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Abstract. This research applies the Collective Specialization Neuro-
Evolution (CONE) method to the problem of evolving neural controllers
in a simulated multi-robot system. The multi-robot system consists of
multiple pursuer (predator) robots, and a single evader (prey) robot. The
CONE method is designed to facilitate behavioral specialization in order
to increase task performance in collective behavior solutions. Pursuit-
Evasion is a task that benefits from behavioral specialization. The perfor-
mance of prey-capture strategies derived by the CONE method, are com-
pared to those derived by the Enforced Sub-Populations (ESP) method.
Results indicate that the CONE method effectively facilitates behavioral
specialization in the team of pursuer robots. This specialization aids in
the derivation of robust prey-capture strategies. Comparatively, ESP was
found to be not as appropriate for facilitating behavioral specialization
and effective prey-capture behaviors.

1 Introduction

Design principles that facilitate emergent behavioral specialization have been
studied in artificial life [10] and multi-robot systems [1] research. However, col-
lective behavior design methods for harnessing and utilizing emergent special-
ization for the benefit of problem solving are currently lacking.

Pursuit-evasion is a collective behavior task that is commonly used within
artificial life research to test both non-adaptive (typically game theoretic) and
adaptive (typically learning and evolution) methods for agent controller design.
This paper describes a pursuit-evasion game, where a team of pursuer robots
(herein called: predators), are required to collectively immobilize one evader
robot (herein called: prey). The paper compares two different Neuro-Evolution
(NE) methods, the CONE and ESP methods, for designing effective collective
prey-capture behaviors. The effectiveness of emergent prey-capture behaviors
are examined with respect to the role of behavioral specialization.

Research Goal: To demonstrate that the CONE method is appropriate
for deriving behavioral specialization in a team of predators, where such spe-
cialization gives rise to successful collective prey-capture behaviors. Success of
prey-capture behaviors is measured in terms of the simulation time for which a
prey is immobilized (captured).
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Hypothesis 1: CONE will facilitate emergent behavioral specialization that
will enable the derivation of high performance prey-capture behaviors.

Hypothesis 2: The ESP method is not as appropriate for facilitating behav-
ioral specialization in the pursuit-evasion task, and will thus yield comparatively
low performance prey-capture behaviors.

Behavioral Specialization: Using methods from related work [8] we were
able to ascertain which sensory activation and motor output value ranges cor-
responded to an observed behavior. Specifically, we measured the portion of a
predators lifetime that light sensors (for prey detection) and infrared sensors (for
proximity detection) were activated (within a given range). That is, sensor and
motor activations of individual predators, within a given range of values, were
found to produce specific observed behaviors. In some cases, these specific be-
haviors collectively produced an effective prey-capture behavior. Sensory-motor
activation instances that had been identified with an observed behavior were
summed over the course of a predators lifetime. If the sum of these particu-
lar activation instances was ≥ 50% of the predators lifetime (that is: the total
amount of activation instances possible) the corresponding observed behavior
was labeled as specialized.

Task: The task was for a predator team to maximize the time for which a
prey is immobilized. A control experiment (described in related work [7]) demon-
strated that at least two predators are required to immobilize a prey.

Team Fitness Calculation: Predator teams were evaluated according to
the total time for which the team was able to immobilize a prey. Specifically, a
global fitness function calculated the average time for which a prey was immobi-
lized. This average was calculated over the lifetime of a given predator team, as
well all experimental runs. A fitness estimation method known as fitness sharing
[2] was used in this calculation. This assumed that each predator in the team
contributed equally to the capture of a prey, and thus each predator received an
equal fitness reward when a prey was immobilized. Specifically, each predator in
the team received a reward equal to the time for which a prey was immobilized.

2 Neuro-evolution Methods

2.1 CONE: Collective Neuro-evolution

CONE is an extension of both the SANE [6] and ESP [5] methods. A key dif-
ference between CONE and other NE methods is that it creates n separate
genotype (neuron) sub-populations for n neural controllers operating in the task
environment, and is thus best suited for collective behavior tasks. One advantage
of CONE is that it expedites artificial evolution, given that the genotype popula-
tion is organized into sub-populations. Hence, specialized controllers do not have
to emerge out of a single population of neurons, and progressive specialization of
controllers is not hindered by recombination of controllers with complementary
specializations. A second advantage is that it provides more genotype diversity
(comparative to single genotype population methods) and encourages emergent
controller specialization given that evolution occurs within separate genotype
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Fig. 1. Left: Example of Collective Neuro-evolution (CONE) Method (Section 2.1).
Right: Example of Enforced Sub-Populations (ESP) method (Section 2.2).

sub-populations. Organizing the genotype population into separate niches (sub-
populations), either dynamically [10], or a priori [9] facilitates specialization, and
protects emergent behaviors within specialized niches of the genotype space.

CONE Process. After each of the n sub-populations was initialized with
m genotypes, the CONE process (figure 1) was executed as follows.

1. n predator neural network controllers are constructed via selecting p geno-
types (neurons) from each sub-population. Each set of p neurons then be-
comes the hidden layer of each of the n predator neural network controllers.

2. These n controllers are then tested together in a task environment for a
lifetime of q epochs. An epoch is a test scenario lasting for w iterations
of simulation time. Each epoch tested different predator and prey starting
positions and orientations in the environment. For each of the q epochs (q ≥
m, where m is the number of genotypes in a sub-population), each genotype
in a given sub-population was selected and tested in combination with p-1
other neurons (in the form of a complete controller) randomly selected from
the same sub-population.

3. p neurons from each of the n sub-populations were concurrently evaluated in
the task environment and assigned a fitness. Testing of neurons within each
sub-population continued until all neurons had been tested at least once.

4. At the end of a predators lifetime (q epochs) an average fitness value was
assigned to each of the p neurons that participated in each controller. The
average fitness of each neuron was calculated as its cumulative fitness divided
by the number of controllers it participated in.

5. The testing and evaluation of the m neurons in each predators genotype
sub-population constituted one generation of the CONE process.

6. For each sub-population, recombination and mutation of the fittest 20%
of neurons then occurred, where the fittest 20% were arranged into pairs
of neurons, and each pair produced 5 child neurons, so as to replace all
genotypes in the current sub-populations and propagate the next generation
of each sub-population.
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7. p neurons were randomly selected from the fittest 20% within each of the
n sub-populations. These n sets of p neurons were then decoded into n
controllers, and executed in the task environment as the next generation.
This process was then repeated for r generations.

2.2 ESP: Enforced Sub-Populations

Enforced Sub-Populations (ESP) has been effectively applied to non-Markovian
control tasks with sparse reinforcement such as double pole balancing, rocket
control, as well as pursuit-evasion games [5]. ESP differs from other NE methods
in that it allocates and evolves a separate neuron population for each of the
p hidden-layer units in a neural network. A neuron can only be recombined
with other neurons from its own sub-population, thus making it suitable for the
evolution of recurrent neural networks (not the case for the SANE method [6]).

2.3 CONE and ESP: Common Methods

Constructing Neural Network Controllers: In the case of ESP, 1 genotype
is selected from each of p=6 sub-populations (table 1), for deriving a neural
network controller’s hidden layer of p neurons [5]. This is repeated n times for
n controllers. There were p sub-populations for n predators, where p equaled
the number of hidden layer neurons in a controller. In the case of CONE, com-
plete controllers were constructed via selecting p neurons from each of the n
sub-populations (table 1). There were n sub-populations for n predators. Each
neuron in each sub-population was assigned to a fixed position in the hidden
layer of any given controller. The position that the ith neuron (gi) would take in
a hidden layer of p neurons, where gi was selected from any sub-population of m
neurons, was calculated as follows. Each of the m neurons in a sub-population
were initially assigned a random and unique ranking in the range [0, m-1]. A
sub-population was divided into approximately equal portions (m / p), where if
gi was within the kth portion (where: k = [1, p]) then gi would adopt the kth
position in the hidden layer. Given that recurrent neural networks were being
evolved, CONE only recombined neurons that were in the same sub-population
(section 2.1), and assigned to the same hidden layer position.

Recombination and Mutation of Genotypes: Genotypes were encoded
as a string of floating point values (table 1), which represented neural network
weights connecting all sensory input neurons and all motor output neurons to
a given hidden layer neuron. Child genotypes were produced using single point
crossover, and Burst mutation with a Cauchy distribution [5]. Mutation of a
random value in the range [-1.0, +1.0] was applied to each gene (connection
weight) with a 0.05 degree of probability, and weights of each genotype were kept
within the range [-10.0, +10.0] (table 1). Burst mutation was used so that most
weight changes were small whilst allowing for larger changes to some weights.
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3 Experimental Design, Agents, and Environment

3.1 Experimental Design

In this case, experiments measured the impact of a neuro-evolution method and
a group types upon prey capture time.

– Neuro-evolution Method : Each predator used a recurrent neural network con-
troller which was adapted with either the ESP or CONE method.

– Group Type: Between 2 and 6 predators were tested with 1 prey. These
5 group types (GT) were defined as follows: GT-1: 2 predators, GT-2: 3
predators,GT-3: 4 predators, GT-4: 5 predators, GT-5: 6 predators.

Table 1. Neuro-evolution parameter settings for the ESP and CONE methods.

CONE and ESP Neuro-evolution Parameter Settings
Runs per experiment 50
Epochs 50
Iterations per epoch 1000
Mutation probability 0.05
Evaluations per neuron 10
Mutation type Burst mutation / Cauchy distribution
Mutation range [-1.0, +1.0]
Weight range [-10.0, +10.0]
Crossover Single point
Sensory input neurons 22
Hidden layer neurons 6
Motor output neurons 2
Phenotypes [2, 6] Recurrent neural networks
Genotype sub-populations [2, 6] / 6 (ESP)
Genotype representation Neuron
Genotype length 24
Genotypes 600 per sub-population / 100 per sub-population (ESP)

Each experiment measured prey capture time, given a group type and neuro-
evolution method. Prey capture time was measured as an average calculated over
the multiple test scenarios that constituted a predator team’s lifetime.

3.2 Environment

Predators and the prey move within a discrete environment of 180 x 180 quad-
rants. Each quadrant is large enough to contain only one predator or prey. If
two or more robots attempt to occupy the same quadrant, a collision occurs. As
a course encoding of movement, a predator or prey could turn at any angle (in
45 degree increments) up to 180 degrees, either to the left or to the right, with
respect to its current heading. Each robot is initialized with a random heading.
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A difference calculation in wheel speeds (MO0 and MO1) controlled the orienta-
tion of any given predator or prey. Obstacles are detected at a maximum range
of 4 quadrants with a 360 degree field of detection (figure 2). This field of detec-
tion was an area of 9 x 9 quadrants, which is divided into 8 sectors to account
for the coverage of different infrared proximity (for predators and prey) or light
(for predators only) sensors. If an obstacle was detected on a quadrant divided
by two sectors, that is, covered by two proximity (or light) sensors, then both
sensors are simultaneously activated (each receiving an equal activation value).

3.3 Predators and Prey: Sensors and Actuators

The sensor and actuator configuration of each predator and prey is assumed to
be that of a Khepera mobile robot [8] (figure 2). The prey is equipped with a
light on its top (L0). This light could be detected by the predator light sensors,
and was used so each predator could distinguish fellow predators from the prey.
Both predators and prey are equipped with 8 infrared proximity sensors ([SI0,
SI7]. Additionally, each predator is equipped with 8 light ([SI8, SI15]) sensors,
positioned on its periphery. Both, predators and prey are provided with two
wheel motors (MO0, MO1) that controlled their speed and orientation.

When an obstacle came within range of a given proximity sensor, that sensor
was activated with a value proportional to the distance to the obstacle. When a
prey came within range of a predators light sensor, that sensor was activated with
a value proportional to the distance to the prey. Sensor values were normalized
within the range [0.0, 1.0] for the purposes of being acceptable as neural network
inputs. Motor output values were normalized within the range [-10.0, 10.0].

Fig. 2. Left: Sensory range of proximity and light sensors in the discrete simulation
environment (prey is limited to proximity sensors). Right: Sensor and actuator con-
figuration for predator (A) and prey (B) Khepera robots. See section 3.3 for details.
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Fig. 3. Left: Prey feed-forward neural network controller. Right: Predator recurrent
neural network controller. See section 3.4 for details.

3.4 Predators and Prey: Neural Network Controllers

The prey neural network consists of 8 sensory input neurons and 2 motor output
neurons, fully connected to a hidden layer of 3 neurons (figure 3). Prey sensory
inputs encode the state of 8 infrared proximity sensors, and 2 motor outputs
encode the speed of 2 wheels. The output values of the 2 motor neurons are
multiplied by 1.2. This sets a prey’s speed to be 20% faster than the predators.
The prey controller was evolved for static and dynamic obstacle avoidance, before
being tested with a predator team. A recurrent neural network was selected as
the predator controller in order to emulate short term memory [3]. A hidden
layer of 6 sigmoidal units fully connects 22 sensory input neurons to 2 motor
output neurons (figure 3). Predator sensory input neurons encode the state of 8
infrared proximity sensors and 8 light sensors ([SI0, SI15]), as well as previous
hidden layer ([SI16, SI21]) activation values. Motor outputs (MO0, MO1) encode
the speed of the 2 wheels. Further details are presented in related work [7].

3.5 Evolution of Predator Controllers

The CONE and ESP methods were applied to n predator neural network con-
trollers. The goal was to adapt controllers over the course of evolutionary time so
as to derive collective prey-capture behaviors that maximize prey-capture time.
The parameter settings used for the CONE and ESP methods are presented in
table 1. These parameters were selected given the success of related parameter
settings in previous evolutionary robotics experiments [8].

CONE: When the CONE method was applied to evolve predator controllers,
between 2 and 6 genotype sub-populations were created. These sub-populations
represented the genotype space of between 2 and 6 predator neural network
controllers. Each sub-population was initialized with 600 genotypes.

ESP: When the ESP method was applied to evolve predator controllers, 6
genotype populations were created so as to represent the genotype space of the
6 hidden layer neurons in a predator neural network controller. Each genotype
population was initialized with 100 genotypes.
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Genotypes (Neurons). For both CONE and ESP, each genotype repre-
sented the connection weights of a neuron that potentially participated in the
hidden layer of any given predators neural network. Each genotype was encoded
as vector of 24 floating point values. That is, 22 input connection weights plus
2 output connection weights. In order to construct a single predator neural net-
work controller, 6 neurons were selected from a given genotype sub-population
(1 genotype from each of the 6 sub-populations in the case of ESP). This set
of neurons then constituted the hidden layer of 1 predator neural network. The
process was then replicated between 2 and 6 times for each predator in the team.

4 Results: Evolved Collective Prey-Capture Behavior

Collective prey-capture behaviors, utilizing at least 3 predators and at most
4 predators, consistently emerged in the later stages of both the ESP and
CONE evolutionary processes (> 200 generations). These collective behaviors
were termed role-switcher and the pursuer-blocker. The former emerged under
ESP, where as, both emerged under CONE. Figure 6 presents the average prey
capture time, and number of instances of emergent specialization (corresponding
to prey capture behaviors) for all group types.

Fig. 4. Two versions of the role switcher prey capture behavior using 3 predators.

4.1 ESP: Role-Switcher Prey Capture Behavior

Two versions of the role switcher collective behavior emerged. In each case,
predators in the team adopted 1 of 3 specialized behavior roles, termed: flanker,
knocker and idle. However, at least 1 predator adopted 2 of these behavioral
roles, which it would switch between in order to maintain the role-switcher prey-
capture behavior. The role switcher behavior was most effective for teams of 3 or
4 predators. Teams of 2 predators were insufficient to immobilize a prey for more
than a few simulation iterations, and teams of 5 and 6 predators often caused
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physical interference between each other, and thus caused the prey-capture be-
havior to fail. Figure 4 (left and right hand side) illustrate the two versions of
the role switcher prey-capture behavior, occurring over w simulation time steps.
The role switcher behavior has been observed in related research [7], and is thus
not elaborated upon here.

4.2 CONE: Pursuer-Blocker Prey Capture Behavior

In addition to the role-switcher behavior, a prey capture behavior called pursuer-
blocker also emerged under the CONE method. Two versions of the pursuer-
blocker collective behavior emerged. Predators assumed 1 of 2 specialized be-
havioral roles, termed, pursuer and blocker. Pursuer-blocker was most effective
for teams of 3 or 4 predators. Teams of 5 or 6 predators were ineffective due
to physical interference that occurred between the predators as they collectively
approached the prey, and 2 predators were sufficient for immobilizing the prey
for a few simulation iterations only.

Figure 5 (left hand side) illustrates an example of the first pursuer-blocker
behavior. Predators A and B are the pursuers, assuming positions behind and
to either side of the prey. Predator C assumes the role of the blocker. When the
prey moves within light sensor range of predator C, it moves directly towards
the prey. Consequently the prey turns to avoid predator C, however its evasion
is stopped by one of the pursuing predators. The result is that the prey becomes
immobilized between the 3 predators. This pursuer-blocker behavior depended
upon at least 2 and at most 3 predators assuming the roles of pursuers. Pursuers
needed to maintain a close enough distance to the prey, so as the prey could
not escape when it changed its direction of movement. Furthermore the blocker
needed to move directly towards the prey when the prey came within its light
sensor range. Figure 5 (right hand side) illustrates an example of the second
pursuer-blocker behavior using 3 predators. The 3 predators assume the pursuer
role, pursuing a prey that is moving towards a corner in the environment. When
the prey comes close to the corner it turns to avoid the walls, however, such a
turn places it in the path of one of the pursuers. The result is that the prey
becomes immobilized between the corner and the 3 predators. A prerequisite for
the success of this behavior was that the prey be moving towards a corner. This
pursuer-blocker behavior also emerged using 2 or 4 predators, but failed with
5 and 6 predators due to interference that occurred between predators as they
collectively approached the prey in a corner.

5 Analysis and Discussion

To draw conclusions from this comparative study, a set of statistical tests were
used to gauge respective differences between CONE and ESP method results.
First, the data distributions for prey-capture time results yielded by CONE and
ESP, were determined to be normal distributions via applying the Kolmogorov-
Smirnov test [4] (P=0.72 and P=0.98, respectively). We then applied an inde-
pendent t-test [4]; 0.05 was selected as the threshold for statistical significance,
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Fig. 5. Two versions of the pursuer-blocker prey capture behavior using 3 predators.

and the null hypothesis stated that the two data sets did not significantly differ.
P=0.00012 was calculated, meaning the null hypothesis was rejected. This par-
tially supported our first and second hypotheses. That is, CONE (and not ESP)
would derive prey-capture behaviors with superior task performance. A t-test
was then applied to the instances of specialization data sets for the CONE and
ESP methods; P=0.00025 was calculated, meaning the null hypothesis was re-
jected. This further supported our first and second hypotheses. That is, the high
task performance exhibited under CONE (and not ESP) was due to emergent
specialization. To completely support our hypotheses, it is necessary to compare
the group types where prey capture time and the number of specialization in-
stances are highest for CONE (figure 6). Instances of emergent specialization
were calculated as the number of epochs in a predators lifetime (averaged for all
predators in the team) that were labeled as specialized (section 1). As illustrated
in figure 6 the largest differences between the average number of emergent spe-
cialization instances, for CONE and ESP, were for group types 2 and 3. Group
types 2 and 3, also yielded the largest difference in prey-capture times. That is,
under the ESP method a low number of specialization instances corresponded
to low prey-capture times for these group types. It is theorized that the su-
perior performance of prey-capture behaviors derived by CONE, was due to its
capability to facilitate more instances of behavioral specialization. Subject to fu-
ture research, this was attributed to the use of separate neuron sub-populations
for deriving complete controllers. This encouraged the derivation of specialized
controllers that complemented each other in the task environment.

6 Conclusions

This paper described a comparative study of the ESP and CONE neuro-evolution
methods applied to the task of deriving effective collective prey-capture behav-
iors in a pursuit-evasion game. Prey capture behaviors were evolved for a team of
simulated predator robots that attempted to immobilize (capture) a prey robot.
The effectiveness of prey-capture behaviors, and hence the fitness of the preda-
tor team was measured in terms of prey-capture time. Results indicated, that
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Fig. 6. Neuro-evolution (CONE and ESP) methods comparison. Left: Average number
of emergent specialization instances. Right: Average prey capture time.

the CONE method facilitated emergent behavioral specialization in the predator
team. These specialized behavioral roles served to increase the effectiveness of
prey-capture behaviors. Comparatively, less instances of emergent specialization
were observed when the ESP method was applied for the purpose of deriving
collective prey-capture behaviors in a predator team. Given this, and the inferior
performance of prey-capture behaviors derived under the ESP method, it is con-
cluded that emergent behavioral specialization is beneficial in the pursuit-evasion
task, and that CONE is appropriate for facilitating such specialization.
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