
Appl Intell (2007) 27:291–301

DOI 10.1007/s10489-007-0037-3

A specification language for organisational performance indicators
Viara Popova · Jan Treur

Received: 8 August 2006 / Accepted: 16 January 2007 / Published online: 10 February 2007
C© Springer Science + Business Media, LLC 2007

Abstract A specification language for performance indica-

tors and their relations and requirements is presented and

illustrated for a case study in logistics. The language can be

used in different forms, varying from informal, semiformal,

graphical to formal. A software environment has been de-

veloped that supports the specification process and can be

used to automatically check whether performance indicators

or relations between them or certain requirements over them

are satisfied in a given organisational process.

Keywords Performance indicator . Organisation .

Requirement . Language

1 Introduction

In organisational design, redesign or change processes, or-

ganisational performance indicators form a crucial source

of information; cf. [15]. Within such processes an organisa-

tion is (re)designed to fulfil (better) the performance indi-

cators that are considered important. In this manner, within

This paper is an extended version of the paper which appeared in:
M. Ali and F. Esposito, editors, Proceedings of 18th International
Conference on Industrial & Engineering Applications of Artificial
Intelligence & Expert Systems, IEA/AIE 2005, vol. 3533 of Lecture
Notes in Artificial Intelligence, pp. 667–677, Springer Verlag, 2005.

V. Popova . J. Treur ()
Department of Artificial Intelligence, Vrije Universiteit
Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam,
The Netherlands
e-mail: treur@few.vu.nl

V. Popova
e-mail: popova@few.vu.nl

organisational (re)design processes, performance indicators

function as requirements for the organisational processes.

Within the domain of software engineering in a similar

manner, requirements play an important role. Software is

(re)designed to fulfil the requirements that are imposed. The

use of requirements within a software engineering process

has been studied in more depth during the last decades; it

has led to the area called Requirements Engineering; cf. [6,

11, 16]. Formal languages to express requirements, and au-

tomated tools have been developed to support the specifi-

cation process (from informal to formal) and to verify or

validate whether they are fulfilled by a designed software

component.

In this paper it is investigated how some of the achieve-

ments in Requirements Engineering can be exploited in the

field of organisational performance indicators. Inspired by

requirement specification languages, a formal language to

specify performance indicators and their relationships is pro-

posed, and illustrated by various examples. It is shown how

this language or subsets thereof can be used in informal,

graphical or formal form. Performance indicators expressed

in this language can be manipulated by a software environ-

ment to obtain specifications or to evaluate performance in-

dicators against given traces of organisational processes.

The organization of the paper is as follows. First, in

Section 2, the concept of an organisational performance in-

dicator is briefly introduced. In Section 3 the formal specifi-

cation language is introduced. It is shown how the proposed

language can be used to express the indicators themselves,

but also how they relate to each other and in what sense

they are desirable. Section 4 is dedicated to the analysis of

conflicts between qualified requirements. A technique for

detecting potential conflicts from a specification of relation-

ships and qualified requirements is presented for which an

implementation is available. Next, in Section 5, a case study

Springer

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at VU

https://core.ac.uk/display/15452944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

292 Appl Intell (2007) 27:291–301

of the use of the language for the domain of third-party lo-

gistics is presented. Section 6 concludes the paper with a

discussion.

2 Organisational performance indicators

In order to assess its performance, it is crucial for an organisa-

tion to identify its key performance indicators. Performance

indicators are metrics that show the state of the company—

they can be monitored and analysed to give a clear view on the

current functioning. Furthermore they can also be used for

defining objectives that need to be achieved by the company

or for comparing to competitors or the industry benchmarks.

The set of possible performance indicators is large, diverse

and domain- and company-specific. Monitoring and evalu-

ating these indicators is difficult and resource intensive if at

all possible. It is therefore important to identify the most im-

portant ones—the key performance indicators that reflect the

position, focus and objectives of the company. For one com-

pany working in a domain where each client tends to appear

only once or not very regularly and make small orders (e.g., a

small airport drugstore) the number of clients might be a key

performance indicator. For another company, however, which

relies on having regular clients and a good reputation (e.g., a

local cafe) the number of orders per client or the satisfaction

of the client might be more important. Historically, compa-

nies considered mainly financial indicators. Nowadays it is

widely recognised that non-financial and even non-numerical

indicators can give valuable information as well [3, 4, 9] (e.g.,

customer or employee satisfaction, motivation, safety, etc.).

While identifying the key performance indicators and the

objectives for desired or expected performance of the com-

pany it is beneficial to be aware of how these indicators are re-

lated to each other. For example it is not uncommon that some

performance indicators turn out to be conflicting—improving

one may worsen another [10]. Other types of relationships

are possible as well. There exists a large amount of research

on identifying and classifying (key) performance indicators

for different domains. However, extensive research on how

these indicators relate to and influence each other is lacking.

Such insight is important in identifying how the key perfor-

mance indicators and the objectives related to them can be

reflected into the concrete planning for the organisation ac-

tivities in order to achieve these objectives. Moreover, it can

be used in organisational change and redesign processes to

be undertaken when the performance is considered critically

low and measures are needed to improve it by performing

more extensive changes to the structure and behaviour of the

organisation.

Automated analysis performed in a specialized software

environment can provide assistance in these processes. In

this paper it is argued that it is necessary to model in a pre-

cise manner the performance indicators, their relationships

and the objectives explicitly in order to achieve higher va-

riety of analysis tools. A formal language which provides

the possibility to specify such information is a basis for this

perspective. Such a language inspired by the area of Require-

ment Engineering is proposed in the next section.

3 A formal specification language for performance
indicators

The starting point of this research is in the area of require-

ments engineering as applied within the process of design of

software systems. The approach we adopt uses logic as a tool

in the analysis (see for example [1, 2, 13]) and more specif-

ically order-sorted predicate logic which employs sorts for

naming sets of objects. Such an extension of first order logic

by a sort hierarchy increases the clarity and intuitiveness in

the description of the domain area.

In the following subsection we introduce the language by

defining the sorts, predicates and functions included in it. We

start with the simplest constructs on the level of the perfor-

mance indicators and build on this basis to introduce con-

structs describing relationships between them and require-

ments imposed on the indicators.

3.1 Performance indicators

First we consider single performance indicators and lists of

indicators. The sorts that we define are given in Table 1.

Based on these sorts we define a predicate that allows us

to give names to lists of indicators for ease of reference:

IS-DEFINED-AS : INDICATOR-LIST-NAME × INDICATOR-LIST

In order to demonstrate the use of this and other predicates,

we use a running example for the rest of this section. The

domain area is logistics from the point of view of a logistics

service provider. Table 2 gives the indicators included in the

example.

Table 1 Sorts defined on
indicators and lists of indicators Sort name Description

INDICATOR-NAME The set of possible names of performance indicators

INDICATOR-LIST The set of possible lists of performance indicators

INDICATOR-LIST-NAME The set of possible names for lists of performance indicators

Springer

Appl Intell (2007) 27:291–301 293

Table 2 An example set of
performance indicators Indicator name Description Indicator name Description

NC Number of customers ISC Information system costs

NNC Number of new customers FO % of failed orders

NO Number of orders SB Salaries and benefits

ND Number of deliveries AP Attrition of personnel

MP Motivation of personnel

The above defined predicate can be used as follows:

IS-DEFINED-AS(COD, [NC, NO, ND]).

The definitions given in this subsection are fairly simple

but they give us the basis for going one level higher and

exploring the possible relationships between indicators.

3.2 Relationships between performance indicators

Performance indicators are not always independent. Often

they are connected through complex relationships such as

correlation (the indicators tend to change in a similar way)

or causality (the change in one indicator causes the change

in another). Often we would like to know whether these re-

lationships are positive or negative, e.g. correlation can be

positive (the indicators increase together) or negative (one

increases and the other one decreases). Therefore we need a

new sort given in Table 3.

Now we are ready to define predicates for the relation-

ships we would be interested in. First we define a predicate

for correlation as follows:

CORRELATED: INDICATOR-NAME×INDICATOR-NAME × SIGN

Causality relation between two indicators is denoted with

the following predicate:

IS-CAUSED-BY: INDICATOR-NAME × INDICATOR-NAME × SIGN

Examples: CORRELATED(NC, NO, pos), IS-CAUSED-BY(AP,

MP, neg)

In a similar way we can define a predicate for cases where

one indicator is included in another by definition, e.g. one

indicator is the sum of a number of other indicators:

IS-INCLUDED-IN: INDICATOR-NAME × INDICATOR-NAME × SIGN

Example: IS-INCLUDED-IN(NNC, NC, pos)

Another predicate is used for indicating different

aggregation levels of the same indicator, e.g. measured

by day/month/year (temporal aggregation) or by em-

ployee/unit/company (organizational aggregation):

IS-AGGREGATION-OF: INDICATOR-NAME × INDICATOR-NAME

A set of indicators can be independent (no significant

relationship plays a role) or divergent (correlation, causality

or inclusion in a negative way) denoted in the following

way:

INDEPENDENT: INDICATOR-NAME × INDICATOR-NAME

DIVERGENT: INDICATOR-NAME × INDICATOR-NAME

Examples: INDEPENDENT (ISC, FO), ¬ DIVERGENT (NC, ISC)

It might also be the case that we can easily replace

measuring one indicator with measuring another one if that

is necessary—it is expressed as follows:

TRADE-OFF-SET: INDICATOR-NAME × INDICATOR-NAME

While the meaning of the indicators might be similar it

might still be the case that measurement for one can be more

expensive to obtain than for the other one. Such a relation-

ship is also important to consider when we choose which

particular set of indicators to measure. It is denoted using the

predicate:

IS-COSTLIER-THAN: INDICATOR-NAME × INDICATOR-NAME

The relationships discussed so far can be represented

graphically using a conceptual graph (see [17, 18]). Concep-

tual graphs have two types of nodes: concepts and relations.

In our case the first type will represent the indicator names

Table 3 Additional sorts used
in defining relationships
between indicators

Sort name Description

SIGN The set {pos, neg} of possible signs that will be used in some relationship formulas

Springer

294 Appl Intell (2007) 27:291–301

+NNC
+

++

_

ISC

NC

NO

NDMP

SB

AP

independent

included-in

correlated
caused-by

caused-by

caused-by

FO
Fig. 1 The conceptual graph of
relationships between the
indicators

while the second type represents the relations between them.

The nodes are connected by arrows in such a way that the

resulting graph is bipartite—an arrow can only connect a

concept to a relation or a relation to a concept. Some of the

predicates that we defined have an additional attribute of sort

SIGN. In order to keep the notation simple we do not repre-

sent it as a concept node but as an extra sign associated to the

arc: ‘+’ for positive relationships and ‘−’ for negative ones.

Figure 1 is a small example of how such a conceptual graph

would look like. We use here the examples given to illustrate

the predicates in this section and represent them in the

graph.

We now define one more predicate over a list of indicators.

It will be used to indicate whether the set of indicators

is minimal, where by minimal we imply that these three

constraints are satisfied: no two indicators are replaceable,

none is a different aggregation level of another and none is

used in the definition of another:

MINIMAL: INDICATOR-LIST-NAME

Note that while such property of the indicator set is inter-

esting to consider, it does not mean that we are only interested

in minimal sets.

3.3 Requirements over performance indicators

The previous subsection concentrated on relationship be-

tween performance indicators. Going one more level higher

we can define our own preferences over the set of indicators—

what we prefer to measure and how we should evaluate the

results. First we consider the second question by defining

qualified expressions.

Qualified expressions. Qualified expressions specify what

we consider ‘a success’, i.e. when we consider one measure-

ment of an indicator better than another one. Such specifi-

cations can be as simple as ‘higher value is preferred over a

lower one’ or more complex such as ‘the value should ap-

proximate a certain optimal value while never exceeding a

predefined maximal value’.

The sorts that need to be added to our list are given in

Table 4.

The sort VARIABLE-EXPRESSION contains expressions

defining constraints over a variable as in the following

examples:

v < maxKD (where v is a variable and maxKD is a constant),

v > minKD ∧ v ≤ maxKD (where minKD is also a constant),

v ≤ minKD ∨ v > maxKD,

etc.

The sort INDICATOR-VARIABLE-EXPRESSION on the other

hand, contains expressions defining to which indicator the

variable refers. Here we use the function:

has-value: INDICATOR ×VARIABLE

→INDICATOR-VARIABLE-EXPRESSION

Table 4 The sorts concerning qualified expressions

Sort name Description

VARIABLE The set of possible variables over the values of indicators

INTEGER The set of integers

INDICATOR-VARIABLE-EXPRESSION The set of expressions over an indicator and its corresponding variable (see the definition below)

VARIABLE-EXPRESSION The set of expressions over a variable (see examples below)

QUANTIFIER The set of possible quantifiers (see the definitions below)

QUALIFIED-EXPRESSION The set of possible qualified expressions (see below)

QUALIFIED-EXPRESSION-NAME The set of possible names for qualified expressions

QUALIFIED-EXPRESSION-LIST The set of possible lists of qualified expressions

QUALIFIED-EXPRESSION-LIST-NAME The set of possible names for lists of qualified expressions

Springer

Appl Intell (2007) 27:291–301 295

For example the expression has-value(NNC, v) indicates that

the variable v refers to the values of the indicator NNC. We

now define the following functions that return objects of the

type QUANTIFIER:

minimize, maximize: VARIABLE → QUANTIFIER

approximate: VARIABLE × CONSTANT → QUANTIFIER

satisfy: VARIABLE-EXPRESSION → QUANTIFIER

Examples: minimize(v), approximate(v, bestKD), satisfy(v < maxKD)

A qualified expression is identified by a quantifier and an

indicator-variable expression. The following function given

such a couple returns a qualified expression:

Qualified-expression: QUANTIFIER × INDICATOR-VARIABLE-

EXPRESSION → QUALIFIED-EXPRESSION

As an example consider the expression Qualified-expression

(min(v), has-value(ISC, v)), which should be read as: ‘min-

imize the value v of the performance indicator ISC’.

The following predicates can also be added to our set of

predicates:

IS-DEFINED-AS: QUALIFIED-EXPRESSION-NAME

× QUALIFIED-EXPRESSION

IS-DEFINED-AS: QUALIFIED-EXPRESSION-LIST-NAME

× QUALIFIED-EXPRESSION-LIST

Example: IS-DEFINED-AS (q, Qualified-expression

(max(v), has-value(NNC, v)))

Qualified requirements. Building on the notion of qual-

ified expressions, we can now define qualified require-

ments stating our preferences among the possible quali-

fied expressions. We first introduce a number of new sorts

(Table 5).

We can now define the following function which returns

a qualified requirement:

Requirement: QUALIFICATION × QUALIFIED-EXPRESSION-LIST

→ QUALIFIED-REQUIREMENT

Example: Requirement(desired, Qualified-expression

(max(v), has-value(NC, V)))

This can be read as: ‘it is desired to maximize the value v

of the performance indicator NC’. For simplicity, we abuse

the notation by interchanging a qualified expression and a list

of one qualified expression. Another example could look like:

Requirement(preferred-over,

[Qualified-expression (max(v1), has-value(NC, V1)),

Qualified-expression (max(v2), has-value(NNC, V2))])

Here the list indicates that the first qualified expression

(the head of the list) is preferred over the rest of the ex-

pressions (the tail of the list). Other possible qualifications

expressing different degrees of desirability can be: required,

highly desired, weakly desired, etc.

We define further the following two predicates:

IS-DEFINED-AS: QUALIFIED-REQUIREMENT-NAME

× QUALIFIED-REQUIREMENT

IS-DEFINED-AS: QUALIFIED-REQUIREMENT-LIST-NAME

× QUALIFIED-REQUIREMENT-LIST

Example: IS-DEFINED-AS (r, Requirement(desired, Qualified-

expression(min(v1), has-value(AP,V1))))

3.4 Levels of formalisation of requirements

Within the area of Requirements Engineering, which

served as a source of inspiration for the work reported

here, methods have been described to aid the modeller

Table 5 The sorts concerning qualified requirements

Sort name Description

QUALIFICATION The set of possible qualifications that can be used in a qualified requirement

QUALIFICATION-NAME The set of possible names for qualifications

QUALIFIED-REQUIREMENT The set of possible qualified requirements

QUALIFIED-REQUIREMENT-NAME The set of possible names for qualified requirements

QUALIFIED-REQUIREMENT-LIST The set of possible lists of qualified requirements

QUALIFIED-REQUIREMENT-LIST-NAME The set of possible names for lists of qualified requirements

Springer

296 Appl Intell (2007) 27:291–301

in formalisation of requirements. For example, in [8] it is

extensively described how requirements initially formulated

informally in natural language and/or graphical elements

can be restructured into a more standard structured natural

language format, which then can be reformulated more

easily in a formal language. Using inspiration from the

methods in [8], similar conversion can be applied in the

case of qualified requirements as defined in this paper. As

an illustration, consider the following simple example of a

requirement on safety expressed in natural language:

The safety regulations for production process must not be violated.

This can be reformulated into a more structured form as

follows:

It is required that the performance indicator Safety regulations

violations is equal to zero.

A formalisation can be made by using formal ontologies

for the concepts, and by formalising the relationships, which

in the case of qualified requirements can result in such a

formulation:

Requirement(required, Qualified-expression(satisfy (v= 0),

has-value(SRV, v))).

For a more extensive discussion about the transition from

informal to formal, see [8].

4 Conflicts analysis between qualified requirements

The language presented in Section 3 gives a formal basis

for performing analysis on the performance indicators,

their relationships and the qualified requirements defined

on them. One type of analysis that will be described in

this section is detection of conflicts between requirements.

Intuitively, a conflict indicates that the two requirements

potentially cannot be satisfied together and is represented

by the predicate:

CONFLICTING: QUALIFIED-REQUIREMENT-NAME

× QUALIFIED-REQUIREMENT-NAME.

This can happen for instance when, due to correlation,

causality or aggregation relationship, certain movement of

one indicator is associated with certain movement of the

other, however the corresponding requirements prescribe the

opposite of this relation. An example would be two indicators

that are positively correlated but the requirements specify one

to be maximized and the other one to be minimized. Such re-

lation over the set of requirement is important because often

in practice conflicting needs arise and we must take special

care in dealing with this.

A simple example for such a situation can be given

from the set of indicators listed in Table 2. The company

management knows that the salaries and benefits contribute

to the total costs and therefore reduce the profit. Thus the

following requirement can be considered:

IS-DEFINED-AS(r1, Requirement(desired, Qualified-

expression (min(v1), has-value(SB, V1))))

At the same time the management wants to minimize the

attrition of employees as that increases the costs for teaching

new employees and decreases the average productivity.

Therefore another requirement can be considered:

IS-DEFINED-AS(r2, Requirement(desired,

Qualified-expression (min(v1), has-value(AP, V1))))

But decreasing the salaries will lead to increase in the at-

trition of personnel; therefore the two requirements are con-

flicting: CONFLICTING (r1, r2).

More formally, we define conflicts in the following way.

We consider three types of conflicts which are defined

separately. The first type, self-conflicts, appear when two or

more qualified requirements are defined over the same per-

formance indicator and one of them requires maximization

while another requires minimization. More formally it can

be defined by the following rule:

∀ (i: INDICATOR-NAME; v1: INTEGER; r1, r2 : QUALIFIED-

REQUIREMENT-NAME)

IS-DEFINED-AS(r1, Requirement(desired, Qualified-

expression (min(v1), has value(i1,v1))))∧
IS-DEFINED-AS(r2, Requirement(desired, Qualified-

expression (max(v1), has value(i1,v1)))))

⇒ CONFLICTING(r1, r2)

The second type of conflicts are primary conflicts which

appear when either two performance indicators are related by

a positive relation (positive causality, correlation, inclusion

or aggregation) and opposite qualified requirements are

defined on them or when they are related by a negative

relation (negative causality or correlation) and the same

type of qualified requirements are defined on them. This

can be expressed formally by the following rules. The first

one states that requirements based on positively related

indicators such that one is required to be maximized and the

other one to be minimized will be conflicting.

∀(i1, i2: INDICATOR-NAME; v1, v2: INTEGER; r1, r2:

QUALIFIED-REQUIREMENT-NAME)

(CORRELATED(i1, i2, pos) ∨ IS-INCLUDED-IN(i1, i2, pos) ∨

Springer

Appl Intell (2007) 27:291–301 297

CAUSED-BY(i1, i2, pos) ∨IS-AGGREGATION-OF(i1, i2))∧
IS-DEFINED-AS(r1, Requirement (desired, Qualified-

expression (max (v1), has value(i1,v1)))) ∧
IS-DEFINED-AS(r2, Requirement (desired,

Qualified-expression (min (v2), has value(i2,v2)))))

⇒ CONFLICTING (r1, r2)

Similarly, negatively related indicators required to ‘move

in the same direction’ will also generate conflicting qualified

requirements which is expressed in the following two rules:

∀ (i1, i2: INDICATOR-NAME; v1, v2: INTEGER; r1, r2:

QUALIFIED-REQUIREMENT-NAME)

(CORRELATED(i1, i2, neg) ∨ IS-INCLUDED-IN(i1, i2, neg) ∨
CAUSED-BY(i1, i2, neg)) ∧

IS-DEFINED-AS(r1, Requirement (desired, Qualified-

expression (min (v1), has value(i1,v1)))) ∧
IS-DEFINED-AS(r2, Requirement (desired, Qualified-

expression (min (v2), has value(i2,v2)))))

⇒ CONFLICTING(r1, r2)

∀ (i1, i2 : INDICATOR-NAME; v1, v2:INTEGER; r1, r2:

QUALIFIED-REQUIREMENT-NAME)

(CORRELATED(i1, i2, neg) ∨ IS-INCLUDED-IN(i1, i2, neg) ∨
CAUSED-BY(i1, i2, neg)) ∧

IS-DEFINED-AS (r1, Requirement (desired,

Qualified-expression (max (v1), has value(i1,v1)))) ∧
IS-DEFINED-AS (r2, Requirement (desired, Qualified

-expression (max (v2), has value(i2,v2)))))

⇒ CONFLICTING (r1, r2)

Furthermore secondary conflicts appear when a directed

path exists in the conceptual graph between two performance

indicators such that either the sign of the path is positive

and the defined qualitative requirements have opposite

directions or the sign of the path is negative and the defined

qualitative requirements have the same direction. The

sign of a path is defined to be positive if all relations in

the path are positive, i.e., causality or correlation with a

positive sign, included in or aggregation of. The sign of a

path is defined to be negative if all but one relation in the

path are positive and the remaining relation is causality

or correlation with a negative sign. Formally this can be

defined by the following rules where PATH BETWEEN:

INDICATOR-NAME × INDICATOR-NAME × SIGN is true if there

exists a path from i1 to i2 having the specified sign:

∀ (i1, i2: INDICATOR-NAME; v1, v2: INTEGER; r1, r2:

QUALIFIED-REQUIREMENT-NAME)

(IS-DEfiNED-AS(r1, Requirement (desired, Qualified-

expression (max (v1), has value(i1,v1)))) ∧
IS-DEFINED-AS(r2, Requirement (desired, Qualified-

expression (max (v2), has value(i2,v2)))) ∧

PATH BETWEEN(i1, i2, neg))

⇒ CONFLICTING (r1, r2)

∀ (i1, i2: INDICATOR-NAME; v1, v2: INTEGER; r1, r2:

QUALIFIED-REQUIREMENT-NAME)

(IS-DEFINED-AS(r1, Requirement (desired, Qualified-

expression (min (v1), has value(i1,v1)))) ∧
IS-DEFINED-AS (r2, Requirement (desired, Qualified-

expression (min (v2), has value(i2,v2)))) ∧
PATH BETWEEN(i1, i2, neg))

⇒ CONFLICTING (r1, r2)

∀ (i1, i2 : INDICATOR-NAME; v1, v2: INTEGER; r1, r2:

QUALIFIED-REQUIREMENT-NAME)

(IS-DEFINED-AS(r1, Requirement (desired, Qualified

-expression (max (v1), has value(i1,v1)))) ∧
IS-DEFINED-AS (r2, Requirement (desired, Qualified:

expression (min (v2), has value(i2,v2)))) ∧
PATH BETWEEN(i1, i2, pos))

⇒ CONFLICTING (r1, r2):

∀ (i1, i2 INDICATOR-NAME; v1, v2 : INTEGER;r1, r2:

QUALIFIED-REQUIREMENT-NAME)

(IS-DEFINED-AS (r1, Requirement (desired, Qualified:

expression (min (v1), has value(i1,v1)))) ∧
IS-DEFINED-AS (r2, Requirement (desired, Qualified:

expression (max (v2), has value(i2,v2)))) ∧
PATH BETWEEN(i1, i2, pos))

⇒ CONFLICTING (r1, r2)

Note that the definition of the sign for a path does not con-

sider all possible combinations of relationships. The reason

for that is that in the rest of the situations no conclusion can

be given on whether the qualified requirements are poten-

tially conflicting. For example if a path of length 2 contains

two negative relations this does not mean that they ‘cancel’

each other and the path sign is considered positive. In such

situation the sign is considered undetermined.

Conflicts, as defined above, and especially secondary con-

flicts, are difficult to find manually or just by looking at the

conceptual graph. Therefore we have built a software tool

that can detect all conflicts given a conceptual graph and a

set of qualified requirements defined on a subset of the set

of performance indicators in it. The program first checks for

self-conflicts. Then it creates a copy of the graph structure

on which it propagates the relations whenever possible in the

following way: if there exists a positive relation from indi-

cator i1 to i2 and from i2 to i3 then a new relation is created

from i1 to i3 with a positive sign. Similarly, a positive and a

negative relation result in a new negative relation. In this way

all paths (according to the definition given earlier) are dis-

covered with their signs. Finally the new structure is matched

with the defined qualified requirements and all discovered

Springer

298 Appl Intell (2007) 27:291–301

primary conflicts are outputted. These conflicts correspond

to all primary and secondary conflicts in the original graph.

When the conflicts are discovered it is the responsibility

of the designer/analyst to decide what needs to be done. A

conflict does not necessarily mean that the graph and/or qual-

ified requirements are incorrect, although that is a possibility

that might be considered if the results are counterintuitive.

Conflicts indicate that it might be problematic to satisfy both

requirements at the same time. It is up to the designer to find

out whether this would really lead to a problem or not. For

example, it might be known that decreasing the salaries of

the employees will reduce the costs but will also reduce the

employees’ motivation which will lead to lower quality, high

attrition of personnel, etc., thus, also increasing the costs.

Therefore there will be conflicts between the requirements to

minimize salaries and costs and to maximize the personnel’s

motivation. Further analysis might show that the expected in-

crease in costs due to lack of motivation is much lower than

the decrease achieved by decreasing the salaries. If, however,

that is not the case, it might be decided to drop the require-

ment to minimize the salaries or an additional factor might be

chosen to increase the motivation to an acceptable level (e.g.,

measures to improve the work atmosphere, additional non-

financial benefits, etc.). In such analysis, the defined prefer-

ences over requirements are used as indicators about the rel-

ative importance and taken into account in the final decision.

5 A case study from the area of logistics

In this Section we discuss a case study from the area of third-

party logistics (3PL) and apply the approach presented in the

previous Section. 3PL companies are specialized in provid-

ing logistics services to other companies [5, 7, 19]. Logis-

tics service providing companies often operate under great

pressure in an industry with small margins where customers

increasingly expect shorter delivery times and more accurate

services. It is therefore necessary for the management to con-

tinuously look for opportunities to improve the company’s

profitability—this can be achieved for example by scaling up

or expanding the activities to a wider region [14].

Planning and control, both daily and on the long-term, play

a crucial role in the operations of a logistics service provider.

A good insight in the performance information and how it

should be used for steering the planning is therefore also

important. However the activities on defining, monitoring

and analysing performance indicators are usually done in an

ad-hoc manner.

Important performance aspects for the area of third-party

logistics typically include efficiency in transportation (e.g.,

reduction of transportation costs, improvement of route plan-

ning, equipment and labour utilization, etc.), customer satis-

faction, employee satisfaction (in order to reduce the attrition

of drivers), etc. For a literature review on performance mea-

surement in logistics, a classification framework and a list of

performance indicators see [12].

Our case study is inspired by a Netherlands based medium

sized logistics service provider which operates 40 trucks in

its container business. Planning there is still a manual task

performed daily by three full-time planners, however, they

are partly supported by information and communication tech-

nology. They utilize a platform which enables them to track

and trace trucks and carriers—based on their GPS location—

every single minute all throughout Europe. The planning as

such uses a computer application as well, but this is not more

than a list of orders to execute; the order-to-truck-assignment

is done by the planner. The (manual) assigning is based on

simple (unwritten) heuristic rules such as: if a new order is

available at the place where the previous order ended, take

this order—therefore reducing the amount of empty kilome-

tres. The planners do utilize other performance indicators as

well, such as the employees’ satisfaction. Furthermore, we

found support for the use of indicators such as customer hap-

piness, which is of true importance in the planning process

and company reputation. The planners use several objectives

and rules for their planning, many of which are not well de-

fined and documented.

This analysis was performed in the context of the DEAL

project (DEAL stands for Distributed Engine for Advanced

Logistics). The aims of this project, funded by the Ministry of

Economic Affairs and a group of companies, are to develop an

agent-based software system for road-distribution planning.

In the following subsections we present the results of the

case study. We first introduce the set of indicators and formu-

late how they are related to each other. Then we define the set

of possible (meaningful) requirements over the list of indica-

tors and analyze them concentrating on detecting conflicts.

5.1 Performance indicators

The list of indicators is given in Table 6. It is based on real-

life indicator sets used in logistics and is augmented by sev-

eral additional indicators used in 3rd-party logistics. Further-

more, we added a couple of indicators that usually remain

implicit in real-life performance measurement and have to

do with employees’ satisfaction and safety. Most of the indi-

cators are typically numeric (costs, km, etc.), however, also

non-numeric ones are included (employee motivation and

safety). They can be modelled in different ways as long as

the possible values are ordered in a consistent way.

5.2 Relationships

Looking closer at the indicators we see that many are not

independent. The list below gives the most important rela-

tionships that we take into account.

Springer

Appl Intell (2007) 27:291–301 299

Table 6 The list of performance indicators considered in the case study

Indicator name Description Indicator name Description

TC Total costs TK Total number of km

KD Km/day NT Total number of trips

UV Number of used vehicles TO Total number of orders

SO % of served orders R Revenue

VO % of violated orders TP Total profit TP = R − TC

TD Trips per day NA Number of accidents

TT Trips per truck TS Total amount for salaries

ST Shops per truck EM Employee motivation (average)

NC Number of clients S Safety

VP % violations over the original plan EP Employee productivity (average)

RL1: IS-CAUSED-BY (TC, TK, pos) RL2: IS-CAUSED-BY (TC, UV, pos)

RL3: CORRELATED (VO, SO, neg) RL4: CORRELATED (TC, NT, pos)

RL5: CORRELATED (ST, TT, pos) RL6: INDEPENDENT (SO, VP)

RL7: IS-CAUSED-BY (TC, VP, pos) RL8: IS-INCLUDED-IN (R, TP, pos)

RL9: IS-INCLUDED-IN (TC, TP, neg) RL10: IS-CAUSED-BY (R, TO, pos)

RL11: IS-CAUSED-BY (EP, EM, pos) RL12: IS-CAUSED-BY (EM, KD, neg)

RL13: IS-INCLUDED-IN (TS, TC, pos) RL14: IS-CAUSED-BY (EM, TS, pos)

RL15: CORRELATED (R, TK, pos) RL16: IS-CAUSED-BY (TO, NC, pos)

RL17: IS-CAUSED-BY (R, NC, pos) RL18: CORRELATED (NT, TO, pos)

RL19: IS-CAUSED-BY (EM, S, pos) RL20: IS-CAUSED-BY (S, NA, neg)

RL21: IS-CAUSED-BY (TC, NA, pos) RL22: IS-AGGREGATION-OF (TK, KD)

RL23: IS-AGGREGATION-OF (NT, TT) RL24: IS-AGGREGATION-OF (NT, TD)

These relationships can be expressed graphically using

conceptual graphs as discussed earlier. Figure 2 gives the

graph for our case study.

5.3 Requirements

We can now formulate qualified requirements over the set

of indicators. Most of the requirements are in a similar

form as the ones given in the examples in Section 3.3.

RQ9 and RQ10 however are a bit more complex. RQ9

_

+

_

VO

+

caused-by

+

UV

+

TS

NT

VP SO

EM TK

TC

EP S

NA

TT

TO

ST

TP R

NC

KD

caused-by
+

caused-by

correlated

correlated

correlated
+

independent

+

caused-by

included-in

included-in

caused-by

+

caused-by

+

caused-by

included-in

+

caused-by

correlated

+

+

caused-by

correlated

+

caused-by

+

caused-by

+

caused-by

aggregation-of
aggregation-of

aggregation-of

+

TD

Fig. 2 The conceptual graph for
the case study

states that the value of the indicator KD should approximate a

given constant called bestKD. RQ10 on the other hand, states

that KD should not exceed another given constant maxKD.

The intuition here is that the number of kilometers per day

should approximate some pre-calculated optimal point but at

the same time there exists a maximal value that does not allow

the drivers to drive too much for health and safety reasons.

Therefore the optimal point should be approximated in such

a way that we do not exceed the maximal point. The list of

qualified requirements is given below.

Springer

300 Appl Intell (2007) 27:291–301

RQ1: Requirement (desired, Qualified-expression (min(v), has-value(TC, v)))

RQ2: Requirement (desired, Qualified-expression (min(v), has-value(VO, v)))

RQ3: Requirement (desired, Qualified-expression (min(v), has-value(VP, v)))

RQ4: Requirement (desired, Qualified-expression (max(v), has-value(R, v)))

RQ5: Requirement (desired, Qualified-expression (max(v), has-value(TP, v)))

RQ6: Requirement (desired, Qualified-expression (max(v), has-value(R, v)))

RQ7: Requirement (desired, Qualified-expression (max(v), has-value(EP, v)))

RQ8: Requirement (desired, Qualified-expression (max(v), has-value(TO, v)))

RQ9: Requirement (desired, Qualified-expression (max(v), has-value(KD,v)))

RQ10: Requirement (desired, Qualified-expression (min(v), has-value(KD,v)))

RQ11: Requirement (desired, Qualified-expression (max(v), has-value(NC, v)))

RQ12: Requirement (desired, Qualified-expression (max(v), has-value(S, v)))

RQ13: Requirement (preferred-over, Qualified-expression (min(v1), has-value(VO, v1)),

Qualified-expression (max(v2), has-value(SO, v2)))

RQ14: Requirement (preferred-over, Qualified-expression (max(v1), has-value(NC, v1)),

Qualified-expression (max(v2), has-value(TO, v2)))

5.4 Analysis of the case study

Using the developed software tool on the concept graph (as

in Fig. 2) and the list of formulated qualified requirements,

we discover some conflicts. The indicator TC (total costs)

is caused by TK (total number of km), which on the other

hand is correlated with R (revenue). In our requirements we

have indicated that TC should be minimized (RQ1). It is also

indicated that R should be maximized (RQ4). Due to the cor-

relation, maximizing R will lead to maximizing TK. Due to

the causal relationship, maximizing TK leads to maximizing

TC, which disagrees with RQ4. This can be expressed in the

following way:

RL1 ∧ RL15 ⇒ CONFLICTING (RQ1, RQ6)

Another conflict involving TC can be detected in the path

TC → NT → TO. TC is positively correlated with NT which

is positively correlated with TO (total number of orders).

Therefore there is a conflict between RQ1 and RQ8:

RL4 ∧ RL18 ⇒ CONFLICTING (RQ1, RQ8)

Similarly conflicts exist between RQ1 and RQ11, RQ3

and RQ4, RQ3 and RQ8:

RL4 ∧ RL18 ∧ RL16 ⇒ CONFLICTING (RQ1, RQ11)

RL7 ∧ RL4 ∧ RL18 ⇒ CONFLICTING (RQ3, RQ4)

RL7 ∧ RL4 ∧ RL18 ∧ RL10 ⇒ CONFLICTING (RQ3, RQ8)

6 Conclusions

Organisational performance indicators are crucial concepts

in strategic management of an organisation, and in partic-

ular in the preparation of organisational change processes.

They can occur in a variety of forms and complexity. In

addition, often it is necessary to consider relations between

performance indicators, and to express qualifications and re-

quirements over them. Given these considerations, it is not

trivial to express them in a uniform way in a well-defined

specification language.

A similar situation is addressed in the area of Require-

ments Engineering which has developed as a substantial sub-

area of Software Engineering. Also in the area of AI and De-

sign similar issues are addressed. Inspired by these areas, a

specification language for performance indicators and their

relations and requirements has been defined and presented

in this paper. The language can be used in different forms,

varying from informal, semiformal, graphical to formal. The

semantics of the language was left out from the scope of this

paper and will be a subject of further research. A software

environment has been developed that supports the specifica-

tion process and can be used to automatically check whether

performance indicators or relations between them or certain

requirements over them (those with quantifier called satisfy)

are satisfied in a given organisational process. For other types

of requirements over performance indicators it may not be

Springer

Appl Intell (2007) 27:291–301 301

easy to automate the checking process. For example, that a

certain performance indicator is minimal for a given organi-

sational process requires comparison to alternative possible

organisational processes. If a set of alternative processes is

given, the software environment can handle the checking on

minimality of one of these processes compared to the other

ones. But in general such a set is hard to specify in an exhaus-

tive manner. An alternative route is to make a mathematical

analysis of this minimality criterion and to formalize this

analysis in the language so that it can be performed auto-

matically. Another direction for future investigation might

be to provide assistance in the process of discovering miss-

ing or redundant requirements. The set of requirements is

company-specific but it might be possible to provide some

insight through scenario elicitation.

References

1. Bosse T, Jonker CM, Treur J (2004) Analysis of design process
dynamics. In: Lopez de Mantaras R, Saitta L (eds) Proceedings of
the 16th European conference on artificial intelligence, ECAI’04,
pp 293–297

2. Brazier FMT, van Langen PHG, Treur J (1996) A logical theory
of design. In: Gero JS (ed) Advances in formal design methods for
CAD, Proceedings of the second international workshop on formal
methods in design. Chapman & Hall, New York, pp 243–266

3. Brewer PC, Speh TW (2000) Using the balanced scorecard to mea-
sure supply chain performance. J Bus Log 21(1):75–93

4. Chan FTS (2003) Performance measurement in a supply chain. Int
J Adv Manuf Technol 21(7):534–548

5. Christopher M (1998) Logistics and supply chain management:
Strategies for reducing cost and improving service, 2nd edn. Finan-
cial Times/Prentice-Hall, London

6. Davis AM (1993) Software requirements: Objects, functions, and
states. Prentice Hall, New Jersey

7. Delfmann W, Albers S, Gehring M (2002) The impact of elec-
tronic commerce on logistics service providers. Int J Phys Distr
Log Manag 32:203–222

8. Herlea Damian DE, Jonker CM, Treur J, Wijngaards NJE (2005) In-
tegration of behavioural requirements specification within compo-
sitional knowledge engineering. Knowl-Based Syst J 18:353–365

9. Ittner CD, Larcker DF (2003) Coming up short on nonfinancial
performance measurement. Harv Bus Rev 81(11):88–96

10. Kleijnen JPC, Smits MT (2003) Performance metrics in supply
chain management. J Oper Res Soc 54(5):507–514

11. Kontonya G, Sommerville I (1998) Requirements engineering: pro-
cesses and techniques. John Wiley & Sons, New York

12. Krauth E, Moonen H, Popova V, Schut M (2005) Performance mea-
surement and control in logistics service providing. The Icfaian J
Manag Res IV(7):7–19

13. van Langen PHG (2002) The anatomy of design: foundations, mod-
els and application. PhD thesis, Vrije Universiteit Amsterdam

14. Lemoine W, Dagnaes L (2003) Globalisation strategies and business
organisation of a network of logistics service providers. Int J Phys
Distr Log Manag 33(3):209–228

15. Neely A, Gregory M, Platts K (1995) Performance measurement
system design: A literature review and research agenda. Int J Oper
Prod Manag 15:80–116

16. Sommerville I, Sawyer P (1997) Requirements engineering: a good
practice guide. John Wiley & Sons, Chicester, England

17. Sowa JF (1984) Conceptual structures: information processing in
mind and machine. Addison-Wesley, Reading, Mass

18. Sowa JF, Dietz D (1999) Knowledge representation: logical, philo-
sophical, and computational foundations, Brooks/Cole

19. Vaidyanathan G (January 2005) A framework for evaluating third-
party logistics. Comm ACM 48(1):89–94

Springer

