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ABSTRACT: Following Drachmann and others the authors argue that it is reasonable
to assume that Archimedes invented both the infinite screw and the screw-pump. They
argue that these inventions can be related to Archimedes' interest in the problem of the
quadrature of the circle. Moreover, they discuss aspects of the development of the
theory of the screw-pump.

KEYWORDS: screw pump, Archimedes, Galilei, Daniel Bernoulli, Hachette,
Weisbach

INTRODUCTION
Some authors attribute the invention of the screw-pump to Archimedes; others believe
that the screw-pump was invented earlier and only attributed to Archimedes because of
his reputation.
Oleson [23] has given a survey of the data with respect to the origin of the screw-pump.
There are several texts from Antiquity in which the screw-pump is attributed to
Archimedes.1 As for Archimedes' involvement with screws there is, next to these texts,
another remark by Moschion, that is relevant. Moschion states that Archimedes
launched a ship "by means of a screw, which was an invention of his own" ([7], p. 279).
This seems to refer to an endless screw. Oleson describes the archeological evidence as
well. The earliest representation of a water-screw is on a fresco from the Casa di P.
                                                          
1 The earliest evidence is a text by Moschion (after 241 B. C.) concerning the "Great Ship of
Hieron of Syracuse". The text says: "And the bilge, although of a remarkable depth, was pumped
out by a single man operating a water screw, an invention by Archimedes" ([23], p. 60). Then
there is a statement from Agatharchides (floruit 180-116 B. C.) about the Nile delta: "the
inhabitants easily irrigate the whole region by means of a certain device which Archimedes, the
Syracusan, invented, called the 'screw' on account of its design" ([23], pp. 22-23) Then we have a
text from Posidonius of Apamea (floruit ca 135-51 B. C.). The text describes the use of the water-
screw in a series for mine drainage: "At a depth they [the miners] sometimes break in on rivers
flowing beneath the earth, the strength of which they overcome by diverting their welling
tributaries off to the side in channels [...] they draw off the streams of water with the so-called
Egyptian screw, which Archimedes invented when he visited Egypt" ([23], pp. 92-93)
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Cornelius Teges in Pompeii, obviously dating from before 79 A. D.2 On the fresco an
individual is moving a cylinder with his feet in a landscape that is allegedly Egyptian.
Because water comes out of the cylinder it is generally assumed it must be a water-
screw. From the imperial period we have two other Egyptian representations (in the
British Museum and the Archeological Museum Cairo, respectively) and an Egyptian
model of a water-screw (in the Hilton-Price collection). Moreover, remains of water-
screws dating from the imperial period have been found in mines in Spain. None of
these representations or remains of water-screws dates from before the time of
Archimedes.
There is a very limited number of books on technical mechanics from Antiquity. For
our purposes Vitruvius' book on Architecture [14] is important. It contains the oldest
known description of a water-screw. The book dates from about 25 B. C.3

In this paper we will phrase a hypothesis with respect to the way in which Archimedes
possibly invented the screw and the screw-pump. Moreover, we will discuss the way in
which Cardano, Galilei, Daniel Bernoulli, Hachette and Weisbach studied the screw-
pump.4 The theoretical considerations concerning the screw-pump reflect the history of
the theory of machines. Galilei was the first to give a complete and correct theory of the
five simple machines (Cf. [21]). He was also the first to correctly explain the
functioning of the screw-pump. In the course of the 17th and 18th century Newtonian
mechanics and the calculus were the major new developments. The application of these
new theories to machines was fragmentary and led to isolated results. Daniel Bernoulli's
treatment of the screw-pump reflects this. Finally the treatment of Hachette and
Weisbach of the screw-pump is characteristic of the 19th century approach to machines:
geometric and graphical methods combined (in the case of Weisbach) with calculations.
Judging on the basis of Rorres' remarks about the Archimedean Screw Pump Handbook
([22]) it seems that in 1968 the theory had not yet developed above the level reached by
Weisbach and in practice Archimedean screw-pumps were built on the bases of rules of
thumb ([26], p. 73). Rorres' treatment ([26]), that we will not discuss, represents the
modern approach: he wrote a MathLab computer programme.

DRACHMANN'S RECONSTRUCTION
Dijksterhuis [10], Kellermann & Treue [18], Krause (in his contribution in [30]) prefer
to assume that the screw-pump was invented before Archimedes and that Archimedes
probably merely applied it or studied it theoretically. Others, like Drachmann ([7] and
[8]), Oleson [23] and Rybczynski [27], argue that the available evidence, although
rather limited, points clearly at Archimedes and that there is no evidence pointing
elsewhere. The same argument applies to the endless screw. As for Archimedes and the

                                                          
2 [30] contains a complete reproduction of the (erotic) fresco.
3 Also Heron's works on practical mechanics are important, in particular his textbook on
Mechanics which has come to us in an Arabic translation only. Heron's books, written after 62 A.
D. are by far the best source on ancient mechanical technology. Also Pappos wrote on mechanics;
his work contains many fragments of earlier authors. Pappos lived at the time of Diocletian (285-
305 A. D.). These books were all written more than about a century after Archimedes' death.
Vitruvius describes the screw-pump without reference to Archimedes. Heron and Pappos describe
other applications of the screw, but shed no direct light on Archimedes' role in this respect.
4 The first sections of this paper are based on [20].
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screw, we follow Drachmann and Oleson. Drachmann has argued ([8], p. 153) that
Archimedes invented the screw-pump after having seen in Egypt the operation of a
water-drum or tympanum (a water-lifting wheel with a body consisting of eight
compartments, see Figure 1a). While the tympanum rotates, water enters a compartment
through a hole close to the periphery of the drum, and after half a turn the water leaves
the compartment again through a hole close to the axis. Oleson, who sympathises with
Drachmann's reconstruction, described the moment of Archimedes' breakthrough as
follows "if the tympanum were to be drawn slowly along the axis of its rotation as it
turned, its compartment walls would describe the spirals of just such a screw" ([23], p.
298). Each of the eight compartments of the tympanum then generates one of eight
spiral-shaped channels that together fill a cylinder (Figure 1b).

ANOTHER SOLUTION
If Drachmann is right, Archimedes must have seen a tympanum as described by
Vitruvius in action and as a result of that imagined the screw-pump as described by
Vitruvius. However, the insight that water can be lifted with the resulting object is far
from immediate.

Fig. 1a Roman tympanum. Fig. 1b Screw-pump.
In Drachmann's reconstruction Archimedes invented the screw-pump of Fig. 1b when
he watched the tympanum of Fig. 1a in action (Illustrations taken from [8], p. 150 and

153)

If a tympanum in action is tilted and imagined to be moved during its rotation along its
axis it seems natural that this movement will be upward, away from the water. If the
thought-experiment is executed in this way the resulting screw-pump will only lift
water if the direction of the rotation that generates the pump in the thought-experiment
is reversed!5

We would like to suggest another scenario. The Chinese are famous for their
inventions. Yet they did not invent the screw. This suggests that something was missing
in China which was present in the West. Greek mathematics was missing in China. My

                                                          
5 In order to execute the thought-experiment in such a way that a working screw pump is obtained
without having to reverse the direction of the rotation it is necessary that in the though-
experiment the tympanum is "screwed" downwards, into the water. This seems hardly a natural
thing to imagine.
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reconstruction of the invention starts with the problem in pure Greek mathematics of
the quadrature of the circle, which led to the study of different kinds of spirals, among
them the cylindrical helix. We will show that the cylindrical helix can be used to
execute the quadrature of the circle, a construction that is immediately related to the
fact that the helix can be obtained by wrapping a triangle around a cylinder. We are
arguing that at this point Archimedes will have related pure mathematics to mechanics
and Heron of Alexandria tells us how. In Heron's Mechanics, Book 2, this particular
relation of cylindrical helix and rectangular triangle is not only used to design a screw,
but Heron also explains the functioning of the screw as follows ([8], p. 76):

"Now we must take the screw to be just a twisted wedge, for the triangle from
which we draw the screw line is really a wedge, and ist head is the side which is
equal to the height of the screw turn [...]. And so the screw becomes a turned,
twisted wedge, which is worked not by a blow, but by turning, and its turning
here replaces the blows on the wedge; and so it lifts the weight [...]".6

The wedge is a very old piece of equipment, dating from long before Archimedes. The
first somewhat unsatisfactory theoretical remarks that we know of are in Mechanical
Problems from say 280 B. C., attributed to the peripathetic school ([8], p. 12). It is
inevitable that Archimedes studied the wedge. My hypothesis is that the revolutionary
idea that we can wrap a wedge around a cylinder and get a screw, comes from
Archimedes. His work on the quadrature of the circle combined with his vivid interest
in applied mechanics made him see all of a sudden the relation between the wedge and
the cylindrical helix and at that moment he realised that also the screw could be used to
exert power. The first application will have been very simple: a spiral groove in a
wooden cylinder will have been used to move a piece of wood that was forced to
remain in the groove (See footnote 6). All other applications came later. Pondering on
how water could be lifted by a screw, wondering how water could "stay securely and
solidly in its place by a power which is in itself", to use Heron's words, he discovered
the screw-pump. Gravity would hold the water in its place!

FROM THE QUADRATURE OF THE CIRCLE TO THE CYLINDRICAL HELIX
One of the famous problems that mathematicians in Antiquity struggled with was the
problem of the quadrature of the circle: given an arbitrary circle, construct by means of
compass and ruler a square with an area equal to the area of the circle. The circle
quadrature is equivalent to the production of a straight line segment that is equal to the
circumference of the circle. Circle quadrature and circle rectification are equivalent
problems. The Greek mathematicians did not succeed in solving the problem of the
quadrature or the rectification of the circle by means of compass and ruler.7 For a

                                                          
6 The use of the screw (not the screw-pump) is actually described by Heron as well. Heron writes
(in Drachmann's translation): "When the screw is turned, it moves the piece of wood that is called
tulus, as I have said already, and it lifts the weight in a straight line; and this tulus must, when the
screw is not moved, stay securely and solidly in its place by a power which is in itself, and it must
not be so that, when the screw is at rest from turning, the weight overcomes it, I mean that when
this block is fitted into the screw furrow and is like a support for it, then it does not slip out of the
screw furrow, because if it does slip out, the whole weight will go down to the place from which
it was lifted."([8], pp. 97-80).
7 In the nineteenth century it became clear that the problem in this form is in fact insoluble.
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rectification we need more than merely the use of compass and ruler. For example, in a
famous treatise, Spiral Lines, Archimedes shows how any circle can be rectified
provided one particular curve, a planar spiral is given and a tangent can be drawn to the
spiral. Although Archimedes' argument is quite complicated, the result boils down to
the situation of Figure 2. If PQ is the tangent to the spiral and OQ ⊥ OP, we have
OQ=Circular arc PS.

Fig. 2 Rectification of a circle by means of a planar spiral

Archimedes undoubtedly knew the cylindrical helix and its properties.8 It can be
generated easily in a way analogous to the generation of the planar spiral by means of a
superposition of a uniform rotation and a uniform translation: a segment of fixed length
rotates uniformly in a plane about one of its endpoints, while at the same time this plane
is moved uniformly in a direction perpendicular to the plane. The cylindrical helix can
also be used to rectify a circle. Pointing out the analogy with the rectification by means
of the planar spiral, Heath described the rectification as follows:

"if a plane be drawn at right angles to the axis of the cylinder through the initial
position of the moving radius which describes the helix, and if we project on this
plane the portion of the tangent at any point of the helix intercepted between the
point and the plane, the projection is equal to an arc of the circular section of the
cylinder subtended by an angle at the centre equal to the angle through which the
plane through the axis and the moving radius has turned from its original
position." ([16], Vol.I, p. 232)9

This rectification of the circle by means of the cylindrical helix boils down to
unwrapping a rectangular triangle from a cylinder, precisely the reverse of Heron's
above-mentioned construction of the cylindrical helix.

                                                          
8 A contemporary mathematician, Apollonius (c.262-c.190), is known to have written a treatise
on the Cochlias, i. e. the cylindrical helix.
9 In an interesting reconstruction Knorr ([19], 1986, pp. 166-167) argues that the rectification as
described by Heath actually led Archimedes on a heuristic level to the rectification by means of
the planar spiral.
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THE SCREW-PUMP IN THE RENAISSANCE
The water screws from Antiquity that we know of are all based on one or more helical
blades fitted inside a cylinder.10 After Antiquity for many centuries there is no
theoretical interest whatsoever in screw-pumps. Only at the end of the Middle Ages the
interest returns. The first illustration after Antiquity is in Konrad Kyeser's Bellifortis, an
early 15th century manuscript. It is obviously a pump with one or more helicoids inside
(Figure 3a). 11

         

Fig. 3a Screw-pump in Kyeser's Bellifortis12

In Da Vinci's Codice Atlantico we find a screw-pump consisting of a helical tube
wound around a central drum (Figure 3b), as well as a pump made by winding a tube
around a central core with a triangular intersection. According to Da Vinci the
triangular pump can lift much more water, but is less easily turned around.

                

Fig. 3b Screw-pumps in Da Vinci's Codice Atlantico13

                                                          
10 In the Spanish copper-mines of the imperial period pumps with one helicoid were
found ([18], p. 23).
11 For technical reasons the illustrations 3a, 3b and 4a are taken from secondary
sources.
12 Illustration taken from [13], p. 64
13 Illustration taken from [3], p. 468. Described by Cardano in[5].
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Fig. 4a The Augsburg Machine14

                                        

Fig. 4b Plate 64 from Ramelli [25]

                                                          
14 Illustration taken from [3], p. 180
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Other 16th century authors in whose work we find the screw-pump are Cardano and
Ramelli. In Cardano's work we have the Augsburg Machine (Fig. 4a), that actually
existed. The pumps are based on helical tubes. In Ramelli's 1588 drawing (Fig. 4b) the
pumps are based on two helical blades.

            

                                          Fig. 5 From Cardano, [5], p. 19

it and so did Galilei. The first explanation of the functioning of the screw was given by
Cardano. With respect to Figure 5 (in which AB is the axis of the pump, DC represents
its elevation, and the curved segment AE represents the tube wound around the core of
the pump). Cardano's argument is essentially this: He replaces the curved segment by
the cord AE. He assumes that DE is longer than DC. Then, when E rotates around A, in
its opposite position E will be under C, and a weight in A will fall towards E. Clearly
this will also be the case when we consider the motion along the curved segment when
it is in its lowest position. The fact that a weight continues to fall from E to F when the
pump is rotated is explained by Cardano by the impetus the weight has in E and the fact
that the situation repeats itself. Cardano in this context seems not to relate the
cylindrical helix to a triangle wound around a core. It means that he understood how the
screw pump works, but could not really make his insight precise. That is where Galilei
came in in the 90s of the 16th century. Galilei wrote about the screw-pump "it is not
only marvellous, but it is miraculous" (non solo è meravigliosa, ma è miracolosa – [12],
p. 183), because in the srew-pump the water ascends by continually descending.
Galilei considered the cylinder MJKH with the winding line JLOPQRSH round it
(Figure 6) The winding line is considered as a channel in which the water rises by
descending. The winding line is generated by means of triangle ABC (drawn on the
right side very small in Figure 6 just above the horizontal line), which means that the
elevation of the channel is determined by angle CAB. Galilei now argues as follows.

"Now it is clear that the rise of this channel will be taken away if the point C is
dropped to B, for then the channel will have no elevation at all, and dropping the
point C a little below B, the water would naturally run out downward through
the channel AC from the point A to the point C."

Galilei then assumes that angle A is one third of a right angle and he continues (Figure
3).

"These things understood, let us turn the triangle round the column, and let us
make screw BAEFGHJD. If placed upward at right angles with the extremity B
in water, this would not upon being turned draw up the water […]"

However, if we tilt the column through one third of a right angle
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"the water will move downward from the point J to the point L. And turning the
screw round, its various parts successively displace one another and present
themselves to the water in the same position as the part JL."15

Figure 6 From Galilei's Mecchanice,[12]

Galilei concludes: the water raising screw must be tilted a little more than the angle of
the triangle that generates the screw. This is fundamental and Galilei seesm to have
been the first to prove it and write it down.

THE CALCULATIONS OF DANIEL BERNOULLI
The Archimedean screw raises discrete scoops of water. Daniel Bernoulli (1700-1782),
who studied the screw pump in his Hydrodynamics (1738),16 seems to have been the
first to study the size of the pockets that contain the water. He considered a tube of
infinitely small diameter shaped as a cylindrical helix, generated by wrapping a triangle
around a cylinder. The triangle is in Fig. 7b17 under the horizontal line; in the upper part
we have in fact an orthogonal projection of the tilted cylinder on a vertical plane. The
projection of the cylindrical helix is a tilted sinusoidal curve. Bernoulli applied the
differential- and integral- calculus (at the time less than half a century old). He first
determined the height above the horizontal plane H(X) of a point P of the cylindrical
helix on the tilted cylinder as a function of X, the angle of rotation during the
generation of the helix. The radius of the cylinder is taken equal to 1 and then X equals
the arc.
It is not difficult to check that

H(X) = X.tanψ cosϕ + sinϕ(1 + cosX)
Here ψ is the angle that the pump makes with the horizontal and ϕ is the inclination of
the cylindrical helix. It is clear from figure 7a that the pocket that can contain water has
a deepest point corresponding to a minumum of H(X) and that one of its endpoints
corresponds to a maximum of H(X) Putting the derivative of H(X) equal to zero yields

SinX = tanψ/tanϕ

                                                          
15 The translation is Stillman Drake's ([9])
16 For an English translation see [4] and for an annotated German translation see [11].
17 Fig. 7b is our drawing, suggested by the drawings in the annotation by Flierl ([11])
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On the interval 0 < X < π corresponding to the first section of the cylindrical helix we
have no extrema when ψ > ϕ; the helix is then an ascending curve and water does not
enter the tube. This is in fact Galilei's result, derived differently. However when ψ < ϕ
the equation has two solutions. There is a maximum corresponding to point o and a
minimum corresponding to point p. Bernoulli remarked that in this case the quantity of
water in one pocket is determined by the section opq of the helix; q being on the same
level as o. He wrote that the length of this scoop cannot be determined algebraically,
but can be approximated in every specific case.
It is interesting that Bernoulli also calculates the force needed to operate the pump. He
imagined a weightless helix in which a masspoint is rolling without friction.

Fig.7a Bernoulli's drawing Fig. 7b

Gravity pulls the mass point down and makes the helix turn. He imagined the masspoint
at point p, corresponding to the above determined minimum, the lowest point of the
pocket. The component of the weight directed along the axis of the cylinder does not
have any effect, but the other component makes the cylinder turn. One can easily verify
that if the weight is p, the moment about the axis equals

p.tanψ.cosϕ.
In the case in which we are not dealing with one pointmass positioned at the lowest
point, but in which the whole pocket opq is filled with water Bernoulli determines the
moment that the weight of the water exerts about the axis of the cylindrical helix by
means of an integration. The conclusion that he reaches is that the same formula
applies: if the total weight of the water is p, the moment equals

p.tanψ.cosϕ.
and we have the same formula as above.
In or some time before 1755 Leonhard Euler formulated fourteen mathematical
problems (Quaestiones Mathematicae), that were read in 1757 to the members of the
Petersburg Academy. The first problem concerned the need for a theory of the screw-
pump. Although the pump was widely and successfully applied still Euler felt the need
for a theory, he wrote. As far as we know Euler himself never developed such a theory.

HACHETTE'S APPROACH
One of the reasons why Gaspard Monge is famous, is the fact that he defined and
developed the subject called "descriptive geometry". When the Ecole Polytechnique
was founded in Paris in 1794, a course in descriptive geometry became obligatory for
all students. Part of the course was devoted to (elements of) machines. This part was
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taught by Jean-Nicolas-Pierre Hachette (1769-1834), who later published the notes in
the form of his Traité des machines. The goal of descriptive geometry is to make
drawings of three-dimensional objects that are such that from the drawing, shape and
relative positions of parts of the object can be deduced geometrically. The method boils
down to the following. In space two perpendicular planes are chosen, Π1 and Π2. The 3-
dimensional object is projected on both planes and in order to get a 2-dimensional
picture Π2 is rotated 90 degrees about the line of intersection of the two planes until it
coincides with Π1. Usually the projection on Π1 is in the upper part of the drawing and
the projection on Π2 is in the lower part. Although the drawings in Hachette's Traité
élémentaire des machines are all very well made, the use of descriptive geometry is
limited, because most of the mechanisms are planar. In important exception is,
however, Hachette's treatment of Archimedes' screw pump. Hachette's treatment of the
screw is entirely based on descriptive geometry. The pump consists of a cylindrical core
and a barrel with a helical blade between them. The blade can be generated by means of
a straight line segment with its points describing cylindrical helixes. Hachette considers
a case in which the angle between the tangents to the inner helix (described on the core)
and the axis of the pump is 45 degrees. Fig. 8 shows the pump and above it the two
projections. The projection in Π1 is Fig. 3 in Hachette's numbering and the projection in
Π2 is Fig. 4 The sinusoidal projections of the inner and outer helixes are constructed in
Fig. 3 on the basis of Hachette's Fig. 4 by constructing some discrete points and
connecting them by means of a smooth curved line.
Suppose that G (Fig.4) and C (Fig.3) are the projections of a point on the inside of the
barrel for which the tangent to the helix is parallel to the plane Π1. GK (Fig. 3) and CM
(Fig.4) are the projections of this tangent. When the pump is working this tangent is
rotated about the axis of the pump and describes a hyperboloid of revolution. The
question is whether there are positions of the tangent that are such that it points
downwards, so that water present at point C would "fall" upwards in the pump. In order
to treat this question Hachette considers an arbitrary point on the axis of the pump and
considers the cone with this point as center consisting of all lines parallel to positions of
the tangent during its rotation about the axis. If the horizontal plane through the center
of this cone has two lines of intersection with this cone, the pump will raise water; if
there is one or there are no lines of intersection, the pump will not raise water. The
border case in which we have precisely one line of intersection leads Hachette to a
problem in descriptive geometry: given a cylindrical helix and a plane, construct a
tangent to the helix parallel to the plane. Hachette had already discussed this problem in
his Traité de géométrie descriptive ([15], pp. 142-153).
Hachette points out that the cylindrical helixes that are generated by points on the
generating segment closer to the axis are steeper. If the outer helix is such that water
can be raised with it, the inner one may be too steep. In fact Hachettte proposes to
define the optimal inclination as the one in which the cone corresponding to the inner
helix is tangent to the horizontal plane ([16], p. 183).
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Fig. 8 From Hachette's Traité élémentaire des machines

                           

WEISBACH'S CONTRIBUTION
As far as we know the most complete 19th century treatement of the problem was given
by Julius Weisbach ([29], 1851-1860, pp. 811-828). Figure 9 illustrates his approach.
The central problem is the volume of water that can be lifted in one pocket. The integral
involved cannot be calculated analytically (Cf. [26], p. 80). Weisbach determines the
intersection of the water in one pocket with a number of cylinders, in fact slicing up the
volume in curved slices, starting from the core of the pump and finishing with the inner
cylinder of the outer barrel. He takes the average value of the areas of the slices, and he
multiplies it with the distance between the core cylinder and the outer cylinder of the
pump. This gives him a good approxiamtion of the volume.
He determines the areas of the curved slices as follows. On the left side of Fig. 9 we
have a drawing of the pump in a vertical position in accordance with the rules of
descriptive geometry. BFA is the projection on the horizontal plane of half of the core;
B1F1A1 is the projection of the outer cylinder. The area QSUT in Fig 9 is the
intersection of the inner cylinder with the pocket of water. The surface of the inner
cylinder is flattened and the intersection of the horizontal surface of the water with the
cylinder becomes a sinusoidal curve QTRS. When the cylinder is flattened the
cylindrical helix becomes a straight line: QS. Because Weisbach studies a pump with
two helicoids, the water is trapped between them. TU in Figure 9 corresponds to the
cylindrical helix of the second helicoid. The area of QSUT is determined with
Simpson's rule

192



                                             Figure 9 From Weisbach ([29])

CONCLUSION
In this paper we have concentrated on the theoretical considerations concerning the
screw-pump. We have seen that the treatment of the screw in each of the cases we
discussed reflected the state of the art in the theory of machines. For a modern
treatment we refer to ([26], 2000)..
Inherently the determination of the volume of water that a screw pump can lift is a
difficult problem that cannot be solved analytically. Understandably, because of the
theoretical difficulties, the pump was also studied by means of experiments. Hachette
reports about experiments by Touroude from 1766 ([16], p. 186-187). In the twentieth
century experiments were executed by Addison ([1]). Addison concluded that the
discharge at a given speed falls off rapidly as the inclination of the axis increases.
Because the screw-pump was so popular, undoubtedly more experiments have been
done. It seems that still in 1968 in practice rules of thumb determined the design of
screw pumps.
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