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Abstract A new, formal, role-based, framework for mod-

eling and analyzing both real world and artificial organiza-

tions is introduced. It exploits static and dynamic proper-

ties of the organizational model and includes the (frequently

ignored) environment. The transition is described from a

generic framework of an organization to its deployed model

and to the actual agent allocation. For verification and vali-

dation of the proposed model, a set of dedicated techniques

is introduced. Moreover, where most computational models

can handle only two or three layered organizational struc-

tures, our framework can handle any arbitrary number of

organizational layers. Henceforth, real-world organizations

can be modeled and analyzed, as illustrated by a case study,

within the DEAL project line.
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1 Introduction

Recently computational modeling and analysis of organiza-

tions received a special attention in the areas of social sci-

ence and artificial intelligence. In particular, organizations

have proven to be a useful paradigm for analyzing and de-

signing multi-agent systems [7, 10, 42]. Representation of

a multi-agent system as an organization consisting of roles

and groups can tackle major drawbacks concerned with tra-

ditional multi-agent models; e.g., high complexity and poor

predictability of dynamics in a system [10]. As has been

shown in [19], organizational structure can be used to limit

the scope of interactions between agents, reduce or explic-

itly increase redundancy of a system, formalize high-level

system goals, of which a single agent may be not aware, or

enforce certain coordination mechanisms for efficient task

execution.

Moreover, organizational research in social science has

recognized the advantages of computational models; e.g.,

for analysis of structure and dynamics of real organizations.

In particular, distributed simulation models were created for

analyzing organizational adaptation processes [5, 34], so-

cial networks [38] and dynamic processes in different or-

ganization types. However, in general formal theories, ap-

proaches, and tools for designing computational models of

organizations are still rare and most of them are dependant of

specific social theoretical background (cf. the OrgCon tool

for organizational design based on the contingency theory

[4]). In this paper, we propose a new modeling approach

for analyzing and formal modeling of real or artificial or-

ganizations (e.g., agent-based organizations), independent

of any organizational theory from social science. This ap-

proach is based on a generic representation of organizations

that comprises sets of interrelated roles, which are intention-

ally organized to ensure a desired (or required) pattern of

Springer

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15452938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


50 Appl Intell (2007) 27:49–66

activities. The approach has the following distinct features:

(1) it addresses both organization structure and dynamics;

(2) the approach has its formal foundation in an expressive

order-sorted predicate language with properly defined syn-

tax and semantics; (3) it allows multiple aggregation levels

in an organization model; (4) the environment is explicitly

incorporated in an organization model; (5) the approach pro-

vides formal techniques and tools for different types of anal-

ysis of organization models (by performing simulations and

verification).

In the next section, main principles for modeling and

analyzing organizations are discussed and related with

the new modeling approach. In Section 3, the basic con-

cepts used for specifying an organization model are in-

troduced. Section 4 discusses how an organization model

can be specified in a formal manner. In Section 5, a

set of dedicated validation and verification techniques are

described. The proposed modeling and verification tech-

niques will be illustrated by a running example from the

area of logistics. The paper ends with a discussion in

Section 6.

2 Principles for modeling and analyzing organizations

Modern organizations are characterized by their complex

structure, dense information flows, and incorporation of in-

formation technology. To a large extent, the underlying or-

ganization model is responsible for how efficiently and ef-

fectively organizations carry out their tasks. In literature on

organization theory, a range of theories and guidelines con-

cerning the modeling and design of organizations are present

[28, 30]. However, no operational general theories or formal

models exist that are known to the authors. Scott [39] even

stated that no general principles applicable to organizational

modeling can be formulated. However, for certain specific or-

ganizational types standard modeling and design techniques

may still be identified and formalized. In particular, Minzberg

proposed a set of guidelines for modeling mechanistic types

of organizations [28]. This type of organizations comprises

systems of hierarchically linked job positions with clear re-

sponsibilities that use standard well-understood technology

and operate in a relatively stable (possibly complex) envi-

ronment. In contrast to mechanistic (or functional) organiza-

tions, a substantial group of modern organizations are char-

acterized by a highly dynamic, constantly changing, organic

structure with non-linear behavior [29]. Although the struc-

ture and behavioral rules for such organizations can be hardly

identified and formalized, nevertheless by performing agent-

based simulations with changing attitudes of proactive agents

useful insights into functioning of such organizations can be

gained.

2.1 Two perspectives

In this subsection, we will briefly discuss two perspectives

from which organizations are analyzed. The first perspective

emerges from social sciences and the second originates from

computational organization theory and artificial intelligence.

In social science theories, the structure of organizations

is frequently specified as informal or semi-formal graphi-

cal representations [28, 30]. They can provide a detailed or-

ganization structure at an abstract level considered from a

certain perspective (e.g., information flows, power and au-

thority relations, allocation of resources). The disadvantages

of such models are: (1) lack of generality and relations be-

tween different specific types of models, and (2) graphically

depicted data can not be effectively processed, combined and

analyzed. Furthermore, such approaches lack the means to

represent the more detailed dynamics and to relate them to

the structures present.

A class of models built based on the system dynamics

theory allows formal representation of different aspects of

organizational behaviour [12]. Organizational models spec-

ified in system dynamics are based on numerical variables

and equations that describe how these variables change over

time. Although such models can be computationally effec-

tive (i.e., used for simulations and computational analysis),

nevertheless they still lack the ontological expressivity and

the possibility for higher abstract (and, e.g., non-quantitative)

representations that are needed to conceptualize wide range

of relations and phenomena that exist in different types of

organizations.

From computational organization theory and artificial in-

telligence, approaches have been developed that are able to

capture both structural and dynamic aspects of organizations.

Some of them are dedicated for analyzing particular aspects

of an organization considered from a certain viewpoint (e.g.,

Petri-nets techniques used for modelling and analyzing busi-

ness processes [8]). Although such approaches can be useful

and efficient, the scope of their application is limited to a

particular view on an organization, based on a limited num-

ber of concepts. Furthermore, techniques from the area of

artificial intelligence have been applied for modelling and

analyzing multi-agent organizations [3, 7]. In such organi-

zational models (software, hardware or human) agents are

allocated to roles that stand in certain relations to each other

and often are described by sets of functionalities performed

by an organization. Such models can be used for example for

coordinating tasks execution in a multi-agent system [19],

or for enforcing certain behaviours (e.g., normative systems)

upon an agent system [41]. However, many of such mod-

els can handle only two or three levels of abstraction; i.e.,

the level of an individual role, to which an agent(s) will be

eventually allocated, the level of a group composed of roles,

and the overall organization level, as in GAIA [42], MOISE
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[16, 20], MOCA [1], TOVE [13], Aaladin [11] and OperA

[7]. In contrast, multiple levels and relations between them

need to be described for the representation of complex hierar-

chical structures of modern organizations; e.g., mechanistic

type of organizations [30]. One of the few exceptions known

to authors as capable of representing hierarchical structures

is a framework for modeling social structures in UML pro-

posed in [33]. This framework allows the possibility of the

iterative inclusion of groups represented by holonic agent

structures into other groups as their members, thus build-

ing hierarchical structures. However, the framework does not

provide a general mechanism for handling interactions be-

tween roles and groups of different aggregation levels that of-

ten occur in such hierarchical structures. Furthermore, there

is no possibility to identify and formally specify how dy-

namics of a composite group is related to the dynamics of

its members, which is a prerequisite for the (formal) analy-

sis of behavior of such composite systems. Another frame-

work that supports the hierarchical representation of a multi-

agent system is based on teams of agents [17]. A team is a

composite component, similar to a group in [33], which is

characterized by a number of roles, enacted by agents and

other teams. However, this framework lacks means for elabo-

rated conceptual modeling of social structures, probably be-

cause its main focus is on the technical side of programming

and implementation of multi-agent systems. By introducing

for example a (formal) language for specifying dynamics

of individual roles and teams in this framework, different

interesting types of analysis of system dynamics could be

enabled.

Some models (ISLANDER [9], OperA, [26]) consider or-

ganizations as electronic institutions; i.e., norms and global

rules that govern an organization are explicitly defined. How-

ever, in many modern organic organizations with much indi-

vidual autonomy, the normative aspects do not play a central

role and are of minor importance for the prosperity of an

organization. Furthermore, a temporary violation of certain

norms is inevitable and even necessary in certain organiza-

tions.

Independent of the previous distinction in approaches,

the importance of explicit modeling of interactions between

agents and the environment is recognized (explicitly con-

sidered in SODA [32] and AUML [31]). Since most of the

modern organizations are open systems that actively interact

with the environment, both an organizational structure and

behavior are contingent on the environmental conditions.

Moreover, for modeling in general, verification and vali-

dation of the models used or generated is of the utmost im-

portance. This is no different for modeling organizations.

However, this aspect of modeling organizations is frequently

ignored; two of the exceptions are TROPOS [3] and IS-

LANDER.

2.2 A new perspective

In this paper, we propose an approach for formal model-

ing and analysis of organizations. It is highly suitable for

mechanistic types of organizations with the explicitly de-

fined structure and behavior (i.e., machine and professional

bureaucracy), and divisionalized forms of organizations that

consist of autonomous units with specialized and formalized

inputs and outputs. Furthermore, this approach can also be

applied for modeling organic types of organizations, when

extended with organizational change techniques.

The proposed, formal approach can capture both structural

and dynamic aspects of the organization and, subsequently,

has four advantages:

(1) Representation of organization structure (including spec-

ifications of actors (or roles), relations between them, and

information flows) and dynamics by generalized (tem-

plate) models and more specific instantiated (deployed)

models.

(2) The means for simulations of different (agent-based) sce-

narios on the basis of a model and observing their results.

(3) Organization analysis by means of verifying static and

dynamic properties (e.g., based on organizational perfor-

mance indicators) against (formalized) empirical data,

taken from real organizations, or against simulated sce-

narios.

(4) Diagnosis of inconsistencies, redundancies, conflicts,

and errors in an organizational model by means of formal

verification techniques (e.g., based on model checking

[6]).

In the proposed model, organizations are specified as com-

posite roles that can be refined iteratively into a number of

(interacting) composite or simple roles, representing as many

aggregation levels as needed. The refined role structures cor-

respond to different types of organization constructs (e.g.,

groups, units, departments). By considering only role hier-

archies we achieve the uniform representation of an organi-

zation structural model, which is still able to reflect all the

major types of organization constructs. The proposed frame-

work provides formal means for specifying structural rela-

tions between roles of the same and different aggregation

levels.

Behaviour of roles at each aggregation level is defined

by sets of dynamic properties specified using an expressive

temporal logical language. In the proposed approach differ-

ent types of dynamic properties are distinguished, which are

capable to capture different aspects of organizational dynam-

ics. Note that the behaviour of a composite role is not simply

defined as a list of all dynamic properties of its subroles.

The dynamics of a composite role may be characterized by

properties that emerge from the dynamics of itssubroles or
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represent a more abstracted view on the lower-level dynam-

ics. Therefore, particularly in the design phase when role

dynamic properties are identified and specified, inconsisten-

cies and conflicts between the properties of roles of adjacent

aggregation levels may occur. Mechanisms to deal with these

conflicts can be found in Section 5 and are further developed

in the context of the proposed approach.

It is important to stress that the organizational model can

be specified, depicted and analyzed at each aggregation level

separately. For example, since the whole organization is con-

sidered as one composite role, it can be used as a “black

box” with formally specified input and output interfaces for

modelling and analyzing of high-level inter-organizational

processes. In such a way the scalability of an organization

model and the proposed approach is achieved.

Moreover, global normative aspects of an organization that

are usually specified by organizational policies are defined

by static and dynamic properties of the role at the highest ag-

gregation level, without recognizing them as special concepts

and placing them on top of an organization.

In addition, the environment is considered as a special

component of the organization model. The environment is

populated by agents that under certain conditions may be

allocated to organizational roles. Furthermore, the environ-

ment serves as a source of events for an organization.

The modeling method introduced in this paper incorpo-

rates two types of verification and validation techniques:

role-centered and agent-centered, as will be discussed in Sec-

tion 5. The introduction of these techniques is preceded by

the introduction of the model itself in the next section and its

formal specification in Section 4.

3 Organization modeling concepts

In this section, the concepts are introduced on which the or-

ganization modeling approach is founded. First, the specifi-

cation of the organizational structure is described. A template

model is generated, which encapsulates the structure of the

organization. On all existing levels of aggregation, the behav-

ior of an organization can be described. Taken together, this

provides description of the behavior of an organization. In

Section 3.2, it will be explained how such dynamic behavior

can be specified. In Section 3.3, the transition from template

model to deployed model will be discussed. The introduced

modeling concepts will be gradually used to represent dif-

ferent aspects of the organizational structure and behavior of

an organization from the area of logistics.

3.1 Organization structure

An organization structure reflects patterns of interactions

in an organization and is described by relationships be-

tween roles at the same and at adjoining aggregation

levels and between parts of the conceptualized environ-

ment and roles. The specification of an organization struc-

ture that constitutes a template model uses the following

elements:

(1) A role represents a subset of functionalities, performed

by an organization, abstracted from specific agents (or

actors) who fulfill them.

Each role can be composed by several other roles, until

the necessary detailed level of aggregation is achieved,

where a role that is composed of (interacting) subroles,

is called a composite role. At the highest aggregation

level, the whole organization can be represented as one

role. Such representation is useful both for specifying

general organizational properties and further utilizing

an organization as a component for more complex orga-

nizations. Each role has an input and an output interface,

which facilitate in the interaction (communication) with

other roles. Graphically, a role is represented as an el-

lipse with white dots (the input interfaces) and black dots

(the output interfaces).

(2) An interaction link represents an information channel

between two roles at the same aggregation level. Graph-

ically, it is depicted as a solid arrow, which denotes the

direction of possible information transfer.

(3) The conceptualized environment represents a special

component of an organization model. The environment

can be defined by a set of objects with certain proper-

ties and states and by causal relations between objects.

On the one hand, agents allocated to organization roles

are capable of observing states and properties of ob-

jects in the environment; on the other hand, they can

act or react and, thus, affect the environment. We dis-

tinguish passive and active observation processes. For

example, when some object is observable by an agent

playing a role and the agent continuously keeps track

of its state, changing its internal representation of the

object if necessary, passive observation occurs. For pas-

sive observation, no initiative of a role or an agent is

needed. Active observation is always concerned with

the agent’s (or role’s) initiative. Similarly to roles, the

environment has input and output interfaces, which fa-

cilitate in the interaction with roles of an organization.

Graphically, the environment is depicted as a rectangle

with rounded corners. For particular purposes the inter-

nal specification for the environment can be conceptu-

alized using one of the existing world ontologies (e.g.,

CYC, SUMO, TOVE). However, despite the richness

and the extensiveness of these ontological bases, more

specific and refined types of concepts and relations are

required for modeling particular types of organizations

and environments.
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(4) An environment interaction link represents an informa-

tion channel between a role of a certain aggregation level

and (a part of) the conceptualized environment repre-

sented at this aggregation level. Graphically, it is de-

picted as a dotted arrow, which denotes the direction of

possible information transfer.

(5) An interlevel link connects a composite role with one

of its subroles. It represents information transition be-

tween two adjacent aggregation levels. Graphically, it is

depicted as a dashed arrow, which shows the direction

of the interlevel transition.

To illustrate the introduced concepts to model the or-

ganizational structure and all the following components of

an organization model consider a running example based

on a case study from the area of logistics. This case study

was done within the project DEAL (Distributed Engine for

Advanced Logistics). For the project description, we refer

to http://www.almende.com/deal/. A template organizational

model was created, based on the informal description of

the structure and functioning of the large Dutch logistics

company. Only relevant to the actual delivery process ac-

tors (roles) and their properties are specified in this model.

To secure anonymity of the company, the real names of the

organizational units were substituted by general ones.

At the highest aggregation level (level 0) the whole orga-

nization is represented as one role. At aggregation level 1, the

Fig. 1 Representation of the organization at abstraction level 1, which
consists of role Transport Company (TC) and role Customer Interaction
(CI)

organization consists of two interacting roles: TC and CI (see

Fig. 1; explanation for this and the following abbreviations

and functional descriptions are given in Table 1).Note, that

the organizational model is depicted in a modular way; i.e.,

components of every aggregation level can be visualized and

analyzed both separately and in relation to each other. Con-

sequently, scalability of graphical representation of an orga-

nizational model is achieved.

At aggregation level 2 role TC can be refined into three

interacting roles: ST, CR, and OP(see Fig. 2). All interactions

with a customer are conducted within CI role. At aggregation

level 2 it consists of two roles: TCR and C (see Fig. 2).

Role TCR produces at its output messages from CR and

ST departments of the transport company, i.e., CR and ST

roles stand as company representatives in certain interactions

with a customer. Therefore, the input state of role TCR has

influence on the output state of role CR and vice versa. The

same holds for role ST.

Table 1 Role names, abbreviations, and descriptions for the organizational model in the case study

Role name Abbreviation Description

Transport Company TC Provides logistic services to customers

Customer Interaction CI Identifies interaction rules between a customer and the transport company

Strategy and Tactical Department ST Performs analysis and planning of company activities; considers complaints

from customers; analyses the satisfaction level of a customer by means of

surveys and questionnaires

Custom Relations Department CR Handles requests from customers

Operational Department OP Responsible for direct fulfillment of the order from a customer

Transport Company Representative TCR Mediator role between a customer and the transport company

Customer C Generates an order for the transport company; sends inquiries about the de-

livery status

Sales Person SP Assigns an order to a certain load manager, based on the type and the region

of a delivery

Load Manager LM Assigns orders to suitable trucks and available drivers; assigns fleet managers

to drivers; provides CR department with up-to-date information about deliv-

ery; provides a driver with instructions in case of a severe problem; informs

CR department about possible delays with delivery

Fleet Manager FM Keeps constant contact with the assigned drivers; updates automatic support

system with actual data on the delivery status; provides consultations for

drivers in case of minor problems in transit

Driver D Delivers goods; informs a superior fleet manager about the delivery status;

interacts (by means of observations and actions) with the conceptualized

part of the environment

Environment Env Represents the conceptualized environment; in this example only a driver

interacts with it
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Fig. 2 Representation of (a) the
Transport Company (TC) and
(b) the Customer Interaction
role (CI) at abstraction level 2

Fig. 3 Representation of the
operational department at
abstraction level 3

The structure of the operational department that is respon-

sible for the direct fulfillment of the order from a customer

is depicted at aggregation level 3 inFig. 3. It consists of

interacting roles LM, FM, SP and D. Roles LM and SP are

able to receive (or transmit) information from (or to) roles

outside of role OP by means of interlevel links. Furthermore,

in this model only role D interacts with the conceptualized

environment.

3.2 Organizational dynamics

At each aggregation level, it can be specified how the organi-

zation’s behavior is assumed to be. To this end, organization

dynamics are described by a dynamic representation, for each

of the elements in an organization structure. The level of de-

tail for specifying dynamics of an organization depends on its

organizational type. Since the behavior of most mechanistic

organizations is deterministic, dynamics for such organiza-

tions can only be modeled by a set of dynamic properties with

high level of detail. In contrast, behavior of many organic or-

ganizations is defined loosely. Consequently, the dynamics of

models for such organizations can be specified only partially;

hence, actors (agents) can act autonomously.

The dynamics of each structural element are defined by

the specification of a set of dynamic properties. We define

five types of dynamic properties:

(1) A role property (RP) describes the relationship between

input and output states of a role, over time. For example,

in the settings of the logistics company from the running

example, a role property of a truck driver (role D) can be

defined as: if role Driver receives a request from his Fleet

Manager to provide his coordinates, then role Driver will

generate this data for his Fleet Manager.

(2) A transfer property (TP) describes the relationship of the

output state of the source role of an interaction link to the

input state of the destination role. Again, in the settings

of the logistic company an example of a transfer property

is the following: if role Customer generates an order to

role Transport Company, then Transport Company will

receive this order.

(3) An interlevel link property (ILP) describes the relation-

ship between the input or output state of a composite role

and the input or output state of its subrole. Note that an

interlevel link is considered to be instantaneous: it does

not represent a temporal process, but may give a different

view on the same information state. Consider an exam-

ple of such property: if role TCR obtains the customer

order data at its input, then at the same time point role CI

generates at its output a number assigned to the customer

order in the automated information system.

(4) An environment property (EP) describes a temporal rela-

tionship between states or properties of objects of interest

in the environment. Consider an environment property

from the running example: If a severe incident happens

with the truck involved in the delivery process, then it

will cease the delivery.

(5) An environment interaction property (EIP) describes a re-

lation either between the output state of the environment

and the input state of a role (or an agent) or between the

output state of a role (or an agent) and the input state of

the environment. For example: if the information about a

traffic jam on the way of role D is generated at the output
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of the environment, then role D will receive (observe)

this information at its input.

3.3 Deployed model and agent allocation

The generic or template model of an organization provides

abstracted information concerning its structure and function-

ing. However, for a more detailed analysis, a deployed model

is needed. It is based on both unfolded generic relations be-

tween roles, as defined in the template model, and on creating

new role instances. In such a way, role instances from the de-

ployed model can be related to generic roles from a template

model by means of the generalization relations. Moreover,

different deployed models may be specified using the same

template model of an organization for different purposes.

In the deployed model for the considered running exam-

ple, all roles specified at abstraction levels 1 and 2 have one-

to-one mapping to the role instances. While roles LM, FM,

and D (defined at abstraction level 3) have multiple instances;

e.g., LM and FM are represented differently in different geo-

graphical regions and, subsequently, different types of trucks

and professional skills of drivers are required for different

kinds of deliveries. The deployed model for the considered

example(see Fig. 4) is created based on the template model

by unfolding assigned to and in region relations between roles.

For example, assigned to(D2, FM1) denotes that a middle-size

truck and his driver (D2) are assigned to the fleet manager in

eastern Europe (FM1) and the relation in region(D1, LM1) spec-

ifies that both a big-size truck driver (D1) and a load manager

(LM1) should belong to the same region in eastern Europe.

The deployed model abstracts from the actual agent al-

location but provides the detailed specifications for the be-

havior of role instances. Based on these specifications, a set

of requirements is formulated for each role instance. These

requirements (by restricting and defining behavior) are im-

posed onto the agents, who will eventually enact these roles.

In the context of the running example one of the requirements

imposed on a driver is that the agent should have a driver li-

cense of a certain type and acceptable results of medical tests.

Each agent is characterized by a set of capabilities that

describe skills and credentials of an agent. An agent can be

allocated to a role only when agent capabilities match the

set of role requirements. For example, in order to enact role

LM, an agent should have working experience as a senior

manager in logistics for at least 3 years.

If, for some reason, an allocated agent is not capable of

enacting a certain role anymore, dynamic reallocation of an-

other agent will take place.

In some scenarios, a complex role can act as a single ag-

gregated role and, thus, representing its constituting subroles.

In such cases, an (aggregated) agent can be assigned to the

complex role. In the literature [36, 37] aggregated (or com-

posite) agents are often called holons. A holon is defined by a

recursive model of agent groupsand appears as a single entity

Fig. 4 The operational
department of the transport
company represented at
abstraction level 3, with (a) the
template model (b) the deployed
model, and (c) agent allocation
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Table 2 Ontology for formalizing organizational structure

Predicate Description

is role: ROLE Specifies a role in an organization

has subrole: ROLE × ROLE For a subrole of a composite role

source of interaction: ROLE × INTERACTION LINK Specifies a source role of an interaction

destination of interaction: ROLE × INTERACTION LINK Specifies a destination role of interaction

interlevel connection from: ROLE × INTERLEVEL LINK Identifies a source role of an interlevel link

interlevel connection to: ROLE × INTERLEVEL LINK Identifies a destination role of an interlevel link

initiator env interaction: ROLE × ENVIRONMENT INTERACTION LINK Specifies a role-initiator in interaction with the

environment

recipient env information: ROLE × ENVIRONMENT INTERACTION LINK Identifies a role-recipient of information from the

environment

part of env in interaction: ENVIRONMENT × ENVIRONMENT INTERACTION

LINK

Identifies the conceptualized part of the environment

involved in interaction with a role

has input ontology: ROLE × ONTOLOGY Specifies an input ontology for a role

has output ontology: ROLE × ONTOLOGY Specifies an output ontology for a role

has input ontology: ENVIRONMENT × ONTOLOGY Specifies an input ontology for the environment

has output ontology: ENVIRONMENT × ONTOLOGY Specifies an output ontology for the environment

has interaction ontology: ROLE × ONTOLOGY Specifies an interaction ontology for a role

has interaction ontology: ENVIRONMENT × ONTOLOGY Specifies an interaction ontology for the environment

has onto mapping: INTERACTION LINK × ONTO MAPPING Identifies an ontology mapping

to be observed: STATE PROPERTY Describes a state property that will be observed in

the environment

observation result: STATE PROPERTY × BOOLEAN VALUE Determines if a certain state property holds in the

environment

to be performed: ACTION Specifies an action that will be performed in the

environment

to the outside world. A holon may impose certain structures

(i.e., types of relations) and behaviors on its agents, thus lim-

iting their autonomy in certain aspects. Furthermore, a holon

may be allocated to a simple (not composite) role, when the

joint set of capabilities of agents of the holon satisfies the

role requirements.

4 Formal specification of the organization model

In the previous section, the elements of the organizational

model were introduced. The current section provides the for-

mal specification of them.

4.1 Structural properties

Structural properties describe elements of an organization

structure introduced in Section 3.1 and relations between

them.

As it has been shown above, in an organization model

roles interact with other roles and the environment by means

of input and output interfaces. These interfaces are described

in terms of interaction (input and output) ontologies: a vo-

cabulary or a signature specified in order-sorted logic that

comprises finite sets of sorts, constants within these sorts, and

relations and functions over these sorts. Generally speaking,

an input ontology determines what types of information are

allowed to be transferred to the input of a role (or of the en-

vironment), and an output ontology predefines what kinds of

information can be generated at the output of a role (or of the

environment). Roles and relations between them and the envi-

ronment defined in a template model, as well as role instances

and relations between them and the environment defined in

a deployed model are specified using sorts and predicates

from the structure ontology. This ontology includes sorts for

all structural elements of an organization model (such as

roles, different types of links, environment). The predicates

for specifying organizational structure are defined over these

sorts in Table 2. For example, in the settings of the logistics

company from the running example, subroles Fleet Manager

(FM) and Load Manager (LM) belong to the same composite

role Operational department (OP). Formally: has subrole(OP,

FM) & has subrole(OP, LM). Note that input and output ontolo-

gies of role instances are constructed by limiting and refining

the ontologies of template roles based on which these role

instances have been created.

In order to enable interaction between roles at the same

aggregation level it is required that the ontologies of in-

teracting roles contain common (or shared) elements (e.g.,

to specify the speech act s act (e.g., inform, request, ask)

from role-source r1 to role-destination r2 with the content

message the predicate communicate from to(r1:ROLE, r2:ROLE,
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s act:SPEECH ACT, message:STRING) may be defined as a part

of ontologies for both roles).

However, ontologies of roles connected by an interlevel

link may not contain common elements. In this case the in-

terlevel link is described by an ontology mapping between

the corresponding elements of ontologies. Moreover, an on-

tology mapping associated with an interlevel link may be

used for representing mechanisms of information abstrac-

tion. These mechanisms can be applied for transmitting (or

generating) partial, aggregated or generalized information to

the input (or from the output) of a role.

Often, structural properties are valid during the whole pe-

riod of organization existence and can be considered as static.

But in rapidly developing and adapting organizations, struc-

tural change processes gain special importance. Structural

properties for such organizations get a temporal dimension

and can be considered as a subclass of dynamic properties.

4.2 State and dynamic properties

The dynamics of an organization are defined by the specifi-

cation of dynamic properties of its components that are for-

malized using the dynamic ontology(see Table 3) and belong

to the following five classes: role properties, transfer prop-

erties, interlevel link properties, environment properties, and

environment interaction properties. Each dynamic property

represents a relation in time either between (input or out-

put) states of roles or a (input or output) state of a role and

a (input or output) state of the environment. States of roles

and the environment are defined based on the corresponding

ontologies for roles and the environment. More precisely, a

state for ontology Ont is an assignment of truth-values to the

set At(Ont) of ground atoms expressed in terms of Ont. The

set of all possible states for state ontology Ont is denoted by

STATES(Ont).

A state property is defined by a formula over a state ontol-

ogy. For example, communicate from to(TCR, customer, inform,

order state (ON, delay, customer report)) is a state formula ex-

pressing the informative speech act in form of a customer

report from role TCR to role Customer about the delay state

of the order with the number ON.

Dynamic properties (e.g., for roles, environment, and

links) are specified in the Temporal Trace Language (TTL)

[22, 40], which is a variant of order-sorted predicate logic

[27], and in the classification in Galton [14, 15] falls in the

class of reified temporal logic.

TTL has some similarities with situation calculus [35] and

event calculus [24]. To enable reasoning about the dynamic

properties the language TTL includes special sorts, such as:

TIME (a set of linearly ordered time points), STATE (a set of

all state names of a system), TRACE (a set of all trace names;

a trace or a trajectory can be thought of as a timeline with

for each time point a state), and STATPROP (a set of all state

property names).

Role or environment states are related to state properties

via the satisfaction relation |=, formally defined as a binary

infix predicate (or by holds as a binary prefix predicate): state

(γ , t, output(r)) |= p (or holds (state (γ , t, output (r)), p)), which

denotes that state property p holds in trace γ at time t in the

output state of role r.

Both state(γ , t, output(r)) and p are terms of the TTL lan-

guage. Here p is used not as a statement, but as a term for

an object in the language which refers to a state proposition;

this is called reification; cf. Galton [14, 15]. TTL terms are

constructed by induction in a standard way for sorted predi-

cate logic from variables, constants and functional symbols

typed with TTL sorts. Dynamic properties are expressed by

TTL-formulae inductively defined by:

(1) If v1 is a term of sort STATE, and u1 is a term of the sort

STATPROP, then holds(v1, u1) is an atomic TTL formula.

(2) If τ 1, τ 2 are terms of any TTL sort, then τ 1 = τ 2 is an

atomic TTL formula.

(3) If t1, t2 are terms of sort TIME, then t1 < t2 is an atomic

TTL formula.

(4) The set of well-formed TTL-formulae is defined induc-

tively in a standard way based on atomic TTL-formulae

using boolean propositional connectives and quantifiers.

Table 3 Dynamics ontology for formalizing properties of an organization

Sort Description

DYNPROP Sort for the name of a dynamic property

DPEXPR Sort for the expression of a dynamic property

Predicate Description
has dynamic property: ROLE × DYNPROP Specifies a role dynamic property

has dynamic property: INTERACTION LINK × DYNPROP Identifies a dynamic property for an interaction link

has dynamic property: ENVIRONMENT × DYNPROP Identifies a dynamic property for the conceptualized part

of the environment

has dynamic property: ENVIRONMENT INTERACTION LINK × DYNPROP Identifies a dynamic property for an environment inter-

action link

has expression: DYNPROP × DPEXPR Specifies an expression for a dynamic property
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Table 4 Predicates for formalizing the dynamic properties used in the examples

Predicate Description

communicate from to(r1:ROLE, r2:ROLE, s act:SPEECH ACT, message:STRING) Specifies the speech act s act (e.g., inform, request,

ask) from role-source r1 to role-destination r2 with

the content message
deliverable object(on: ORDER NUM, desc:STRING) Assigns the order number on with the description desc

to the object that has to be delivered

truck property(trt:TRUCK TYPE, operated by, d:DRIVER) Assigns the driver d to a truck of the type trt
order property(on:ORDER NUM, assigned to, d:DRIVER) Assignes the order on to the driver d
order property(on:ORDER NUM, deadline, d value:INTEGER) Identifies the deadline d value for the order on
truck state(trt:TRUCK TYPE, st:STATE, descr:STATE DESCRIPTION) Denotes the state st with the state description descr of

a truck of the type trt
order state(on:ORDER NUM, st:STATE, descr:STATE DESCRIPTION) Specifies the state st with the state description descr

of the order with the number on

In the context of the running example consider the in-

formation distribution property defined for role OP called

RP1(OP), specified at abstraction level 2. Informally, when a

severe problem with some delivery occurs, OP should gener-

ate a message to CR about possible delay. Formally specified

in TTL:

∀γ :TRACE ∀t1:TIME ∀T:TRUCK TYPE ∀D:DRIVER ∀ON: OR-

DER NUM state(γ , t1, environment))|= [ truck state(T, incid-

ent, severe incident) ∧ truck property(T, operated by, D) ∧ or-

der property(ON, assigned to, D) ⇒
∃t2:TIME t2>t1 state(γ ,t2,output(OP)) |= communicate from to

(OP, CR, inform, order state(ON, delay, severe incident)),

whereTable 4 provides the description of the predicates.

More examples of dynamic properties formalized in TTL

will be given in Section 5.1.

The specification of both structural and dynamic proper-

ties in TTL is supported by a dedicated editor [2, 23]. The

organizational model for the running example that comprises

both static and dynamic aspects has been specified in this

software. Furthermore, the software tool enables model exe-

cution (simulation) under different environmental conditions

(i.e., temporal sequences of events). As a result of simula-

tion, a trace can be generated and visualized. A fragment of

the trace generated for the organizational model constructed

for the running example is illustrated in Fig. 5.Here, the time

frame is depicted on the horizontal axis. The names of predi-

cates are shown on the vertical axis. A dark box on top of the

line indicates that the predicate is true during that time period.

4.3 Formalizing agent allocation principles

The formalization of agent allocation principles is performed

in line with the formalization of the template and the deployed

models, using the predicates specified inTable 5.

Generally, it is assumed that role requirements and agent

capabilities are formulated using the same ontology, i.e.,

REQUIREMENT = CAPABILITY. However, if these ontolo-

gies are different, a necessary ontology mapping should be

defined.

An agent can be allocated to a role if for every allocation

requirement defined for the role the corresponding (equal in

case of the same ontology) agent capability can be found.

Formally:

allocated to(a:AGENT, r: ROLE) ≡ ∀req:REQUIREMENT has allo-

cation requirement(r, req) ⇒ [∃c:CAPABILITY has capability(a, c)

& corresponds to(c, req)]

If after being allocated to the role, the agent looses one

of his/her capabilities that correspond to the role require-

ments, then according to the rule above the current agent

allocation will become false and the agent reallocation will

be performed.

output(op)|communicate_from_to(op, cr, inform, problem(delay, order1), 1)

rom_to(load_manager_1, fleet_manager_1, inform, solution(drive_around), 1)

rom_to(load_manager_1, fleet_manager_1, inform, solution(drive_around), 1)

input(cr)|communicate_from_to(op, cr, inform, problem(delay, order1), 1)

m_to(fleet_manager_1, truck_and_driver_1, inform, solution(drive_around), 1)

output(vos)|communicate_from_to(vos, c, inform, problem(delay, order1), 1)

m_to(fleet_manager_1, truck_and_driver_1, inform, solution(drive_around), 1)

input(c)|communicate_from_to(vos, c, inform, problem(delay, order1), 1)

output(vr)|communicate_from_to(vr, crp, inform, problem(delay, order1), 1)

input(crp)|communicate_from_to(vr, crp, inform, problem(delay, order1), 1)

delivered(truck_and_driver_1, order1)

time 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Fig. 5 An example of a
visualized trace for the running
example
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Table 5 Predicates for formalizing agent allocation principles

Predicate Description

has allocation requirement: ROLE × REQUIREMENT Specifies an allocation requirement for a role

has capability: AGENT × CAPABILITY Specifies a capability for an agent

allocated to: AGENT × ROLE Specifies an agent allocated to a role

corresponds to: CAPABILITY × REQUIREMENT Specifies an agent capability that corresponds to a role requirement

5 Verification and validation

The model as introduced in this paper offers the means for

both role-centered and agent-centered verification and val-

idation. Role-centered verification techniques are dedicated

for checking consistency and integrity of role-based organi-

zation models without allocating agents to roles. These tech-

niques are considered in Section 5.1. Whereas agent-centered

verification approaches are applied for checking certain (gen-

eral) dynamic properties on execution of different scenar-

ios with roles of an organization model allocated to (hu-

man) agents. These techniques are described in Section 5.2.

Both role- and agent-centered verification techniques are il-

lustrated by applying them for checking the organizational

model from the running example.

5.1 Role-centered verification techniques

In this paper two types of role-centered verification tech-

niques are considered: (1) verifying consistency of an or-

ganizational model by checking relations between dynamic

properties of different aggregation levels using model check-

ing techniques [6] and (2) checking if an organizational role-

based model complies with certain general requirements (ex-

pressed as dynamic properties) in different role-based sim-

ulation scenarios. Let us consider these techniques more in

detail.

5.1.1 Checking interlevel relations between dynamic
properties of different aggregation levels

When an organization model is specified including dynamic

properties at different aggregation levels, it is not automat-

ically guaranteed that the properties defined at adjacent ag-

gregation levels fit to each other. A verification process that

addreses interlevel relations between properties at one aggre-

gation level and properties of adjacent aggregation level (e.g.,

as in compositional verification) can reveal incompleteness

or inconsistencies in an organization model. The verification

approach based on model checking techniques proposed in

[40] can be used for justifying such relations. According to

this approach dynamic properties of the lower aggregation

level components (i.e., roles, links and the environment) ex-

pressed in TTL form a model that by means of the techniques

described in [40] can be translated into the input format of one

of the existing model checkers, and can be further used for

automated verification. For practical verification the model

checker SMV [6] has been chosen. A property of the higher

aggregation level is required by SMV to be represented as

a temporal formula in CTL [6]. This property will be auto-

matically checked against all the possible executions of the

translated model of the lower aggregation level by perform-

ing model checking. In such a manner, it can be proven that

a property of the higher aggregation level is a logical con-

sequence of the model that comprises properties of a lower

aggregation level.

Let us illustrate this technique by applying it to the running

example. The information distribution property RP1(OP) of

role OP defined at aggregation level 2 and specified in Sec-

tion 4.2 is used as a property of the higher aggregation level.

For the purpose of verification, this property is expressed in

CTL as follows:

AG (truck state T incident severe incident & truck property T

operated by D & order property A20 assigned to D →
AF perform-

ing action preparation output OP communicate from to OP CR

inform order state A20 delay seve re incident)

where A is a path quantifier defined in CTL, meaning “for all

computational paths,” G and F are temporal quantifiers that

correspond to “globally” and “eventually” respectively.

The higher level property RP1(OP) can be logically related

to the conjunction of dynamic properties of components at

the lower aggregation level 3 in the following way:

EP1(Env, T, severe incident) & EP2(Env, T) & EIP1(Env, D) & RP1(D)

& TP1(D, FM) & RP2(FM) & TP2(FM, LM) & RP3(LM) & RP4(LM) &

ILP1(LM, OP) ⇒ RP1(OP)

The abbreviations for the dynamic properties and their

arguments conform to the specification provided in Section 3.

Let us consider the informal and formalized expressions for

some of the properties from the relation (1) that hold for any

trace γ (the complete specification for the dynamic properties

in (1) is given in Appendix A and in [21]):

EP1 (Env, T, severe incident) Incident occurrence

Informal description:
In the environment a severe incident with the truck T occurs

Formalization:
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∃t1:TIME state(γ , t1, environment)|= truck state(T, incident,

severe incident)

EIP1(Env, D) Incident observation

Informal description:
If an incident happens with a truck, then a driver responsible

for this truck will observe this incident

Formalization:
∀t1:TIME ∀T:TRUCK TYPE ∀D:DRIVER ∀ins:INCIDENT

state(γ , t1, environment))|= [ truck state(T, incident, ins) ∧
truck property(T, operated by, D)]

⇒ ∃t2 t2 > t1 state(γ , t2, input (D)) |= observation

result(truck state(T, incident, ins), true)

RP1(D) Request for incident solution

Informal description:
If a driver observes an incident with his truck, then s/he will

react by generating a request for advice to his fleet manager

Formalization:
∀t1:TIME ∀T:TRUCK TYPE ∀D:DRIVER ∀ins:INCIDENT ∀FM:

FLEET MANAGER state(γ , t1, input(D)) |= observation result

(truck state(T, incident, ins), true) &

state(γ , t1, environment) |= assigned to(D, FM)

⇒ ∃t2 t2 > t1 state(γ , t2, output(D)) |= to be performed(comm-

unicate from to(D, FM, ask, solution for problem(ins, T)))

ILP1(LM, OP) Generation of information about the state change

of a delivery order object

Informal description:
If a load manager communicates information about the

change of a delivery status to the customer relation role, then

the operational department role transmits this information to

the customer relation department role.

Formalization:
∀t1:TIME ∀LM: LOAD MANAGER ∀ON:ORDER NUM ∀st:

STATE TYPE ∀r: REASON state(γ , t1, output(LM))|=
to be performed(communicate from to(LM, CR, inform, or-

der state(ON, st, r)))

⇒ ∃t2 t2 > t1 state(γ , t2, output(OP))|= to be performed

(communicate from to(OP, CR, inform, order state(ON, st, r)))

By applying the algorithms and the dedicated software de-

scribed in [40] to the specification that comprises all identi-

fied above properties defined at aggregation level 3 is trans-

formed into the finite state transition system format required

for performing model checking. Such a format consists of

transition rules of the form [P → N], where P is a set of (pred-

icate logic) atoms that are true in a current state and N is a set

of atoms that will be true in the next state. For example, one of

the transition rules from the obtained specification describes

the generation of the memory state based on the observation

of driver D at the time point t of the state property expressing

that a severe incident happened with truck T:

present time(t) & observed(input D truck state T incident severe

incident)

→memory(t, observed(input D truck state T incident severe inci-

dent))

The following transition rule expresses the persistency of the

created memory state:

memory(t, observed(input D truck state T incident severe incident))

→memory(t, observed(input D truck state T incident severe incid-

ent))

The complete specification of the obtained finite state tran-

sition system for the considered example is given in Ap-

pendix B. The details of the procedure for transformation of

a behavioral TTL specification into the finite state transition

system format, and its application to the considered example

are given in [21].

The automatic verification in the SMV model check-

ing tool of the property RP1(OP) on the considered model

showed that the previously identified logical relation (1) in-

deed holds. In general, the formal verification method of

logical relations between dynamic properties of adjacent ag-

gregation levels is useful for revealing missing premises or

other shortcomings such as inconsistencies.

5.1.2 Checking global organizational properties with
respect to a simulated role-based model

Another role-centered verification method is based on check-

ing global organizational properties (or requirements) with

respect to different executions of a role-based model by

means of dedicated software. Such global organization prop-

erties are usually based on performance indicators of an or-

ganization, i.e., quantitative indicators that reflect the state,

progress or performance of an organization (e.g., delivery

time, customer notification time). By performing such ver-

ification inconsistencies and bottlenecks in an organization

model can be detected.

Different executions (or execution traces) of a formally

defined role-based organization model are obtained by per-

forming simulations of different scenarios using a dedicated

software environment [2]. Further the generated traces can

be loaded into the verification environment, in which the for-

malized TTL properties can be checked on these traces.

Based on the formal organization model for the running

example a simulation trace has been generated (given in Fig.

5 partially), then the customer notification property has been

checked on this trace.

Customer notification
Informal description:
Always if a severe problem occurs with the truck and the

driver, who was fulfilling the order of some customer, then
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this customer should be notified about possible delay with

delivery.

Formalization:
∀γ :TRACE ∀t1:TIME ∀T:TRUCK TYPE ∀D:DRIVER ∀ON:ORDER

NUM state(γ , t1, environment))|= truck state(T, incident,

severe incident) ∧ truck property(T, operated by, D) ∧ or-

der property(ON, assigned to, D)

⇒ ∃t2:TIME t2 > t1 ∃TCR:ROLE state(γ , t2, input(customer))|=
communicate from to(TCR, customer, inform, order state(ON,

delay, customer report))

An automatic verification confirmed that this property

holds on the simulation trace.

5.2 Agent-centered verification technique

In this section an agent-centered verification technique is

considered that is based on checking dynamic properties on

a formalized empirical trace obtained by executing a partic-

ular scenario with roles of an organization model allocated

to (human) agents. An empirical trace may be obtained from

log-files of a company. If an empirical trace is given infor-

mally, the first step is to formalize it (by hand), using for-

mal state ontologies. If it is already given in a formal form,

the first step is to translate (e.g., automatically) the formal

representation into one based on ontologies used in the or-

ganization model. Once such a trace is in the right formal

form, it is possible to verify dynamic properties of the or-

ganization (including structural properties), using dedicated

checking software as in the second role-centered verification

technique.

As input for the verification software, a formalized trace

and a formalized property have to be provided. Given such in-

put, after automatic verification of the given property against

the given trace, the software will generate a result (positive

or negative). The positive decision confirms that the property

holds with respect to the given trace. In case of a negative de-

cision, the software explains why the property does not hold.

In order to illustrate this method of verification, let us briefly

consider the scenario reconstructed from empirical data of

the transport company from the case study:

(1) A Customer places an order by means of a contact with

TCR (CR department in this case) in CI.

(2) Inside TC this order is being transmitted from CR to OP.

(3) Within OP the order is distributed by SP to LM1.

(4) LM1 assigns the order to D1, D1 is associated with FM1

(see Fig. 4).

(5) D1 starts delivery, then after some time a severe incident

occurs with his truck.

(6) D1 asks for help FM1, who is incapable of making a

decision in this case.

(7) FM asks for a solution LM1, who decides to send an-

other truck to proceed with delivery.

(8) Now D1 is reallocated to another truck and driver, who

picks up goods and continues delivery.

(9) At the same time LM1 informs CR about possible delay

with delivery.

(10) CR, who shares the same knowledge with TCR, informs

the Customer about possible delay.

(11) D1 successfully finishes delivery and the Customer is

being informed about that.

Using formal state ontologies (see Tables 2 and 3), we

formalized this trace in the dedicated software environment.

After that we identified several properties of interest that can

be automatically verified against the trace. Let us consider

two of them.

Delivery successfulness
Informal description:
The order has been fulfilled.

Formalization:
∃t:TIME ∃O:ORDER NUM state(γ , t, environment) |=
order state(O, delivered, final report)

An automatic verification confirmed that this property

holds against the formalized empirical trace.

Delivery accuracy
Informal description:
The order has been fulfilled on time.

Formalization:
∃t:TIME ∃O:ORDER NUM ∃d value:integer

state(γ , t, environment) |= order state(O, delivered, final report) ∧
order details(O, deadline, d value) ∧ d value ≥ t

This property does not hold with respect to the trace. The

next logical step in analysis of the causes for property failing

would be to check if some incident occurred in transit. In case

that a severe incident happened with the truck and the agent (a

truck driver) was incapable of performing his role any more,

the next step would be to verify whether or not enough time

is available for a role reallocation. Subsequently, analysis of

organization functioning can be continued until all inquiries

about delivery are satisfied.

If an agent allocated to a role possesses individual atti-

tudes and behavioral characteristics that are not explicitly

identified in role requirements, however which may influ-

ence the execution of functions associated with the role, then

dedicated analysis techniques for determining consequences

of different agent architectures for role performance can be

applied. These techniques are not considered in this paper

and will be described elsewhere.
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6 Discussion

Both in human society and for software agents, organiza-

tional structure provides the means to make complex, com-

posite dynamics manageable. To understand and formalize

how exactly organization structure constrains composite dy-

namics is a fundamental challenge in the area of organiza-

tional modeling. The modeling approach presented in this

paper addresses this challenge. It concerns a method for for-

mal specification of organizations, which can capture both

structural and dynamic aspects of organizations and provides

the means for (i) representation of organization structure, (ii)

simulations of different scenarios, (iii) analysis of organi-

zation, verifying static and dynamic properties against (for-

malized) empirical data or simulated scenarios, (iv) diagnosis

of inconsistencies, redundancies, and errors in structure and

functioning. Additionally, the environment is integrated as a

special component within the organization model.

Specification of organization structure usually takes the

form of pictorial descriptions, in a graph-like framework.

These descriptions often abstract from detailed dynamics

within an organization. Specification of the dynamic proper-

ties of organizations, on the other hand, usually takes place

in a completely different conceptual framework; these dy-

namic properties are often specified in the form of a set of

logical formulae in some temporal language. The logical re-

lationships express the kind of relations between dynamics of

parts of an organization, their interaction, and dynamic prop-

erties of the organization as a whole, which were indicated

as crucial by Lomi and Larsen [25] in their introduction.

This paper shows how pictorial descriptions, in a graph-

like framework, and a set of logical formulae in some tempo-

ral language can be combined in one organization modeling

approach. Inspection can be done on the abstraction level

preferred and both the pictorial and formal specifications

of the dynamic properties can be inspected. Five essential

types of dynamic properties characterizing behavior of main

structural components of an organization model (including

environment) are identified.

Due to the high expressivity of the introduced modeling

(structural and behavioral) languages, the proposed frame-

work creates the formal fundament for developing more spe-

cific types of models that describe certain particular aspects

of organizations (e.g., goals and tasks). Such models can be

built by introducing new particular specifications for these

aspects in terms of sorts, predicates, and properties, which

represent instantiations of general types of static and dynamic

properties described in this paper. In future work different

particular perspectives on organizations (e.g., performance-

orients, goal-oriented, process-oriented) will be elaborated.

Furthermore, the approach proposed here supports for-

mal specification and verification for both static and dynamic

properties. This possibility is especially useful for diagnosis

of inconsistencies, redundancies, and errors in structure and

functioning of real organizations and providing recommen-

dations for their improvement (e.g., by way of evaluating

of performance indicators). Compared to most organization-

oriented, multi-agent system, design approaches [1, 10, 11,

42], our model allows any number of aggregation levels in

the organization model, which makes it more suitable for

modeling and analyzing real organizations. While a role ag-

gregation relation is considered to be crucial for represent-

ing an organizational model, other types of relations between

roles should also be taken into account. For example, a role

specified in a template model and its corresponding role in-

stances defined in a deployed model are related by means of a

generalization relation. Furthermore, even more general role

templates (or classes), which possess essential characteris-

tics of roles of a certain type (e.g., seller, vendor, customer),

independent of any application domain, can be created. Dif-

ferent types of relations between such roles can be identified

(e.g., aggregation, generalization, interaction). Then, based

on roles classes and their relations libraries can be created that

can be used for the specification of a template organizational

model. Moreover, such libraries may be employed for con-

structing templates of different types of organizations. Both

structural and dynamic aspects of different types of organi-

zations should be reflected in such templates; for this formal

languages introduced in this paper can be used. To iden-

tify the distinctive features of different organization types,

agent-based models identified in [36] and the literature from

organization theory [28, 30] are useful to consider.

Let us now consider a case in which agents show au-

tonomous behavior, independent of (or sometimes conflict-

ing to) organizational rules and goals. To tackle the forth-

coming problems from such settings, further investigation of

the relationships between formally predefined organizational

model and agent autonomous behavior in settings of differ-

ent types of organizations will be undertaken. The work on

holonic structures [36, 37] may be relevant for further in-

vestigations on this question. By applying the approach in-

troduced in this paper the specifications of a (hierarchical)

structure and dynamics can be developed, which describe a

certain holon, or are imposed on agents within a holon. The

specification of autonomous agent behavior takes place in a

different conceptual framework, which, nevertheless, can be

related (at least in ontological sense) to the modeling frame-

work introduced in this paper. Then, by varying the types and

flexibility of the (imposed) structures and behaviors (using

for example the types described in [36]), and the level of

agent autonomy, different types of organizations represented

by multi-agent systems can be investigated. Furthermore, by

applying analysis methods described in this paper the be-

havior of holons can be checked for compliance with the

prescribed norms and other (global) properties of an organi-

zation.
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In the case of highly dynamic organizations (e.g., self-

organizing and organic organizations), organizational change

is a crucial and frequent process. Due to their high complex-

ity, such organizations are difficult to investigate. However,

different simulation techniques can help in providing further

insights into mechanisms of functioning of such organiza-

tions. For the latter purpose, research has been conducted

based on the introduced formal model [18].

In conclusion, this paper introduced a new, formal, fully

traceable method on modeling and analyzing (multi-agent)

organizations. It comprises both static and dynamic aspects

as well as environment representation. Hence, it provides the

basis of a formal framework, which provides the means for

both the design and for the automatic validation and verifi-

cation of organizations.

Appendix A: The complete specification of dynamic
properties from the running example

EP1(Env, T, severe incident) Incident occurrence

Informal description:
In the environment a severe incident with the truck T occurs

Formalization:
∃t1:TIME state(γ , t1, environment)|= truck state(T, incident, severe

incident)

EP2(Env, T) Stable information about the environnent

Informal description:
Role D (a driver) operates the truck T and is assigned to

deliver the order A20; role D is assigned to the fleet manager

FM, and FM is in the region of the load manager LM

Formalization:
∀t1:TIME state(γ , t1, environment)|= [truck property(T, operated

by, D) ∧ order property(A20, assigned to, D) ∧ assigned to(D, FM)

∧ in region(FM, LM) ]

EIP1(Env, D) Incident observation

Informal description:
If an incident happens with a truck, then a driver responsible

for this truck will observe this incident

Formalization:
∀t1:TIME ∀T:TRUCK TYPE ∀D:DRIVER ∀ins:INCIDENT state(γ ,

t1, environment))|= [ truck state(T, incident, ins) ∧ truck property(T,

operated by, D)]

⇒ ∃t2 t2 > t1 state(γ , t2, input(D))|= observation result(truck

state(T, incident, ins), true)

RP1(D) Request for incident solution

Informal description:
If a driver observes an incident with his truck, then s/he will

react by generating a request for advice to his fleet manager

Formalization:

∀t1:TIME ∀T:TRUCK TYPE ∀D:DRIVER ∀ins:INCIDENT ∀FM:

FLEET MANAGER state(γ , t1, input(D))|= observation result

(truck state(T, incident, ins), true) & state(γ , t1, environment)|= as-

signed to(D, FM)

⇒ ∃t2 t2>t1 state(γ , t2, output(D))|= to be performed (communi-

cate from to(D, FM, ask, solution for problem(ins, T)))

TP1(D, FM) Request transfer to Fleet Manager

Informal description:
If a driver sends a request to his fleet manager, the fleet man-

ager will receive this request

Formalization:
∀t1:TIME ∀D:DRIVER ∀FM: FLEET MANAGER ∀req: REQUEST

state(γ , t1, output(D))|= to be performed(communicate from to(D,

FM, ask, req)) & state(γ , t1, environment)|= assigned to(D, FM)

⇒ ∃t2 t2 > t1 state(γ , t2, input(FM))|= observation result (com-

municate from to(D, FM, ask, req))

RP2(FM) Request for solution propagation

Informal description:
If a fleet manager receives a request from a driver for advice to

solve a severe problem, then s/he will propagate this request

further to the regional load manager

Formalization:
∀t1:TIME ∀D:DRIVER ∀T:TRUCK TYPE∀FM:FLEET MANAGER

∀LM:LOAD MANAGER state(γ , t1, input(FM))|= observation

result (communicate from to(D, FM, ask, solution for problem (se-

vere incident, T))) & state (γ , t1, environment)|= in region(FM, LM)

⇒ ∃t2 t2 > t1 state(γ , t2, output(FM))|= to be performed (commu-

nicate from to(FM, LM, ask, solution for problem (severe incident,

T)))

TP2(FM, LM) Request transfer to Load Manager

Informal description:
If a fleet manager sends a request to a regional load manager,

the regional load manager will receive this request

Formalization:
∀t1:TIME ∀FM: FLEET MANAGER ∀LM: LOAD MANAGER ∀req:

REQUEST state(γ , t1, output(FM))|= to be performed (communi-

cate from to(FM, LM, ask, req))

⇒ ∃t2 t2 > t1 state(γ , t2, input(LM))|= observation result (com-

municate from to(FM, LM, ask, req))

RP3(LM) Change of a delivery status

Informal description:
If a load manager receives a request from a fleet manager for

advice to solve a severe problem, then s/he officially identifies

the incident as severe and changes into “delay” the state of

the corresponding delivery order in the information system.

Formalization:
∀D:DRIVER ∀t1:TIME ∀FM: FLEET MANAGER ∀T:TRUCK TYPE

∀LM: LOAD MANAGER ∀ON:ORDER NUM state(γ , t1, in-

put (LM))|= observation result(communicate from to(FM, LM,

ask, solution for problem(severe incident, T))) & state(γ , t1,
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environment)|= [ order property(ON, assigned to, D) ∧ truck prop-

erty(T, operated by, D) ]

⇒ ∃t2 t2 > t1 state(γ , t2, output(LM))|= to be performed (change

(order state(ON, delay, severe incident)))

RP4(LM) Informing CR about a delivery status

Informal description:
If a load manager changes a state of a delivery order object,

then the information about this change is generated at the

output of the load manager role for the customer relation

role.

Formalization:
∀t1:TIME ∀LM: LOAD MANAGER ∀ON:ORDER NUM ∀st:

STATE TYPE ∀r: REASON state(γ , t1, output(LM))|=
to be performed(change(order state(ON, st, r)))

⇒ ∃t2 t2 > t1 state(γ , t2, output(LM))|= to be performed (com-

municate from to(LM, CR, inform, order state(ON, st, r)))

ILP1(LM, OP) Generation of information about the state change

of a delivery order object

Informal description:
If a load manager communicates information about the

change of a delivery status to the customer relation role, then

the operational department role transmits this information to

the customer relation department role.
Formalization:
∀t1:TIME ∀LM: LOAD MANAGER ∀ON:ORDER NUM ∀st:

STATE TYPE ∀r: REASON state(γ , t1, output(LM))|=
to be performed(communicate from to(LM, CR, inform, or-

der state(ON, st, r)))

⇒ ∃t2 t2 > t1 state(γ , t2, output(OP))|= to be performed (com-

municate from to(OP, CR, inform, order state(ON, st, r)))

Appendix B: The complete specification of the transition
system from the running example

present time(t) &¬performing action(preparation(output LM comm-

unicate from to LM CR inform order state A20 delay severe incid-

ent)) → present time(t + 1)

truck state T incident severe incident & truck property T operated

by D → observed(input D truck state T incident severe in- cident)

present time(t) & observed(input D truck state T incident severe in-

cident) → memory(t,observed(input D truck state T incident se-

vere incident))

memory(t, observed(input D truck state T incident severe incident))

→ memory(t, observed(input D truck state T incident severe

incident))

present time(t) & memory(t, observed(input D truck state T inci-

dent severe incident)) & assigned to D FM → qcprep1

present time(t) & qcprep1 → preparation(output D communi-

cate from to D FM ask solution for problem severe incident T)

preparation(output D communicate from to D FM ask solution for

problem severe incident T) → performing action(output D commu-

nicate from to D FM ask solution for problem severe in- cident T)

performing action(output D communicate from to D FM ask solu-

tion for problem severe incident T) → observed(input FM comm-

unicate from to D FM ask solution for problem severe in- cident T)

present time(t) & observed(input FM communicate from to D FM

ask solution for problem severe incident T)

→ memory(t, observed(input FM communicate from to D FM ask

solution for problem severe incident T))

memory(t, observed(input FM communicate from to D FM ask sol-

ution for problem severe incident T))

→ memory(t, observed(input FM communicate from to D FM ask

solution for problem severe incident T))

present time(t) & memory(t, observed(input FM communicate from

to D FM ask solution for problem severe inci- dent T)) & in region

FM LM → qcprep2

present time(t) & qcprep2 → preparation(output FM communicate

from to FM LM ask solution for problem severe in- cident T)

preparation(output FM communicate from to FM LM ask solution

for problem severe incident T) →performing action(output FM co-

mmunicate from to FM LM ask solution for problem severe

incident T)

performing action(output FM communicate from to FM LM ask so-

lution for problem severe incident T) → observed (input LM co-

mmunicate from to FM LM ask solution for problem severe incide-

nt T)

present time(t) & observed (input LM communicate from to FM

LM ask solution for problem severe incident T) → memory(t, obs-

erved(input LM communicate from to FM LM ask solution for pro-

blem severe incident T))

memory(t, observed(input LM communicate from to FM LM ask

solution for problem severe incident T)) →
memory(t, observed(input LM communicate from to FM LM ask

solution for problem severe incident T))

present time(t) & memory(t, observed(input LM communicate

from to FM LM ask solution for problem severe incident T)) & or-

der property A20 assigned to D & truck property T operated by D

→ qcprep3

present time(t) & qcprep3 → preparation(change order state A20

delay severe incident)

preparation(change order state A20 delay severe incident) → per-

forming action(preparation(change order state A20 delay severe

incident))

performing action(preparation(change order state A20 delay seve-

re incident)) →
performing action(preparation(output LM communicate from to

LM CR inform order state A20 delay severe incident))

performing action(preparation(output LM communicate from to LM

CR inform order state A20 delay severe incident)) → perform-

ing action(preparation(output OP communicate from to OP CR

inform order state A20 delay severe incident))
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