is updated.



Globule: a Platform for Self-Replicating Web Documents 6

3.3 Client Redirection

Each document is assumed to have a home server. This server is responsible for au-
tomatically redirecting clients to their most suitable replica. Knowing the location
of clients and replicas, such a selection can be reduced to a shortest path problem.

Two mechanisms can be used to effectively redirect clients to replicas:

� HTTP redirection: when receiving an HTTP request, the server sends a
redirection response, indicating from which URL the document should be
retrieved. This scheme is very simple, but it is not transparent. That is,
browsers display the URL of the mirror site instead of the home site. This
may become a problem if, for example, a user bookmarks a mirror page.
Later on, when he tries to access the page again, this mirror may have been
removed.

� DNS redirection: before accessing a page, a browser needs to request the
DNS to convert the server’s name into an IP address. After locating an
authoritative server for the given domain, the client’s DNS server contacts
it for actually resolving the name. DNS redirection requires the authorita-
tive server to send customized responses depending on the location of the
client [7]. Small TTL values are associated to responses, so that client DNS
caches are updated often. A customized authoritative DNS server is neces-
sary, but no other DNS server needs to be modified. This method is fully
transparent to the user, since URLs do not need to be modified. On the other
hand, it has a coarse granularity: it is not possible to replicate only part of a
server, since all requests to this server will be sent to the mirrors.

We decided to use DNS redirection, as did most of the content distribution net-
works [2]. However, our system’s architecture does not depend on this decision; we
may later decide to use another mechanism, for example when the HTTP standard
will feature more powerful redirection mechanisms.

4 Integration into the Apache Server

In order to allow for easy deployment, we decided to develop Globule as an Apache
module. This way, turning a normal Apache server into a replication-aware server
would require only compiling a new module into the server and editing a configu-
ration file.

The Apache Web server is built from a modular design, which enables one to
easily add new features. It decomposes the treatment for each request into several



Globule: a Platform for Self-Replicating Web Documents 7

steps, such as access checking, actually sending a response back to the client, and
logging the request.

Modules can register handler functions to participate in one or more of these
steps. When a request is received, the server runs the registered handlers for each
step. Modules can then accept or refuse to process the operation; the server tries
all the handlers registered for each step until one accepts to process it.

Many third party modules have been developed to extend Apache in a number
of ways. Among the most popular ones are server scripting languages such as PHP.

The architecture of Apache provides us all the tools necessary to implement
Globule: we can, for example intercept a request before being served by the stan-
dard document delivery modules to let the replication meta-objects check for con-
sistency. Servers can communicate by sending HTTP requests to each other.

Although Apache is an HTTP server, one can write modules to implement other
protocols. So, for example, one could turn Apache into a DNS server. We plan to
use this feature for redirecting clients to mirrors.

5 Conclusion

We have presented Globule, a platform for Web document replication. Globule
integrates all necessary services into a single tool: dynamic creation and removal
of replicas, consistency management, and automatic client redirection. Globule
will be implemented as a module for the Apache server.

The architecture presented in this article is still work in progress, but we hope
to release a first prototype soon. Two problems have been left for future work.
First, security: the administrator of a server would like to make sure that remote
servers which accepted to host his replicas will do it without modifying documents,
for example. We plan to use a trust model to solve this. Second, details of server-
to-server negotiation still have to be figured out.

When the Globule project is completed, we expect to provide a free cooperative
platform for Web document replication that will match the ever-increasing quality
of service expectations that users have.

References

[1] Apache Web server, http://www.apache.org/httpd/.

[2] F. Thomson Leighton and Daniel M. Lewis, Global hosting system, United States
Patent, Number US6108703, August 2000.

[3] mod bandwidth – bandwidth management module for Apache webserver, http://
www.cohprog.com/mod_bandwidth.html.



Globule: a Platform for Self-Replicating Web Documents 8

[4] Cristina Duarte Murta, Virgı́lio Almeida, and Wagner Meira, Jr, Analyzing perfor-
mance of partitioned caches for the WWW, Proceedings of the 3rd International WWW
Caching Workshop, June 1998.

[5] Guillaume Pierre, Ihor Kuz, and Maarten van Steen, Adaptive replicated Web doc-
uments, Technical Report IR-477, Vrije Universiteit, Amsterdam, September 2000,
http://www.cs.vu.nl/˜gpierre/publi/ARWD_ir477.html.

[6] Guillaume Pierre, Ihor Kuz, Maarten van Steen, and Andrew S. Tanenbaum, Differen-
tiated strategies for replicating Web documents, Proceedings of the 5th International
Web Caching and Content Delivery Workshop, May 2000, http://www.cs.vu.
nl/˜gpierre/publi/DSRWD_wcw2000.html.

[7] Wenting Tang, Fan Du, Matt W. Mutka, Lionel M. Ni, and Abdol-Hossein Esfahanian,
Supporting global replicated services by a routing-metric-aware DNS, Proceedings of
the 2nd International Workshop on Advanced Issues of E-Commerce and Web-Based
Information Systems (WECWIS 2000), June 2000, pp. 67–74.

[8] Maarten van Steen, Philip Homburg, and Andrew S. Tanenbaum, Globe: A wide-area
distributed system, IEEE Concurrency 7 (1999), no. 1, 70–78.


