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Abstract We describe the implementation of the rota-
tional strengths for vibrational circular dichroism
(VCD) in the Slater-type orbital based Amsterdam Den-
sity Functional (ADF) package. We show that our imple-
mentation, which makes use of analytical derivative
techniques and London atomic orbitals, yields origin
independent rotational strengths. The basis set depen-
dence in the particular case of Slater-type basis func-
tions is also discussed. It turns out that the triple zeta
STO basis sets with one set of polarization functions
(TZP) are adequate for VCD calculations. The origin-
dependence of the atomic axial tensors is checked by
a distributed origin gauge implementation. The distrib-
uted and common origin gauge implementations yield
virtually identical atomic axial tensors with the Slater-
type basis sets employed here, proving that our
implementation yields origin independent rotational
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strengths. We verify the implementation for a set of
benchmark molecules, for which the dependence of the
VCD spectra on the particular choice of the exchange–
correlation functional is studied. The pure functionals
BP86 and OLYP show a particularly good performance.
Then, we apply this approach to study the VCD spectra
of hexa- and hepta- helicenes. In particular we focus on
relationships between the sign of the rotational strengths
of the two helicenes.

Keywords Vibrational circular dichroism · Atomic
axial tensor · VCD spectra

1 Introduction

Vibrational circular dichroism (VCD) is the differential
absorption of left and right circularly polarized light in
a vibrational transition. The VCD intensities are pro-
portional to the rotational strengths which are defined
as the imaginary part of the scalar product between the
electric and magnetic dipole transition moments.

For exact wave functions the rotational strengths and
electric dipole transition moments (EDTM) are origin-
independent [1]. The magnetic dipole transition
moments (MDTM) on the other hand depend on the
choice of origin even for exact wave functions. The ori-
gin-dependence disappears only after the scalar product
of the electric and magnetic dipole transition moments is
taken [1] since the origin-dependent part of the MDTM
is perpendicular to the EDTM. Within the double har-
monic approximation the accuracy of EDTM and
MDTM is determined by the accuracy of the harmonic
force field, the atomic polar tensor (APT) and the atomic
axial tensor (AAT).
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We present here the implementation of Stephens’
equations for VCD [2] into the Amsterdam Density
Functional program package (ADF, [3,4]). A combina-
tion of analytical derivative techniques is employed for
the calculation of harmonic force fields (HFF), APTs
and AATs. The HFFs and APTs are calculated using
Slater-type orbitals (STO) while London atomic orbi-
tals (LAO) are used for the computation of the AATs.

One of the aims of the paper is to validate the VCD
implementation using this specific computational meth-
odology. We demonstrate that the numerical integration
used in ADF [5,6] does not affect the origin-indepen-
dence of the rotational strengths. The common origin
gauge is compared with the distributed origin gauge with
origins at the equilibrium positions of the nuclei [1]. The
accuracy of the calculated AATs, APTs and rotational
strengths is assessed via sum rules for a range of sys-
tematically increased STO basis sets. We show that even
Slater-type basis sets of moderate size yield accurate
AATs and rotational strengths. A direct assessment of
the obtained VCD spectra in comparison to experiment
is carried out for two benchmark molecules in VCD
studies, α-pinene and Troger’s base.

Helicene compounds have been subject to several
experimental and theoretical studies using spectroscopic
techniques which allow the discrimination between the
optical antipodes. They are prototype compounds for
the large variety of helical systems occuring in biochem-
ical systems, e.g., DNA, proteins, or amyloid fibrils [7,8].
The investigation of their chiral properties has received
much attention [9–11], and only recently an unambig-
uous assignment of the absolute configuration of hep-
tahelicene could be performed on the basis of VCD
spectroscopy [10]. Electronic circular dichroism spec-
troscopy has been used to prove the enantioselective
interaction of particular helicene derivatives with spe-
cific forms of DNA [11], which is an important pre-req-
uisite for understanding the mechanisms of anticancer
agents. An interesting observation in connection with
the chiral properties of screw-shaped molecules is the
fact that the chirality of the global helix apparently
dominates the chiral properties, even in the presence
of different local chirality centers [12]. Therefore, we
set out to study the features of the VCD spectra of he-
licenes for compounds with different numbers of fused
aromatic rings. In particular, we focus on the effect of
differing normal mode symmetry for normal modes of
similar character in hexa- and hepta-helicene.

2 Theory

The rotational strength (R) for the fundamental transi-
tion |0〉 → |1〉 of the ith vibrational mode in the elec-

tronic ground state is given by [2]:

R(0 → 1)i = Im
[〈0|µ̂E|1〉i · 〈1|µ̂M|0〉i

]
(1)

where µ̂E and µ̂M are the electric and magnetic dipole
moment operators and i denotes the ith vibrational
mode.

Within the harmonic approximation the electric and
magnetic dipole transition moments can be written [1]:

〈0|(µ̂E)β |1〉i =
(

h̄
ωi

) 1
2 ∑

λα

PλαβSλα,i (2)

〈0|(µ̂M)β |1〉i = −
(

2h̄3ωi

) 1
2
∑

λα

Mλ
αβSλα,i (3)

In Eqs. (2) and (3), Sλα,i is the transformation matrix
from Cartesian to normal coordinates, Pλαβ and Mλ

αβ are
the atomic polar tensor (APT) and the atomic axial ten-
sor (AAT), respectively, h̄ is the reduced Planck con-
stant, ωi is the frequency of the ith vibrational mode,
α and β denote Cartesian coordinates, and λ labels the
nuclei. Both tensors, APT and AAT, are defined per
atom and have electronic and nuclear contributions [1]:

Pλαβ = Eλαβ + Nλ
αβ (4)

Mλ
αβ = Iλαβ + Jλαβ (5)

The electronic contributions are

Eλαβ =
(
∂〈ψG(R)|(µ̂E)β |ψG(R)〉

∂Rλα

)

R0
(6)

Iλαβ =
〈(
∂ψG(R)
∂Rλα

)

R0

∣∣∣
∣

(
∂ψG(R0, H)

∂Hβ

)

H=0

〉
(7)

while the nuclear ones are:

Nλ
αβ = eZλδαβ (8)

Jλαβ = i
eZλ
4h̄c

∑

γ

εαβγR0
λγ (9)

In Eqs. (6)–(9), ψG is the electronic wave function of
the ground state G, Zλ and Rλ are the charge and the
position of nucleus λ, R0

λ is Rλ at the equilibrium geom-
etry, H is a static magnetic field, εαβγ is the Levi-Civita
tensor with the indices α, β, γ running over Cartesian
components, e is the elementary charge and c is the speed
of light in vacuum. Note that in Eq. (7), ψG(R) depends
on the positions of the nuclei, which are not fixed, while
ψG(R0, H) has to be calculated for the equilibrium posi-
tions of the nuclei in the presence of a magnetic field.
To generalize, with regard to the notation used in this
paper, a quantity Γ depends on a parameter/perturba-
tion y only when it is written as Γ (y). Otherwise it refers
to the unperturbed case.
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The APTs are origin-independent [1]. The AATs, on
the other hand, are origin-dependent due to their depen-
dence on the magnetic field. The origin-dependence of
the AATs is given by [1]:

(Mλ
αβ)

O1 =
(

Mλ
αβ

)O2 + i
4h̄c

∑

γ δ

εβγ δYγPλαδ (10)

where O1 and O2 are the position vectors of the two
different choices of the origin of the coordinate system
while Y is the displacement vector between the two ori-
gins (Y = O2 − O1). Note that the calculated rotational
strengths are origin independent only if the calculated
AATs and APTs fulfill Eq. (10) exactly [1].

By defining the following tensors:

Σ1
αβ = 4h̄c

∑

λ

Im
(

Mλ
αβ

)
(11)

Σ2
αβ =

∑

λγ δ

εβγ δR0
λγPλαδ (12)

Σ3
αβ =

∑

γ

εαβγ

(
µG

)

γ
(13)

Σ4
αβ =

∑

λ

Pλαβ (14)

it can be shown that the APTs and AATs are further
interconnected via sum rules. In Eq. (13), µG is the
dipole moment of the ground state. For neutral systems
and exact wave functions these tensors obey the follow-
ing sum rules [13]:

Σ1
αβ = Σ2

αβ = Σ3
αβ , Σ4

αβ = 0 (15)

3 Implementation

3.1 Methodology

We start by writing the APTs and AATs in terms of
Kohn–Sham molecular orbitals (MO). After introduc-
ing the coupled-perturbed Kohn–Sham equations
(CPKS) the final expressions for APTs and AATs are
derived and their implementation is discussed. Only the
electronic contributions will be considered since the
implementation of the nuclear parts, Eqs. (8) and (9),
is trivial.

In the case when the electronic wave function, ψG, is
approximated by a single Slater determinant, Eqs. (6)
and (7) become [14]:

Eλαβ =
(

∂

∂Rλα

∫
rβρdr

)

R0

=
∫

rβ

(
∂ρ

∂Rλα

)

R0
dr =

∫
rβρ(1)dr (16)

Iλαβ = 2
Nocc∑

j=1

〈(
∂ϕj

∂Rλα

)

R0

∣∣∣∣

(
∂ϕj

∂Hβ

)

H=0

〉
(17)

with:

ρ=2
Nocc∑

j=1

ϕjϕ
∗
j and ρ(1)=2

Nocc∑

j=1

(
ϕ
(1)
j ϕ∗

j +ϕjϕ
(1)∗
j

)
(18)

Here, ϕj is the jth MO, ρ and ρ(1) are the electron den-
sity and its derivative with respect to a nuclear displace-
ment, respectively, r is a spatial coordinate, j runs over
the occupied MOs, and Nocc is the number of occupied
MOs. Note that Eqs. (17) and (18) are written for the
case of a closed-shell system. Throughout this work the
upper index “(1)” denotes first order derivatives with
respect to some perturbation parameter y.

According to the CPKS formalism the first order
MO derivatives with respect to a perturbation y can be
written as [15,16]:

ϕ(1) = χ(1)C + ϕU(1) (19)

In Eq. (19) ϕ is a row vector containing the MOs, χ
is a row vector containing the perturbation-dependent
basis functions and U is the unitary transformation that
relates the perturbed eigenvectors to the unperturbed
ones [15,16]:

C(y) = CU(y) (20)

The U(1) matrix required in Eq. (19) is calculated from
the CPKS equations [15,16]:

U(1)
ij = F(1)ij − εjS

(1)
ij

εj − εi
(i �= j), U(1)

ii = −1
2

S(1)ii (21)

U(1)
ij + U(1)∗

ji + S(1)ij = 0 (22)

where S and F are the overlap and Fock matrices in the
MO basis, respectively, and εi, εj denote orbital energies.

3.2 The atomic axial tensor

The electronic contribution to the atomic axial tensor,
Eq. (17), is an overlap integral of two first-order per-
turbed wave functions. One perturbation is due to a
nuclear displacement, the other is due to the magnetic
field.
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From Eq. (19) the derivatives of the jth MO can be
written:

ϕ
(1)
j =

Nbas∑

a=1

χ(1)a Caj +
NMO∑

i=1

ϕiU
(1)
ij (23)

where Nbas is the number of basis functions and NMO is
the number of MOs.

By inserting Eq. (23) for magnetic and nuclear
displacement perturbations into Eq. (17) we obtain:

Iλαβ =
Nocc∑

j=1

Nbas∑

a,b=1

CajCbj

〈
χ(1),Rλαa |χ(1),Hβ

b

〉

+
Nocc∑

j=1

NMO∑

i′=1

Nbas∑

a=1

CajU
(1),Hβ

i′j

〈
χ(1),Rλαa |ϕi′

〉

+
Nocc∑

j=1

NMO∑

i=1

Nbas∑

b=1

U(1),Rλα
ij Cbj

〈
ϕi|χ(1),Hβ

b

〉

+
Nocc∑

j=1

NMO∑

i,i′=1

U(1),Rλα
ij U

(1),Hβ

i′j 〈ϕi|ϕi′ 〉 (24)

In Eq. (24) the upper indexes Rλα and Hβ label the
nuclear displacement and magnetic field perturbations
with respect to which the derivatives were taken. By
writing the MOs as linear combinations of basis func-
tions and using their orthogonality, the final expression
for Iλαβ is obtained:

Iλαβ =
Nocc∑

j=1

Nbas∑

a,b=1

CajCbj

〈
χ(1),Rλαa |χ(1),Hβ

b

〉

+
Nocc∑

j=1

NMO∑

i=1

Nbas∑

a,b=1

CajCbiU
(1),Hβ

ij

〈
χ(1),Rλαa |χb

〉

+
Nocc∑

j=1

NMO∑

i=1

Nbas∑

a,b=1

CaiCbjU
(1),Rλα
ij

〈
χa|χ(1),Hβ

b

〉

+
Nocc∑

j=1

NMO∑

i=1

U(1),Rλα
ij U

(1),Hβ

ij (25)

As can be seen from Eq. (25) the calculation of the
electronic contribution of the AATs requires knowl-
edge of the unitary matrices U(1),Rλα and U(1),Hβ , includ-
ing their occupied–occupied (occ–occ) blocks and the
unperturbed eigenvectors, C. The integrals 〈χ(1),Rλαa |
χ
(1),Hβ

b 〉, 〈χ(1),Rλαa |χb〉, and 〈χa|χ(1),Hβ

b 〉 are calculated
numerically using London atomic orbitals (LAOs) as
basis functions. An LAO is obtained from a field inde-
pendent basis function by adding a phase factor that

depends on the magnetic field [17–20]:

σA
a (r) = χA

a (r) · exp
[
−i

e
h̄c
(H × RA)r

]
(26)

where A labels the nucleus on which the basis function
χA

a is centered, H is a static magnetic field and RA is the
position vector of the Ath nucleus. Note that in our case
χA

a is an STO.
For a zero magnetic field the LAOs reduce to STOs

and therefore only quantities directly related to a mag-

netic field (U
(1),Hβ

i′j and χ
(1),Hβ

b ) are calculated using

LAOs. The calculation of U(1),Hβ and U(1),Rλα requires
the solution of the CPKS equations for magnetic-field
perturbations and nuclear displacements, respectively.
In general, the CPKS equations, Eqs. (21) and (22), have
to be solved in an iterative manner due to the fact that
the U(1) matrix depends on the first order perturbed
Fock matrix, F(1), which depends on the first order den-
sity, ρ(1), which in turn depends on the U(1) matrix. For
magnetic perturbations however, the first order density
is zero (see Appendix 1 for more details), thus U(1),Hβ

can be calculated directly from Eq. (21).
As mentioned, the occ–occ blocks of both the nuclear

displacement and magnetic perturbation U(1) matrices
are present in the expression for Iλαβ . This is because
the basis sets depend on the perturbation. For degen-
erate orbitals, the denominator in the expression for
off-diagonal occ–occ matrix elements in Eq. (21) will
diverge. However, as is shown in Appendix 2 the con-
tributions from the off-diagonal matrix elements of the
occ–occ blocks can be expressed in terms of the
perturbed overlap matrices and thus avoid this
complication.

3.3 The atomic polar tensor

In order to calculate the APT components of Eq. (4)
we need to calculate the electronic contributions Eλαβ
of Eq. (16). These in turn depend on ρ(1) due to a
nuclear displacement perturbation. Inserting Eq. (23)
into Eq. (18), and making use of the condition Eq. (22)
we obtain:

ρ(1),Rλα =
Nvir∑

i=1

Nocc∑

j=1

(
U(1),Rλα∗

ij ϕ∗
i ϕj + U(1),Rλα

ij ϕiϕ
∗
j

)

+
Nocc∑

j=1

Nbas∑

a=1

(
Cajϕ

∗
j + C∗

ajϕj

)
χ(1),Rλαa

−
Nocc∑

i=1

Nocc∑

j=1

S(1),Rλαji ϕ∗
i ϕj (27)
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Inserting this into Eq. (16) gives

Eλαβ =
Nvir∑

i=1

Nocc∑

j=1

U(1),Rλα∗
ij 〈ϕi|rβ |ϕj〉

+
Nvir∑

i=1

Nocc∑

j=1

U(1),Rλα
ij 〈ϕj|rβ |ϕi〉

+
Nocc∑

j=1

Nbas∑

a=1

C∗
aj〈χ(1),Rλαa |rβ |ϕj〉

+
Nocc∑

j=1

Nbas∑

a=1

Caj〈ϕj|rβ |χ(1),Rλαa 〉

−
Nocc∑

i=1

Nocc∑

j=1

S(1),Rλαji 〈ϕi|rβ |ϕj〉 (28)

3.3.1 Calculating U(1),Rλα for the APT

The one-electron Kohn–Sham operator is:

h = T + VNe + VC + VXC

= −p2

2
−

∑

A

ZA

|r − RA| +
∫

ρ

|r − r′|dr′ + VXC (29)

where the first term is the kinetic energy, the second is
the nuclear potential, the third is the electronic Coulomb
potential, and the final term is the exchange-correlation
potential. The derivative of this with respect to a nuclear
displacement, Rλα , is:

h(1),Rλα = ∂VNe

∂Rλα
+

∫
ρ(1),Rλα

|r − r′| dr′ + ∂VXC

∂Rλα
(30)

Inserting Eq. (27) into the above expression gives an
expression for h(1),Rλα that can be split into a part that
contains the U(1),Rλ,α and a part that does not, so that
F(1),Rλαij of Eq. (21) can be written as:

F(1),Rλαij = F(U
1)

ij + F(non−U1)
ij (31)

Putting this into Eq. (21) gives

U(1),Rλα
ij = F(U

1)
ij

εj − εi
+ F(non−U1)

ij − εiS
(1),Rλα
ij

εj − εi
(32)

This equation has the “matrix” form

u = A(u)+ v, (33)

where u is a vector with components U(1)
ij , the matrix

A depends on u, and v is a vector free of the U(1)
ij . It is

solved using an iterative method [15,16,21].

4 Validation for a set of benchmark molecules

The theory presented in Sects. 2 and 3 has been imple-
mented in the ADF program. The AATs, U(1),Hβ and
rotational strengths are calculated with the newly devel-
oped VCD module of ADF, while the APTs, U(1),Rλ and
Sλα,i are calculated with the existing second derivatives
(SD) module [21]. The validation of the implementation
is done in two ways. First, using Eqs. (10) and (15) we
examine the accuracy of the calculated tensors using the
ethylene oxide (oxirane) (1) as our test molecule. Sec-
ond, we compare calculated rotational strengths with
the experimental values for two benchmark molecules:
α-pinene (2) and Troger’s base (3) (Fig. 1).

The calculations were performed using three different
exchange-correlation functionals BP86 [22,23], OLYP
[24,25], and BLYP [22,26] and basis sets from the ADF
basis set library. The basis sets used were SZ, DZ, DZP,
TZP, TZ2P and ET-pVQZ [27]. The geometries were
optimized with ADF for each choice of basis set and
functional.

4.1 The atomic axial tensors

4.1.1 Gauge dependence

Rotational strengths should be origin-independent. His-
torically this has been an issue [20,28–31]. Initially, the
importance of using London atomic orbitals was not

Fig. 1 Test molecules used to
verify the VCD
implementation. Oxirane (1);
α-pinene (2); Troger’s base
(3)
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fully recognized. The failure to use LAOs combined with
the use of basis sets of limited size and/or different lev-
els of theory for the computation of the AATs, APTs
and force fields yielded rotational strengths that were
origin-dependent. As an attempt to remedy this problem
the distributed origin (DO) gauge was introduced [1].
In the DO gauge the AAT of each nucleus is calculated
with respect to an origin centred at that nucleus. Then
using the shift formula of Eq. (10), they are referred to
a common origin O1. Since this does not yield correct
results when LAO’s are not used, the results still prove
to be dependent on the choice of origin O1, although
they generally yielded results of superior accuracy com-
pared to the ones obtained when using the common
origin (CO) gauge [28,29].

Bak et al. [20] have proven that if LAOs are used,
the CO and DO gauges yield identical AATs at any
basis set level and therefore origin-independent rota-
tional strengths. Still, numerical error sources, such as
numerical integration of STO-based integrals and/or the
limited accuracy of U(1) matrices may prevent perfect
independency of the choice of origin. We therefore ver-
ify the degree of origin-independency of our implemen-
tation by calculating the AATs with respect to the CO
gauge and the DO gauge with origins at nuclei. In the
CO gauge the AATs are calculated from Eq. (5) using
Eqs. (7) and (9); the origin of the coordinate system is
at the molecular center of mass (CM). In the DO gauge
with origins at the nuclei, the AATs are calculated with
respect to the CM from the following equation:

(Mλ
αβ)

YCM =
(

Mλ
αβ

)R0
λ+ i

4h̄c

∑

γ δ

εβγ δ

(
R0
λ−YCM

)

γ
Pλαδ

(34)

Equation (34) is obtained from Eq. (10) by choosing
O2 = R0

λ and O1 = YCM, where YCM is the position
vector of the center of mass.

Since U(1),Hβ , required for the calculation of AATs,
is origin-dependent, the solution of the CPKS equations
for a magnetic field perturbation has to be repeated for
each intermediate origin R0

λ when DO is used. The SCF
and the CPKS calculations for nuclear displacement
are origin-independent and therefore do not have to
be repeated. Even though solving the CPKS equations
for a magnetic field perturbation is much simpler than
solving them for a nuclear displacement perturbation
(which is the most time consuming part of the calcu-
lation of AATs), the calculation of U(1),Hβ in the DO
gauge can become the bottleneck for large molecules.
Therefore, it is desirable to use only the CO gauge for
the calculations of the AATs.

Table 1 Comparison of AATs of oxirane (1) calculated using CO
and DO gauges and the BP86 functional

Basis set SZ

Mλ
αβ (Mλ

αβ)
CM,CO (Mλ

αβ)
CM,DO

0.0000 −0.2190 0.0001 0.0000 −0.2190 0.0001
M1
αβ −0.0759 0.0000 0.0000 −0.0759 0.0000 0.0000

−0.0001 0.0001 0.0002 −0.0001 0.0001 0.0002
0.0002 0.0656 −0.0002 0.0002 0.0656 −0.0002

M2
αβ −0.0390 0.0000 0.0383 −0.0389 0.0000 0.0383

0.0004 0.0555 −0.0004 0.0004 0.0555 −0.0004
−0.0438 0.0080 0.0401 −0.0439 0.0080 0.0401

M4
αβ 0.0381 0.0046 0.0421 0.0381 0.0046 0.0421

−0.0757 −0.0164 0.0686 −0.0757 −0.0164 0.0686

Basis set ET-pVQZ

Mλ
αβ (Mλ

αβ)
CM,CO (Mλ

αβ)
CM,DO

0.0000 −0.7831 0.0000 0.0000 −0.7830 0.0000
M1
αβ 0.1832 −0.0000 −0.0000 0.1831 −0.0000 −0.0000

−0.0000 −0.0000 0.0000 −0.0000 −0.0000 0.0000
−0.0000 0.0891 −0.0000 −0.0000 0.0890 −0.0000

M2
αβ −0.0766 0.0000 0.2604 −0.0766 0.0000 0.2604

0.0000 −0.0033 −0.0000 0.0000 −0.0034 −0.0000
−0.0114 0.1052 0.0118 −0.0114 0.1052 0.0118

M4
αβ 0.0354 0.0150 0.0534 0.0354 0.0150 0.0534

−0.1074 0.0485 0.0024 −0.1075 0.0486 0.0024

Mα
λβ are given in a.u

Table 1 presents the AATs calculated using the CO,
(Mλ

αβ)
CM,CO, and DO, (Mλ

αβ)
CM,DO, gauges with SZ and

ET-pVQZ basis sets for the oxirane molecule. For brev-
ity, only the results for the smallest (SZ) and largest
(ET-pVQZ) basis sets and the BP86 functional are
shown.

As can be seen the CO and DO gauges yield virtu-
ally identical AATs. Thus, Eq. (10) is fulfilled for all basis
sets which proves that our implementation yields origin-
independent rotational strengths [1]. Therefore, the CO
gauge is the method of choice for VCD calculation using
analytical derivatives and LAOs. The DO gauge on the
other hand can be used as an additional check for the
correctness and accuracy of the code.

4.1.2 Sum rules

A systematic study of the accuracy of the calculated
AATs is difficult due to their large number (9N tensor
components for a molecule with N atoms). A convenient
measure of the quality of the AATs is the extent to which
they satisfy the sum rules of Eqs. (15). The convergence
to a stable limit and the degree to which the sum rules
are fulfilled is studied by systematically increasing the
size of the basis sets.
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Table 2 Comparison of Σ̄1
xy = 1

2 (Σ
1
xy −Σ1

yx) and Σ2
xy for 1

Functional BP86 OLYP BLYP

Basis set a Σ̄1
xy Σ2

xy b a Σ̄1
xy Σ2

xy b a Σ̄1
xy Σ2

xy b

SZ 83.8 0.115 0.476 75.8 81.0 0.129 0.473 72.7 85.3 0.110 0.431 74.4
DZ 38.0 0.983 1.035 5.0 45.8 0.995 1.033 3.6 28.3 0.961 1.036 7.2
DZP 5.1 0.749 0.716 4.6 10.2 0.752 0.698 7.7 1.3 0.759 0.727 4.4
TZP 4.6 0.745 0.740 0.6 4.8 0.715 0.696 2.7 2.0 0.764 0.766 0.2
TZ2P 4.2 0.742 0.732 1.3 3.8 0.708 0.686 3.2 1.3 0.759 0.758 0.1
ET-pVQZ – 0.712 0.717 0.6 – 0.682 0.679 0.4 – 0.749 0.749 0.0

Exp. Σ3
xy 0.7396 ± 0.0039 0.7396 ± 0.0039 0.7396 ± 0.0039

a denotes the deviation from the ET-pVQZ value; b denotes the deviations of Σ̄1
xy from Σ2

xy; Σ̄1
xy, Σ2

xy and Σ3
xy are given in a.u.; a and b

are given in percent. The experimental value for Σ3
xy = µG

z [32] is also shown. In the basis set limit Σ̄1
xy = Σ2

xy = Σ3
xy

With the C2-axis chosen as the Z-axis, the only non-
zero tensor components of oxirane are Σ i

xy = −Σ i
yx

(i = 1, 2, 3). The sum rules for the APTs,Σ2
xy = Σ3

xy and
Σ4

xy = 0 (not shown) are satisfied for all basis sets. In
this context, Σ1

xy = Σ2
xy, relating the AATs and APTs,

is the only sum rule of interest. In Table 2, the arithme-
tic mean of Σ1

xy and −Σ1
yx denoted as Σ̄1

xy, Σ2
xy and the

experimental value of Σ3
xy are shown.

As can be seen from Table 2, the magnitude of Σ̄1
xy

and Σ2
xy converge to a stable limit as the basis set size

is increased. The average deviations of TZP and TZ2P
values from the ET-pVQZ are 3.82 and 3.11%, respec-
tively, for all three functionals. The differences between
Σ̄1

xy andΣ2
xy are less than 1% for ET-pVQZ and around

2% for TZP and TZ2P for all three functionals. There-
fore, it is reasonable to assume that the ET-VQZ results
are good approximations of the basis set limit. As far as
the differences between different functionals are con-
cerned we note that for oxirane the AATs obtained with
BLYP converge faster and fulfill the sum rules to a higher
degree then the ones calculated with BP86 and OLYP.

The AATs are not directly measurable. However,
they are connected via sum rules to the electric dipole
moment which is experimentally accessible. Since the
AATs are very sensitive to the functional used we com-
pare the ET-pVQZ value of Σ̄1

xy obtained with all three
functionals to the experimental value of Σ3

xy. As can
be seen in Table 2 the BLYP, BP86 and OLYP values
deviate from the experimental value by 1.2, 3.7 and
8.9%, respectively. Again, the BLYP functional yields
AATs of better accuracy than the BP86 and OLYP.
Thus, for oxirane, the relative accuracy of the function-
als considered here for the calculation of the AATs is
BLYP > BP86 > OLYP. However, the accuracy of the
vibrational rotational strength is a function not only of
the accuracy of the AATs, but also of the accuracy of
the APTs and the normal modes, characterized by the
transformation Sλα,i. In fact, Stephens et al. [32] has

shown that the accuracy of the harmonic force field
(which determines Sλα,i) is the most critical parameter.
Therefore, when comparing calculated VCD intensities
to experiment the relative accuracy of different func-
tionals may be different from the relative accuracy of
the AATs obtained with the considered functionals.

4.2 The rotational strengths

To study the quality of the VCD spectra obtained
with our implementation we calculated the rotational
strengths for α-pinene (2) and Troger’s base (3). For 2
the calculations were performed using the BP86, BLYP
and OLYP functionals and TZP and ET-pVQZ basis
sets. In the case of 3, BP86 and OLYP in combination
with the TZP basis were used. The VCD spectra are sim-
ulated by representing the peaks as Lorentzian bands
[33] with a constant half width of 4 cm−1. In all VCD
spectra, the differential intensities (�ε) are in units of
molar absorptivity (L mol−1cm−1).

4.2.1 VCD spectra of α-pinene (2)

The calculated and experimental spectra of 2 are shown
in Figs. 2 and 3. The experimental data are taken from
Ref. [33]. The calculated and experimental frequencies
and rotational strengths are shown in Tables 1 and 2
from the electronic supplementary material (see ESM).

As can be seen in Figs. 2 and 3 the OLYP and BP86
functionals yield frequencies that are in very good agree-
ment with the experiment even without scaling. It is a
well-known fact that harmonic frequencies from BP86
are usually close to experimental fundamental frequen-
cies due to an error cancellation effect [34–36]. The
frequencies calculated using BLYP are in fair agreement
with the experiment although not as good as the ones
obtained with OLYP and BP86. Since the three func-
tionals give frequencies that are fairly close, and also
yield rotational strengths that are qualitatively similar,
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Fig. 2 VCD spectra for
α-pinene (2). Comparison of
experiment with ET-pVQZ
basis calculations for different
functionals (BP86, OLYP,
BLYP)

Fig. 3 VCD spectra for
α-pinene (2). Comparison of
experiment with TZP basis
calculations for different
functionals (BP86, OLYP,
BLYP)

i.e. same sign for most modes with significant rotational
strengths, there is a fair correspondence between their
VCD spectra. The best agreement with experiment is
obtained from the BP86 functional, which enables a very
clear assignment of the fundamental modes 17–47, 54
and 55. The OLYP and BLYP spectra have about the
same accuracy when compared to experiment, with the
OLYP spectrum being slightly better.

In the case of the BP86 functional, the sign of the
calculated rotational strengths for some of the funda-
mentals (32, 35–37) differs from the experimental spec-
trum for both ET-pVQZ and TZP basis sets. However,
all of these modes have low VCD intensities. The TZP

calculation additionally predicts a wrong sign for the
weak rotational strengths of the modes 19, 24 and 29.
The fundamentals 48–53 overlap in both calculated and
experimental spectra.

In the case of the OLYP functional, the VCD spec-
tra obtained with the TZP and ET-pVQZ basis sets are
very similar. The modes 17–47 can be clearly assigned
while the modes 48–55 are unresolved for both basis sets
used. Again, the rotational strengths for some of the
low-intensity modes (24, 25, 29, 32, 35–37 and 39) have
opposite sign compared to the experimental values.

For the BLYP spectra, the basis set effect when chang-
ing from TZP to ET-pVQZ is more pronounced (see
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fundamentals 21–26 and 37–39 in Figs. 2 and 3). The
fundamentals 17–47 can be clearly assigned while fun-
damentals 48–55 are unresolved for both ET-pVQZ and
TZP spectra. The ET-pVQZ predicts the wrong sign for
the fundamentals 21, 23, 26, 29–31, 35–37 and 39. The
TZP basis yield the wrong sign for the fundamentals 24,
29, 30, 35–37, 39, and 40.

To sum up, the BP86 spectra agree very well with
the experimental spectrum; the differences between the
TZP and ET-pVQZ spectra are very small. The larger
ET-pVQZ basis improves the agreement with experi-
ment for the fundamentals 19, 24, and 29, for which
the correct sign is obtained. The OLYP functional yields
spectra less accurate than the BP86 functional but better
than the BLYP functional when the ET-pVQZ basis sets
are used. For TZP basis sets the OLYP and BLYP func-
tionals yield VCD spectra of similar accuracy when com-
pared to the experimental spectrum. Thus, for α-pinene,
the relative accuracy of the functionals is
BP86 > OLYP ≥ BLYP.

Since hybrid functionals are very popular for the
calculation of VCD spectra, in what follows we com-
pare the VCD spectra obtained here using pure density
functionals with the results from calculations employing
hybrid functionals that have been published before. In
Ref. [33] the IR and VCD spectra of 2 have been calcu-
lated using the B3PW91 and B3LYP hybrid functionals
and TZ2P basis set. The two hybrid functionals yielded
very similar spectra that compare well with experiment.
The B3PW91 spectra are somewhat better. Figure 4
shows the BP86/TZP, BP86/ET-pVQZ, B3PW91/TZ2P
and B3LYP/TZ2P VCD spectra together with the exper-
imental one. For a fair comparison, the B3PW91 and
B3LYP spectra in Fig. 4 were obtained by broadening
the rotational strengths and frequencies published in
Ref. [33] using the same technique used to obtain the
BP86 spectra. As can be seen in Fig. 4 all four calcu-
lated spectra are qualitatively very similar and lead to an
identical assignment of all fundamentals. The modes 17,
27–28, 33–34, 38 and 43 with relative high VCD intensi-
ties, that stand out in the experimental spectrum, are
reproduced by all calculated spectra. For the modes
with less intense VCD signals differences exist. Thus, for
modes 21–26 the spectra obtained with BP86 are clearly
superior to the ones obtained with hybrid functionals.
The BP86/ET-pVQZ is the only spectrum that clearly
reproduces the experimental pattern; the BP86/TZP
spectrum shows that there is a basis set effect only for
mode 24, which has low intensity (positive) in TZP basis.
The B3PW91 and B3LYP spectra have been judged to
be in qualitative disagreement with the experiment [33].
In the case of modes 35–37 the BP86 predicts the wrong
sign for all three modes for both ET-pVQZ and TZP

basis sets; the B3PW91 predicts the wrong sign only for
mode 37 while B3LYP yields the wrong sign for the
modes 35 and 37.

In conclusion, we would argue that the BP86/ET-
pVQZ yielded overall the best agreement with experi-
ment, even though only marginally so in comparison to
B3PW91/TZ2P, and not in every detail. The smaller TZP
basis hardly deteriorates the BP86/ET-pVQZ results,
and for instance BP86/TZP apparently performs
better than B3LYP/TZ2P. One certainly does not obtain
superior performance with the more expensive hybrid
functionals.

4.2.2 VCD spectra of Troger’s base (3)

The absolute configuration of 3 has been determined
by a combination of experiment and calculation [37].
The calculated (BP86/TZP and OLYP/TZP) and exper-
imental VCD spectra are shown in Fig. 5. The experi-
mental data are taken from Ref. [37]. A list of calculated
and experimental frequencies and rotational strengths
is shown in Table 3 in the supplementary material (see
ESM).

As can be seen from Fig. 5 both calculated spectra
compare very well with experiment. The OLYP and
BP86 functionals yield frequencies that are very close
to the experimental ones; there is no need for scal-
ing. The OLYP frequencies are slightly better than the
BP86 ones. The calculated rotational strengths are also
in very good agreement with the experiment, permit-
ting an unambiguous assignment of almost all funda-
mentals from 33 to 87 that have a considerable VCD
intensity. For the few modes with low VCD intensities or
those vibrations with overlapping peaks, a clear assign-
ment was not possible. Thus, both functionals predict
the wrong sign for the modes 33, 40, 46, 68, 70, 71; BP86
also predicts the incorrect sign for mode 67. The modes
54–56, 62, 63, 71 and 72 have very low VCD intensities
which prevents a detailed assignment for both function-
als; the same holds true for the modes 75–78 calculated
with OLYP. To sum up, the OLYP and BP86 functionals
predict VCD spectra of 3 that reproduce the experimen-
tal spectrum very well. The frequencies and rotational
strengths from OLYP are slightly better than the ones
obtained with BP86. We refrain from performing calcu-
lations with larger basis sets since the results obtained
forα-pinene indicate that the spectra are converged with
respect to the size of the basis set.

In Ref. [37] the VCD spectra of 3 have been calculated
using the B3PW91 and B3LYP hybrid functionals and
6-31G* basis sets. In Fig. 6 we present a comparison
between the VCD spectra obtained here with the BP86
and OLYP functionals and TZP basis sets and the
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Fig. 4 VCD spectra of
α-pinene (2). Comparison
between the experimental
spectrum and spectra
obtained with the OLYP,
BP86 (this work), B3PW91
and B3LYP (from Ref. [33])
functionals

Fig. 5 VCD spectra for
Troger’s Base (3).
Comparison of experiment
with TZP calculations

B3PW91/6-31G* spectrum. Due to the similarity of the
B3PW91 and B3LYP spectra only the first one was con-
sidered here. The B3PW91 spectrum in Fig. 6 was
obtained by broadening the rotational strengths and
frequencies published in Ref. [37] using the same tech-
nique used to obtain the BP86 and OLYP spectra. As
can be seen from Fig. 6 the frequencies obtained with
the BP86 and OLYP functionals are superior to the ones
obtained with B3PW91 when compared to experiment.
Apart from the frequencies, the three functionals predict
spectra that are qualitatively very similar. All significant
features of the experimental spectrum, i.e. modes 35,
38, 42–45, 51–53, 57, 58, 64, 69 and 82–83, are repro-

duced by all calculated spectra. The OLYP and BP86
spectra are somewhat closer to the experimental spec-
trum. This is mostly due to their superior frequencies
but also because they reproduce better some intensities
of the experimental spectrum. Thus, mode 41, is unre-
solved in the B3PW91 spectrum while it is unambigu-
ously assigned in the BP86 and OLYP spectra. Modes
51 and 52 overlap in the BP86 and B3PW91 spectra
while they can be clearly distinguished in the OLYP and
experimental spectra.

In conclusion, the OLYP, BP86 and B3PW91 func-
tionals yielded VCD spectra in very good agreement
with the experiment that lead to identical assignment
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Fig. 6 VCD spectra of
Troger’s Base (3).
Comparison between the
experimental spectrum and
spectra obtained with the
OLYP, BP86 (this work),
B3PW91 and B3LYP (from
Ref. [37]) functionals

of all the modes with reasonable intensities. The spectra
obtained with OLYP and BP86 are better than the
B3PW91, mostly due to their superior force fields.

5 VCD of hexa- (4) and hepta-helicene (5)

We performed calculations for 4 and 5 using the OLYP
functional and TZP basis sets. The molecules are
depicted in Fig. 7. The C2-axis was chosen to be the
Z-axis of the coordinate system. The graphics presented
in Figs. 7 and 10 have been created using the program
XCrySDen [38]. The frequencies and rotational
strengths for 4 and 5 are shown in Tables 4 and 5 in
the supplementary material (see ESM). The VCD spec-
tra are presented in Fig. 8. Only the range from 900 to
1650 cm−1 of the VCD spectra is shown since this range
is significant for the present study.

An experimental spectrum of 5 has been published
in Ref. [10], together with a spectrum calculated with
B3LYP [39,40] and a 6-31G(d,p) basis. This small basis
set is of double-ζ quality, augmented with polarization
functions, so that the results would probably change a
bit when larger basis sets are employed. Furthermore,
an empirical scaling factor had to be applied to the
vibrational frequencies. Nevertheless, that calculation
reproduced many of the features observed in experi-
ment, and thus perfectly served the purpose to assign
the absolute configuration of the hepta-helicene enan-
tiomer under study. Our calculation reproduces the sig-
nificant features of the experimental VCD spectrum:
the combination of a positive and a negative peak at
950 cm−1 can be observed, as well as a series of negative
peaks between 1100 and 1300 cm−1. There are three pro-
nounced negative peaks in the experimental spectrum
at approximately 1470, 1510, and 1610 cm−1, which are
well reproduced in our simulation by the peaks 108,

Fig. 7 Equilibrium
geometries (OLYP/TZP) for
hexa-helicene (4) and
hepta-helicene (5)
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Fig. 8 VCD spectra of hexa-
and hepta-helicene
(OLYP/TZP)

Fig. 9 VCD spectra of hexa-
and hepta-helicene
(OLYP/TZP)

111, and the overlap of the modes 116–120. We also
note that there is a good general agreement between
our OLYP/TZP calculation and the B3LYP/6-31G(d,p)
calculation in Ref. [10].

As can be seen from Fig. 8 there are many modes
with comparable frequencies and similar (absolute)
rotational strengths in the two molecules, such as modes
76–86, 91–93, 94–98, and 116 to 120 of hepta-helicene
and the modes 66–75, 79–81, 82–86, and 100–104 of
hexa-helicene, respectively. Plotting the spectra on top
of each other (see Fig. 9) clearly exhibits the pairs of
similar modes. We can distinguish pairs for which the

two modes have about the same frequency and the same
sign for the rotational strength and pairs that have about
the same frequency but different sign for the rotational
strengths. We have labeled relevant pairs with a to o,
where we have verified that the vibrational motions in
the modes of a pair are also physically similar (see below
in what sense precisely).

The rotational strengths, frequencies and the symme-
try species of the labeled modes of both molecules are
shown in Table 3. By analyzing the data in Table 3 three
observations can be made. First, when the modes in a
pair have the same symmetry, either both A or both
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Fig. 10 The pair of normal
modes labeled i in Fig. 9.
a Hexa-helicene, mode of
irrep B; b hepta-helicene,
mode of irrep A

B, they have the same sign of the rotational strength.
Second, when the modes of the pair have different sym-
metries, we invariably find different signs of the rota-
tional strengths. Third, we observe that the absolute
magnitudes of the rotational strengths of the modes
of a pair seem to be roughly correlated. If the rota-
tional strength is large for one of the molecules it is also
large for the other. This correspondence is by no means
quantitative, the difference in rotational strengths may
amount to 50%.

The correlation between the spectra of the hexa- and
hepta-helicenes as displayed in Fig. 9 is sufficiently strik-
ing that we feel it calls for an explanation. We will there-
fore consider this case in some more detail. We note
that the C2 symmetry of these molecules is very com-
mon in chiral molecules, so this analysis may find wider
application.

As it is clear from Fig. 7 the C2-axis divides the mol-
ecules in two symmetry related wings (referred as I and
II). The benzene rings at the outer ends of the mole-
cules show a certain similarity in hexa-and hepta-heli-
cene. The wings with these similar rings are connected
by the central ring(s). Looking at how the nuclei are
displaced in the normal modes of the pairs of modes
we have singled out (labeled with a to o in Fig. 9), we
find that the nuclei are displaced in an almost identical
way in the two modes (i.e. in the two molecules). As
an example, in Fig. 10 the nuclear displacements for the
pair of normal modes labeled i in Fig. 9 are shown. As
can be seen, even though the amplitudes of the displace-
ments are a bit different in the two molecules, the nuclei
execute essentially the same type of movements, except
that of course in the B mode the atoms of the two wings
move in opposite directions. This makes the similar fre-
quencies understandable. It is not always true that the
atoms of the connecting rings practically do not move,
as in the i pair, but then the similarity of the motions of
the wings is still sufficiently dominant to provide similar

frequencies. We are not dealing with quantitative equal-
ities anyway, but with qualitative similarities. The similar
vibrational motions are expected to lead to certain rela-
tionships in the electric and magnetic dipole transition
moments. To see how this can be understood, we con-
sider a pair of modes. For simplicity, we consider A and
B modes belonging to the same helicene; the conclu-
sions will be applicable to our pairs of modes in hexa-
and hepta-helicene, since we use the similarity in the
vibrations of these systems, cf. Fig. 10.

The Cartesian components of the total electric and
magnetic dipole transition moments are given by Eqs. (2)
and (3). For brevity in what follows a general transition
dipole moment—when we do not specialize to either
electric or magnetic transition dipole—will be referred
to as just µ and will be written as:

µβ = 〈0|µ̂β |1〉 =
∑

λα

TλαβSλα,i (35)

where µβ denotes the β Cartesian component of the
total electric or magnetic dipole transition moment while
Tλαβ denotes Pλαβ or Mλ

αβ . When a specific dipole transi-
tion moment is referred to, its appropriate notation (µE
or µM) will be used. Note that the contribution to µβ
from a given nucleus λ is given by:

µλβ =
∑

α

TλαβSλα,i (36)

Further on, the transition dipole moments are written
as the sum of contributions from the two wings (I and
II):

µβ = µI
β + µII

β =
∑

λα

TλαβSλα,i +
∑

λ′α
Tλ

′
αβSλ′α,i (37)

where

µI
β =

∑

λα

TλαβSλα,i and µII
β =

∑

λ′α
Tλ

′
αβSλ′α,i (38)
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In Eqs. (37) and (38) λ runs over one half of the nuclei
(those of wing I) while λ′ runs over the other half of
the nuclei (those of wing II). Thus, µI and µII are the
contributions of each wing to the total dipole transition
moments.

In the case of C2 symmetry, the normal modes (Sλα,i)
belong to either the symmetric (A) or the antisymmet-
ric (B) irreducible representation. Thus, for a pair of
atoms that are related by symmetry (λ and λ′) the nor-
mal modes satisfy the following relations:

Sλ′α,i =
⎧
⎨

⎩

−Sλα,i for α = x
−Sλα,i for α = y

Sλα,i for α = z
(39)

for a mode of irrep A, and

Sλ′α,i =
⎧
⎨

⎩

Sλα,i for α = x
Sλα,i for α = y
−Sλα,i for α = z

(40)

for a normal mode of irrep B. We will be considering
the idealized case of an A mode and a B mode which
have identical nuclear displacements Sλα,i, and Sλ′α,i for
the symmetry related atoms according to Eqs. (39) and
(40).

The transformation properties of the tensors Mλ
αβ and

Eλαβ , in the case of C2 symmetry are:

Tλ
′
αβ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Tλαβ for α = β

Tλαβ for α �= β ; α,β = x, y
−Tλαβ for α �= β ; α = z, β = x, y
−Tλαβ for α �= β ; α = x, y, β = z

(41)

where λ and λ′ are two symmetry related atoms:
By inserting Eqs. (39), (40) and (41) into (36), the

relations between the Cartesian components of µλ and
µλ

′
are obtained:

µλ
′

x = −µλx ; µλ
′

y = −µλy ; µλ
′

z = µλz (42)

for a mode of irrep A, and

µλ
′

x = µλx ; µλ
′

y = µλy ; µλ
′

z = −µλz (43)

for a mode of irrep B.
Obviously, in an A mode the x- and y-components of

a µλ will be canceled by those of µλ
′
, so both the electric

and magnetic transition dipoles will be directed along
the Z-axis (the C2-axis). For a B mode the cancelation
occurs for the z-component, so in that case the transi-
tion dipoles are perpendicular to the Z-axis. We note
that when we compare our idealized A and B modes,
which will have the same µλ’s (in wing I), the conse-
quence of Eqs. (42) and (43) is that for the B mode the
µλ

′
s in wing II change sign compared to the µλs of the

A mode.

(a) (b)

Fig. 11 Electric and magnetic dipole transition moments of the
two wings of helicene: a mode of irrep A with parallel µE and µM;
b mode of irrep B

(a) (b)

Fig. 12 Electric and magnetic dipole transition moments of the
two wings of helicene: a mode of irrep A with anti-parallel µE and
µM; b mode of irrep B

Let us first make an observation on our pairs with
modes of the same symmetry (A for the pairs c, e, n and
B for a, b, d, f , j, o). We have verified that these modes
in the two helicenes approach the situation that there
are similar displacements for the atoms in the wings
of heptahelicene as in the wings of hexa-helicene, and
that there are similar APTs and AATs on those atoms.
Then straightforwardly the conclusion follows that the
total µE and µM will be similar, and therefore also the
rotational strengths. Turning to the pairs of modes of
different symmetry, we can use the Eqs. (42) and (43)
to deduce the various possibilities. Since the rotational
strength is defined as the imaginary part of the scalar
product between the electric and magnetic dipole tran-
sition moments, Eq. (1), its sign is determined by cos ξ
where ξ is the angle between the total electric and mag-
netic dipole transition moments. Thus, for ξ < 90◦ the
rotational strength is positive while for 90◦ < ξ < 180◦ it
is negative. For a totally symmetric mode µE and µM can
be either parallel (ξ = 0◦) or anti-parallel (ξ = 180◦).
Therefore, the rotational strength is positive in the first
situation and negative in the second one. We will treat
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Table 3 Frequencies, rotational strengths and the angle ξ ′ of modelecules 4 and 5 for the pairs of normal modes labeled in Fig. 7

Hexa-helicene Hepta-helicene

Pairs Freq. Sym. ξ ′ Rot. Str. Freq. Sym. ξ ′ Rot. Str.

a 1044 B 53.5 12.9 1041 B 52.9 15.8
b 1115 B 106.7 −9.4 1114 B 106.1 −5.1
c 1142 A 113.6 −19.8 1134 A 147.4 −22.4
d 1251 B 102.8 −3.7 1247 B 101.0 −2.7
e 1270 A 162.4 −5.4 1263 A 92.4 −4.5
f 1292 B 137.1 −18.8 1284 B 170.9 −19.3
g 1399 A 93.4 0.5 1403 B 111.1 −1.5
h 1438 A 176.6 6.0 1435 B 172.1 −8.7
i 1444 B 153.2 −13.5 1444 A 177.0 6.6
j 1520 B 169.9 −15.0 1525 B 175.0 −14.3
k 1552 A 165.5 2.1 1548 B 119.4 −1.3
l 1579 B 77.8 1.3 1571 A 10.1 −2.1
m 1607 A 99.5 −3.2 1597 B 61.2 3.4
n 1614 A 146.4 −2.7 1614 A 152.0 −4.8
o 1625 B 106.4 −1.8 1626 B 115.0 −5.2

Frequencies are given in cm−1, rotational strengths are given in 10−44 esu2 cm2, ξ ′ is given in degrees

these two cases separately. In Fig. 11a the case A-positive
and Fig. 12a the case A-negative are presented. In these
figures we geometrically demonstrate what the situation
can be for the B counterpart in the pair of modes. We
consider in Fig. 11a how the total electric and magnetic
transition dipoles are built up from the contributions
of wings I and II, where the latter obey Eq. (42), which
leads to the “mirroring” of µI with respect to the C2-axis
to obtain µII . The orientation of the plane containing
µI

E and µII
E relative to the plane of µI

M and µII
M is not

known beforehand. We denote the angle between these
two planes by ξ ′, and note that ξ ′ does not play a role
in determining the rotational strength in the A mode,
since the total µE and µM are along the Z-axis. When
going to the B mode, µI

E and µI
M remain unchanged

while µII
E and µII

M change sign, see Fig. 11b. The angle ξ ′
now becomes the angle between the total µE and µM,
i.e. is equal to ξ , and cos ξ ′ is now determining the sign
and magnitude of the rotational strength. Since there is
no a priori restriction for ξ ′, the rotational strength can
be positive or negative depending on the value of ξ ′.

In Fig. 12b we show the construction of µE and µM of
the B mode when the A mode has negative rotational
strength. Again the angle ξ ′ determines the result for
the B mode, and cannot be related straightforwardly
with the (sign of) the oscillator strength of the corre-
sponding A mode. We have calculated the ξ ′ angles
for all the modes in the pairs we are considering; they
are given in Table 3. We note in passing that for the
pairs with modes of the same symmetry, the ξ ′ angles in
the hexa- and hepta-helicene are indeed in reasonable
agreement. This substantiates our finding that in these
cases we are really dealing with modes in the two mol-
ecules that strongly resemble each other. For the pairs

with modes of different symmetry (g, h, i, k and l) the cor-
respondence between the ξ ′ angles is less good, indicat-
ing that the correspondence in the vibrational motions
is less clear than in the case of modes which have the
same symmetry. Still, there is qualitative agreement. If
we consider the i pair, we have ξ ′ values of 26.8◦ and
3.0◦, which have cosine values of 0.89 and 0.99, i.e only
10% different.

We conclude that we have been able to understand
the occurrence of pairs of modes with similar frequency
in hexa- and hepta-helicene, which when they have the
same symmetry also lead to rotational strengths of the
same sign and roughly similar magnitude. We have not
been able to fully rationalize our observation that in
the pairs with modes of different symmetry the rota-
tional strengths must have different sign. There are more
factors that determine the sign and magnitude of the
rotational strength of the B mode compared to the A
mode, such as differences in the geometries of the two
molecules, the angle which the µI

M and µI
E vectors make

with the Z-axis, and their absolute magnitudes, which we
cannot take into account in our simple model.

Nevertheless, we demonstrated—using the geomet-
rical relations between contributions of the transition
dipole moments from the two wings of the molecules—
that the rotational strengths of corresponding normal
modes in compounds A and B can have different sign.

6 Conclusions

The comparison of AATs calculated with the distributed
origin gauge and the common origin gauge has proven
that the LAO-STO-based implementation works
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correctly, as the two origin gauges yield virtually iden-
tical AATs and therefore origin independent rotational
strengths. Thus, the calculations are not sensitive to the
special techniques which have to be used in connection
with STOs, e.g., the numerical integration for the matrix
elements. It was demonstrated that the sum-rules are
fulfilled and quite accurate results can be obtained for
the AATs even with moderately large STO basis sets like
TZP. In these cases, the sum rules are fulfilled to within
3% or less. For the largest basis sets used here, the error
in the sum-rules drops to less than 0.7%. Although the
AATs obtained with a TZP basis are apparently almost
converged w.r.t. the basis set size, we would like to note
that calculations with the much larger ET-pVQZ basis
set are straightforward for reasonably large molecules
with our efficient implementation, which heavily makes
use of the parallelization and linear-scaling techniques
available in ADF.

The study of different combinations of functionals
and basis sets for VCD spectra underlines the impor-
tance of accurate vibrational frequencies and the cor-
responding normal modes. Therefore, the VCD spectra
from BP86 calculations are usually superior to those
from BLYP calculations in terms of agreement with
experimental spectra. This is due to the well-known
feature of BP86 to yield harmonic force fields in close
agreement with experiment [34–36]. VCD spectra from
OLYP calculations are comparable to or even slightly
better than those from BP86. This is because the two
functionals yield similar force fields. Regarding the basis
set dependence of the VCD spectra it turns out that
a TZP basis set is sufficiently large for calculations of
reasonable accuracy. Our tests, performed on many chi-
ral molecules suggested that BP86/TZP is always a safe
choice for a good agreement with experiment.

Although the most popular exchange–correlation
functionals for VCD calculations are the B3PW91 and
B3LYP hybrid functionals, calculations with the non-
hybrid functionals employed here, i.e., BP86 and OLYP,
have yielded improved frequencies and rotational
strengths that are at least as good. Another advantage of
these functionals is that efficient and accurate density-
fitting techniques can readily be applied in order to
reduce the computational cost.

In our final investigation of the VCD spectra of hexa-
and hepta-helicene, we have shown that it is possible
to find relationships between the rotational strengths of
corresponding vibrations of the two molecules which are
of similar character, i.e., which involve similar motions
of (groups of) atoms. It was shown that—based on the
irreps the normal modes belong to—the rotational
strengths either keep or change sign. This leads to parts
of the spectra that are very similar for both molecules,

while other parts more or less fulfill mirror-image con-
ditions.

We have thus demonstrated that our implementation
is correct and therefore can be applied for theoretical
predictions of VCD spectra, which, as already shown
[32,33,37,41–45], is an important pre-requisite for inter-
pretations of complicated experimental spectra of larger
molecules, the assignment of absolute configurations of
chiral substances, and the detection of specific interac-
tions in chiral super-molecular aggregates, which mani-
fest themselves in molecular vibrations.
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Appendix 1: First-order density from a magnetic-field
perturbation

The first order perturbation Hamiltonian, H(1), for a
magnetic field perturbation is purely complex [19]:

h(1),H = −iB
( r

2
× ∇

)
(44)

Thus, from standard perturbation theory the first order
perturbed MOs, ϕ(1), are purely complex too. Since the
unperturbed MOs, ϕi, are real, the first order density
ρ(1) becomes:

ρ(1) =
occ∑

i

(
ϕ∗

i ϕ
(1)
i + ϕiϕ

(1)∗
i

)

=
occ∑

i

(
ϕiϕ

(1)
i − ϕiϕ

(1)
i

)
= 0 (45)

Appendix 2: Contributions from the occ–occ blocks of
the U(1) matrices

In the case of a magnetic-field perturbation the first
order perturbed Hamiltonian and MOs are purely com-
plex. Thus, the first order perturbed Fock and overlap
matrix elements are purely complex too and fulfill the
following relations:

F
(1),Hβ

ij = −F
(1),Hβ

ji , S
(1),Hβ

ij = −S
(1),Hβ

ji (46)

The matrix elements U
(1),Hβ

ij are purely complex.
When the perturbation is a nuclear displacement, the

first order perturbed Hamiltonian and MOs are real, so
that:
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F(1),Rλαij = F(1),Rλαji , S(1),Rλαij = S(1),Rλαji (47)

The matrix elements U(1),Rλα
ij are real.

To obtain Eqs. (46) and (47) we have used that the per-
turbed Hamiltonians are Hermitian and that the unper-
turbed MOs are real.

As can be seen, the last three terms in Eq. (25) depend
on the U(1) matrices including their occ–occ blocks. The
components of the second and third terms in Eq. (25)
due to a pair of off-diagonal occ–occ MOs i and j are:

U
(1),Hβ

ij

Nbas∑

a,b=1

CajCbi

〈
χ(1),Rλαa |χb

〉

+ U(1),Rλα
ij

Nbas∑

a,b=1

CaiCbj

〈
χa|χ(1),Hβ

b

〉

+ U
(1),Hβ

ji

Nbas∑

a,b=1

CaiCbj

〈
χ(1),Rλαa |χb

〉

+ U(1),Rλα
ji

Nbas∑

a,b=1

CajCbi

〈
χa|χ(1),Hβ

b

〉
(48)

For nuclear displacement perturbation the basis sets are
of STO type and therefore χ(1),Rλαa,b and χa,b are both
real, thus:

〈
χ(1),Rλαa |χb

〉
=

〈
χb|χ(1),Rλαa

〉
(49)

For magnetic field perturbation the basis sets are of
LAO type. From Eq. (26) the derivative of an LAO

with respect to a magnetic field (χ
(1),Hβ

a,b ) is given by:

∂σA
a

∂Hβ

= χ
(1),Hβ
a = −i

e
h̄c
(r × RA) χa (50)

Therefore, the χ
(1),Hβ

a,b are purely complex. Since the χa,b
are real we have:

〈
χ
(1),Hβ

b |χa

〉
= −

〈
χa|χ(1),Hβ

b

〉
(51)

By interchanging the summation indices a and b in the
third and fourth terms of Eq. (48) and using Eqs. (49)
and (51), Eq. (48) becomes:

U
(1),Hβ

ij

Nbas∑

a,b=1

CajCbi

〈
χ(1),Rλαa |χb

〉

+ U(1),Rλα
ij

Nbas∑

a,b=1

CaiCbj

〈
χa|χ(1),Hβ

b

〉

+ U
(1),Hβ

ji

Nbas∑

a,b=1

CajCbi

〈
χa|χ(1),Rλαb

〉

− U(1),Rλα
ji

Nbas∑

a,b=1

CaiCbj

〈
χ
(1),Hβ
a |χb

〉
(52)

Further on, we express the U
(1),Hβ

ij and U(1),Rλα
ij in

Eq. (52) using Eq. (22)

(
−U

(1),Hβ

ji

∗ − S
(1),Hβ

ij

) Nbas∑

a,b=1

CajCbi

〈
χ(1),Rλαa |χb

〉

+
(
−U(1),Rλα

ji

∗ − S(1),Rλαij

) Nbas∑

a,b=1

CaiCbj

〈
χa|χ(1),Hβ

b

〉

+ U
(1),Hβ

ji

Nbas∑

a,b=1

CajCbi

〈
χa|χ(1),Rλαb

〉

− U(1),Rλα
ji

Nbas∑

a,b=1

CaiCbj

〈
χ
(1),Hβ
a |χb

〉
(53)

Grouping together the terms that have the same U(1)

matrix elements, we obtain:

−U
(1),Hβ

ji

∗ Nbas∑

a,b=1

CajCbi

(〈
χ(1),Rλαa |χb

〉
+

〈
χa|χ(1),Rλαb

〉)

−S
(1),Hβ

ij

Nbas∑

a,b=1

CajCbi

〈
χ(1),Rλαa |χb

〉

−U(1),Rλα
ji

∗ Nbas∑

a,b=1

CaiCbj

(〈
χ
(1),Hβ
a |χb

〉
+

〈
χa|χ(1),Hβ

b

〉)

−S(1),Rλαij

Nbas∑

a,b=1

CaiCbj

〈
χa|χ(1),Hβ

b

〉
(54)

The summations in the first and third terms of Eq. (54)

are the S(1),Rλαji and S
(1),Hβ

ij matrix elements, respectively.
Thus, Eq. (54) becomes:

−U
(1),Hβ

ji

∗
S(1),Rλαji − U(1),Rλα

ji

∗
S
(1),Hβ

ij

−S
(1),Hβ

ij

Nbas∑

a,b=1

CajCbi

〈
χ(1),Rλαa |χb

〉
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−S(1),Rλαij

Nbas∑

a,b=1

CaiCbj

〈
χa|χ(1),Hβ

b

〉
(55)

Using Eq. (22) the components of the fourth term in
Eq. (25) due to a pair of occ–occ MOs i and j can be
written:

U(1),Rλα
ij U

(1),Hβ

ij + U(1),Rλα
ji U

(1),Hβ

ji

= U(1),Rλα
ij U

(1),Hβ

ij +
(
−U(1),Rλα

ij

∗ − S(1),Rλαji

)

×
(
−U

(1),Hβ

ij

∗ − S
(1),Hβ

ji

)

= U(1),Rλα
ij

∗
S
(1),Hβ

ji + S(1),Rλαji U
(1),Hβ

ij

∗ + S(1),Rλαji S
(1),Hβ

ji

(56)

By adding the results of Eqs. (55) and (56) we obtain
the final expression for the contributions to Iλαβ from of
the last three terms of Eq. (25) due to a pair of occ–occ
MOs i and j:

−S(1),Rλαji S
(1),Hβ

ji − S
(1),Hβ

ij

Nbas∑

a,b=1

CajCbi

〈
χ(1),Rλαa |χb

〉

−S(1),Rλαij

Nbas∑

a,b=1

CaiCbj

〈
χa|χ(1),Hβ

b

〉
(57)

As can be seen from Eq. (57) the off-diagonal matrix ele-
ments of the occ–occ blocks of both U(1) matrices are
not needed for the calculation of the electronic contri-
bution of the atomic axial tensor (Iλαβ). Equation (22) is

not equivalent with U(1)
ij = − 1

2 S(1)ij and U(1)
ji

∗ = − 1
2 S(1)ij .

Nevertheless, the same result may be obtained by substi-
tuting these expression into Eq. (48) and the first two
terms of Eq. (56).
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