
Principles of Component-Based Design
of Intelligent Agents

Frances M.T. Brazier, Catholijn M. Jonker, Jan Treur

Vrije Universiteit Amsterdam, Department of Artificial Intelligence

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
URL: http://www.cs.vu.nl/~{frances,jonker,treur} Email: {frances,jonker,treur}@cs.vu.nl

Keywords: Component-based, design, agent, reuse, generic model

Abstract
Compositional multi-agent system design is a methodological perspective on multi-
agent system design based on the software engineering principles process and
knowledge abstraction, compositionality, reuse, specification and verification. This
paper addresses these principles from a generic perspective in the context of the
compositional development method DESIRE. An overview is given of reusable
generic models (design patterns) for different types of agents, problem solving
methods and tasks, and reasoning patterns. Examples of supporting tools are
described.

1 Introduction

The area of Component-Based Software Engineering is currently a well-developed area of
research within Software Engineering; e.g., [15], [27], [42], [43]. More specific approaches
to component-based design of agents are often restricted to object-oriented implementation
environments, usually based on Java [2], [23], [36]. In these approaches, agents are often
kept simple; rarely knowledge-based architectures are covered, and if so, only with only
agents that are based on one knowledge base [38]. Techniques for complex, knowledge-
intensive tasks and domains developed within Knowledge Engineering play no significant
role. In contrast, this paper addresses the design of component-based intelligent agents in
the sense that (1) the agents can be specified on a conceptual (design) level instead of an
implementation level, and (2) specifications exploit knowledge-based techniques as
developed within Knowledge Engineering, enabling the design of more complex agents, for
example for knowledge-intensive applications.
 The compositional multi-agent design method DESIRE (DEsign and Specification of
Interacting REasoning components) supports the design of component-based autonomous
interactive agents. Both the intra-agent functionality (i.e., the expertise required to perform
the tasks for which an agent is responsible in terms of the knowledge, and reasoning and
acting capabilities) and the inter-agent functionality (i.e., the expertise required to perform
and guide co-ordination, co-operation and other forms of social interaction in terms of
knowledge, and reasoning and acting capabilities) are explicitly modelled. DESIRE views
the individual agents and the overall system as compositional structures - hence all
functionality is designed in terms of interacting, compositionally structured components. In
this paper an overview is given of the principles behind this design method. Sections 2
briefly discusses the process of design and the role of compositionality within this process.
Section 3 discuuses the problem analysis and requirements elicitation process. Section 4
introduces the elements used to specify conceptual design and detailed design: process
composition, knowledge composition and their relationships. Design rationale and
verification is discussed in Section 5. Section 6 discusses the notion of component-based

2

generic models that form the basis of reuse during design processes. The availability of a
large variety of such generic models for agents and tasks forms an important basis of the
design method. In this section a number of these models are presented. Section 7 briefly
discusses the graphical software environment to support the design process. Section 8
concludes the paper with a discussion.

2 The design process and types of compositionality

The design of a multi-agent system is an iterative process, which aims at the identification
of the parties involved (i.e., human agents, system agents, external worlds), and the
processes, in addition to the types of knowledge needed. Conceptual descriptions of specific
processes and knowledge are often first attained. Further explication of these conceptual
design descriptions results in detailed design descriptions, most often in iteration with
conceptual design. During the design of these models, partial prototype implementations
may be used to analyse or verify the resulting behaviour. On the basis of examination of
these partial prototypes, new designs and prototypes are generated and examined, and so on
and so forth. This approach to evolutionary development of systems, is characteristic to the
development of multi-agent systems in DESIRE.
 During a multi-agent system design process, DESIRE distinguishes the following
descriptions (see Figure 1):

• problem description
• conceptual design
• detailed design
• operational design
• design rationale

The problem description includes the requirements imposed on the design. The rationale
specifies the choices made during design at each of the levels, and assumptions with respect
to its use.

Conceptual
Design

Detailed
Design

Operational
Design

P
ro

bl
em

 D
es

cr
ip

tio
n

D
es

ig
n

R
at

io
na

le

Figure 1 Problem description, levels of design and design rationale

3

The relationship between the levels of design (conceptual, detailed, operational) is well-
defined and structure-preserving. The conceptual design includes conceptual models for
each individual agent, the external world, the interaction between agents, and the
interaction between agents and the external world. The detailed design of a system, based
on the conceptual design, specifies all aspects of a system’s knowledge and behaviour. A
detailed design provides sufficient detail for operational design. Prototype
implementations, are automatically generated from the detailed design.
 There is no fixed sequence of design: depending on the specific situation, different types
of knowledge are available at different points during system design. The end result, the
final multi-agent system design, is specified by the system designer at the level of detailed
design. In addition, important assumptions and design decisions are specified in the design
rationale. Alternative design options together with argumentation are included. On the basis
of verification during the design process, properties of models can be documented with the
related assumptions. The assumptions define the limiting conditions under which the model
will exhibit specific behaviour.
 Compositionality is a general principle that refers to the use of components to structure a
design. Within the DESIRE method components are often complex compositional
structures in which a number of other, more specific components are grouped. During
design different levels of process abstraction are identified. Processes at each of these levels
(except the lowest level) are modelled as (process) components composed of components at
the adjacent lower level.
 Processes within a multi-agent system may be viewed as the result of interaction
between more specific processes. A complete multi-agent system may, for example, be seen
to be one single component responsible for the performance of the overall process. Within
this one single component a number of agent components and an external world may be
distinguished, each responsible for a more specific process. Each agent component may, in
turn, have a number of internal components responsible for more specific parts of this
process. These components may themselves be composed, again entailing interaction
between other more specific processes.
 The ontology used to express the knowledge needed to reason about a specific domain
may also be seen as a single (knowledge) component. This knowledge structure may be
composed of a number of more specific knowledge structures which, in turn, may again be
composed of other even more specific knowledge structures.
 As shown in Figure 2 compositionality of processes and compositionality of knowledge
are two separate, orthogonal dimensions. The compositional knowledge structures are
referenced by compositional process structures, when needed.

compositionality of knowledge

compositionality
of processes

Figure 2 Compositionality of processes and compositionality of knowledge

4

 Compositionality is a means to acquire information and process hiding within a model:
by defining processes and knowledge at different levels of abstraction, unnecessary detail
can be hidden. Compositionality also makes it possible to integrate different types of
components in one agent. Components and groups of components can be easily included in
new designs, supporting reuse of components at all levels of design.

3. Problem Description and Requirements Elicitation

Which techniques are used to acquire a problem description is not pre-defined. Techniques
vary in their applicability, depending on, for example, the situation, the task, the type of
knowledge on which the system developer wishes to focus. Acquisition of requirements to
be imposed on the system as part of the problem description is crucial. These requirements
are part of the initial problem definition, but may also evolve during the development of a
system.
 Requirements Engineering is a well-studied field of research. In recent years
requirements engineering for distributed and agent systems has been studied, e.g., [19],
[20], [21], [25], [33]. At the level of the multi-agent system, requirements are related to the
dynamics of interaction and co-operation patterns. At the level of individual agents,
requirements are related to agent behaviour. Due to the dynamic complexity, analysis and
specification of such requirements is a difficult process.
 Requirements can be expressed in an informal, semi-formal or formal manner. In the
context described above, the following is an informally expressed requirement for the
dynamics of the multi-agent system as a whole:

R2: Each service request must be followed by an adequate service proposal after a certain time delay.

In a structured, semi-formal manner, this requirement can be expressed as follows:

 if at some point in time
 an agent A outputs: a service request, to an appropriate other agent B
 then at a later point in time
 agent B outputs: a proposal for the request, to agent A
 and at a still later point in time
 agent A outputs: proposal is accepted, to agent B

The following temporal formalisation is made:

∀�
�

 , t, A ∃ B�

holds(state
�

, t, output(A)), communication_from_to(request(r), A, B)

⇒��∃ t2 ≥ t1 ≥ t holds(state(M , t1, output(B)), communication_from_to(proposal_for(p, r), B, A))

 ∧ holds(state(
�

, t2, output(B)), �communication_from_to(accepted_proposal_for(p, r), A, B))]]

The formal language used is comparable to situation calculus (e.g., compare holds�to the
holds-predicate in situation calculus), but with explicit variables for traces and time. The
expression

 holds(state(

�
, t, output(A)), communication_from_to(request(r), A, B))

means that within trace � at time point t a communication statement

5

 communication_from_to(request(r), A, B)

is placed in the output interface of agent A. Here a trace is a sequence over time of three-
valued information states of the system, including input and output information states of all
of the agents, and their environment. The time frame can be discrete, or a finite variability
assumption can be used. For further details on the use of this predicate logic temporal
language, see [25].
 Besides requirements on the dynamics of the overall multi-agent system, also
requirements can be expressed on the behaviour of single agents. For example, an agent
who is expected to adequately handle service requests should satisfy the following
behaviour requirements:

A1: If the agent B receives a request for a service from a client A
 And the necessary information regarding this client is not available
 Then agent B issues a request for this information to that client.

Requirements on the dynamics of a multi-agent system are at a higher process abstraction
level than the behaviour requirements on agents.

4. Conceptual Design and Detailed Design

Conceptual and detailed designs consist of specifications of the following three types:

• process composition,
• knowledge composition,
• the relation between process composition and knowledge composition.

These three types of specifications are discussed in more detail below.

4.1 Process Composition

Process composition identifies the relevant processes at different levels of (process)
abstraction, and describes how a process can be defined in terms of lower level processes.
Depending on the context in which a system is to be designed two different views can be
taken: a task perspective, and a multi-agent perspective. The task perspective refers to the
view in which the processes needed to perform an overall task first are identified. These
processes (or sub-tasks) are then delegated to appropriate agents and the external world,
after which these agents and the external world are designed. The multi-agent perspective
refers to the view in which agents and an external world are first identified and then the
processes within each agent and within the external world.

4.1.1 Identification of processes at different levels of abstraction

Processes can be described at different levels of abstraction; for example, the processes for
the multi-agent system as a whole, processes within individual agents and the external
world, processes within task-related components of individual agents.

Modelling a process
The processes identified are modelled as components. For each process the types of
information used as input and resulting as output are identified and modelled as input and
output interfaces of the component.

6

Modelling process abstraction levels
The levels of process abstraction identified are modelled as abstraction/specialisation
relations between components at adjacent levels of abstraction: components may be
composed of other components or they may be primitive. Primitive components may be
either reasoning components (for example based on a knowledge base), or, alternatively,
components capable of performing tasks such as calculation, information retrieval,
optimisation, et cetera.

The identification of processes at different abstraction levels results in specification of
components that can be used as building blocks, and of a specification of the sub-
component relation, defining which components are a sub-component of a which other
component. The distinction of different process abstraction levels results in process hiding.

4.1.2 Composition

The way in which processes at one level of abstraction in a system are composed of
processes at the adjacent lower abstraction level in the same system is called composition.
This composition of processes is described not only by the component/sub-component
relations, but in addition by the (possibilities for) information exchange between processes
(static view on the composition), and task control knowledge used to control processes and
information exchange (dynamic view on the composition).

Information exchange
Information exchange defines which types of information can be transferred between
components and the information links by which this can be achieved. Within each of the
components private information links are defined to transfer information from one
component to another. In addition, mediating links are defined to transfer information from
the input interfaces of encompassing components to the input interfaces of the internal
components, and to transfer information from the output interfaces of the internal
components to the output interface of the encompassing components.

Task control knowledge
Components may be activated sequentially or they may be continually capable of
processing new input as soon as it arrives (awake). The same holds for information links:
information links may be explicitly activated or they may be awake. Task control
knowledge specifies under which conditions which components and information links are
active (or made awake). Evaluation criteria, expressed in terms of the evaluation of the
results (success or failure), provide a means to further guide processing.

Task control knowledge specifies when and how processes are to be performed and
evaluated. Goals of a process are defined by the task control foci together with the extent to
which they are to be pursued. Evaluation of the success or failure of a process’s
performance is specified by evaluation criteria together with an extent. Processes may be
performed in sequence or in parallel, some may be continually “awake’, (e.g., able to react
to new input as soon as it arrives), others may need to be activated explicitly.

4.2 Knowledge Composition

Knowledge composition identifies knowledge structures at different levels of (knowledge)
abstraction, and describes how a knowledge structure can be defined in terms of lower level
knowledge structures. The knowledge abstraction levels may correspond to the process

7

abstraction levels, but this is not often the case; often the matrix depicted in Figure 2 shows
an m to n correspondence between processes and knowledge structures, with m, n > 1.

4.2.1 Identification of knowledge structures at different abstraction levels

The two main structures used as building blocks to model knowledge are: information types
and knowledge bases. These knowledge structures can be identified and described at
different levels of abstraction. At the higher levels details can be hidden. The resulting
levels of knowledge abstraction can be distinguished for both information types and
knowledge bases.

Information types
An information type defines an ontology (lexicon, vocabulary) to describe objects or terms,
their sorts, and the relations or functions that can be defined on these objects. Information
types are defined as signatures (sets of names for sorts, objects, functions, and relations) for
order-sorted predicate logic. Information types can be specified in graphical form, or in
formal textual form.

Knowledge bases
Knowledge bases use ontologies defined in information types. Relations between
information types and knowledge bases define precisely which information types are used.
The relationships between the concepts specified in the information types are defined by the
knowledge bases during detailed design.

4.2.2 Composition of knowledge structures

Information types can be composed of more specific information types, following the
principle of compositionality discussed above. Similarly, knowledge bases can be
composed of more specific knowledge bases. The compositional structure is based on the
different levels of knowledge abstraction distinguished, and results in information and
knowledge hiding.

4.3 Relation between Process Composition and Knowledge Composition

Each process in a process composition uses knowledge structures. Which knowledge
structures (information types and knowledge bases) are used for which processes is defined
by the relation between process composition and knowledge composition. The cells within
the matrix depicted in Figure 2 define these relations.

5. Design Rationale and Compositional Verification

The design rationale behind a design process describes the relevant properties of a system
in relation to the design requirements and the relevant assumptions. The initial requirements
are stated in the initial problem description, others originate during a design process, and
are added to the problem description. Important design decisions are made explicit, together
with some of the alternative choices that could have been made, and the arguments in
favour of and against the different options. At the operational level the design rationale
includes decisions based on operational considerations, such as the choice to implement a
parallel process on one or more machines, depending on the available capacity. This
information is of particular importance for verification.
 Requirements imposed on multi-agent systems designed to perform complex and
interactive tasks are often requirements on the behaviour of the agents and the system. As in

8

non-trivial applications the dynamics of a multi-agent system and the control thereof are of
importance, it is vital to understand how system states change over time. In principle, a
design specifies which changes are possible and anticipated, and which behaviour is
intended. To obtain an understanding of the behaviour of a compositional multi-agent
system, its dynamics can be expressed by means of the evolution of information states over
time. If information states are defined at different levels of process abstraction, behaviour
can be described at different levels of process abstraction as well.
 The purpose of verification is to prove that, under a certain set of assumptions, a system
adheres to a certain set of properties, for example the design requirements. A compositional
multi-agent system verification method takes the process abstraction levels and the related
compositional structure into account. In [18], [30], and [6] a compositional verification
method is described and applied to diagnostic reasoning, co-operative information gathering
agents, and negotiating agents, respectively. The verification process is done by a
mathematical proof (i.e., a proof in the form to which mathematicians are accustomed) that
the specification of the system, together with the assumptions, imply the properties that a
system needs to fulfil. The requirements are formulated formally in terms of temporal
semantics. During the verification process the requirements of the system as a whole are
derived from properties of agents (one process abstraction level lower) and these agent
properties, in turn, are derived from properties of the agent components (again one
abstraction level lower).
 Primitive components (those components that are not composed of others) can be
verified using more traditional verification methods for knowledge-based systems (if they
are specified by means of a knowledge base), or other verification methods tuned to the
type of specification used. Verification of a (composed) component at a given process
abstraction level is done using

• properties of the sub-components it embeds
• a specification of the process composition relation
• environmental properties of the component (depending on the rest of the system,

including the world).

This introduces compositionality in the verification process: given a set of environmental
properties, the proof that a certain component adheres to a set of behavioural properties
depends on the (assumed) properties of its sub-components, and the composition relation:
properties of the interactions between those sub-components, and the manner in which they
are controlled. The assumptions under which the component functions properly, are the
properties to be proven for its sub-components. This implies that properties at different
levels of process abstraction play their own role in the verification process. Compositional
verification has the following advantages; see also [1], [26], [30]:

• reuse of verification results is supported (refining an existing verified
compositional model by further decomposition, leads to verification of the refined
system in which the verification structure of the original system can be reused).

• process hiding limits the complexity of the verification per abstraction level.

A condition to apply a compositional verification method described above is the availability
of an explicit specification of how the system description at an abstraction level is
composed from the descriptions at the adjacent lower abstraction level.
 The formalised properties and their logical relations, resulting from a compositional
verification process, provide a more general insight in the relations between different forms
of behaviour. For example, in [18] different properties of diagnostic reasoning and their
logical relations have been formalised in this manner, and in [30] the same has been done
for pro-activeness and reactiveness properties for co-operative information gathering

9

agents. In [6] termination and successfulness properties for negotiation processes are
analysed.

6. Reusability and Generic Models

The iterative process of modelling processes and knowledge is often resource-consuming.
To limit the time and expertise required to design a system a development method should
reuse as many elements as possible. Within a compositional development method, generic
agent models and task models, and existing knowledge structures (ontologies and
knowledge bases) may be used for this purpose. Which models are used, depends on the
problem description: existing models are examined, discussed, rejected, modified, refined
and/or instantiated in the context of the problem at hand. Initial abstract descriptions of
agents and tasks can be used to generate a variety of more specific agent and task
descriptions through refinement and composition (for which existing models can be
employed as well).
 Agent models and task models can be generic in two senses: with respect to the
processes (abstracting from the processes at the lower levels of process abstraction), and
with respect to the knowledge (abstracting from lower levels of knowledge abstraction, e.g.,
a specific domain of application). Often different levels of genericity of a model may be
distinguished. A refinement of a generic model to lower process abstraction levels, resulting
in a more specific model is called a specialisation. A refinement of a generic model to
lower knowledge abstraction levels, e.g., to model a specific domain of application, is
called an instantiation. Compositional system design focuses on both aspects of genericity,
often starting with a generic agent model. This model may be modified or refined by
specialisation and instantiation. The process of specialisation replaces a single ‘empty’
component of a generic model by a composed component (consisting of a number of sub-
components). The process of instantiation takes a component of a generic model and fills it
with (domain) specific information types and knowledge bases. During these refinement
processes components can also be deleted or added. The compositional structure of the
design is the basis for performing such operations on a design.
 The applicability of a generic agent model depends on the basic characteristics of an
agent in the problem description. The applicability of a generic task model for agent-
specific tasks depends not only on the type of task involved, but also the way in which the
task is to be approached. Since the availability of a variety of generic models is crucial for
the quality of support that can be offered during a design process, in this section a number
of generic models available in DESIRE are discussed.

6.1 Generic Agent Models

Characteristics of automated agents vary significantly depending on the purposes and tasks
for which they have been designed. Agents may or may not, for example, be capable of
communicating with other agents. A fully reactive agent may only be capable of reacting to
incoming information from the external world. A fully cognitive and social agent, in
comparison, may be capable of planning, monitoring and effectuating co-operation with
other agents. Which agent models are most applicable to a given situation (possibly in
combination) is determined during system design. Generic models for weak agents, co-
operative agents, BDI-agents and deliberative normative agents are briefly described below.

10

 communicated
 info

 observation
 results
 to wim

 observed
 agent

info

 communicated
 agent
 info

Agent task control

Own
Process
Control

Maintenance
of Agent

Information

Agent
Specific

Task

Maintenance
of World

Information

Agent
Interaction

Management

World
Interaction

Management

 own process info to wim

 own process info to aim

 own
 process
 info to
 mai

 own
 process
 info to
 mwi info to be communicated

 communicated
 info to ast

 communicated world info

 observations and actions

 observed
 info to ast

 observed
 world info

 action and observation info from ast

 communication info from ast

 agent info to opc
 world info to opc

 agent info to wim

 agent info to aim

 world info to aim

 world info to wim

 Figure 3 Generic model for the weak agent notion

6.1.1 Generic Model for the Weak Agent Notion: GAM

The Generic Agent Model (GAM) depicted in Figure 3 supports the notion of a weak agent,
for which autonomy, pro-activeness, reactiveness and social abilities are distinguished as
characteristics; cf. [44]. This type of agent:

• reasons about its own processes (supporting autonomy and pro-activeness)

• interacts with and maintains information about other agents (supporting social abilities,

and reactiveness and pro-activeness with respect to other agents)

• interacts with and maintains information about the external world (supporting

reactiveness and pro-activeness with respect to the external world).

The six components are: Own Process Control (OPC), Maintenance of World Information
(MWI), World Interaction Management (WIM), Maintenance of Agent Information (MAI),
Agent Interaction Management (AIM), and Agent Specific Tasks (AST). The processes
involved in controlling an agent (e.g., determining, monitoring and evaluating its own goals
and plans) but also the processes of maintaining a self model are the task of the component
Own Process Control. The processes involved in managing communication with other
agents are the task of the component Agent Interaction Management. Maintaining
knowledge of other agents’ abilities and knowledge is the task of the component

11

Maintenance of Agent Information. Comparably, the processes involved in managing
interaction with the external (material) world are the task of the component World
Interaction Management. Maintaining knowledge of the external (material) world is the task
of the component Maintenance of World Information. The specific task for which an agent
is designed (for example: design, diagnosis), is modelled in the component Agent Specific
Task. Existing (generic) task models may be used to further specialise this component; see
Section 6.2.

6.1.2 Generic Co-operative Agent Model: GCAM

If an agent explicitly reasons about co-operation with other agents, the generic model for a
weak agent depicted in Figure 3 can be extended to include an additional component for co-
operation management. This component, the Co-operation Management component
includes the knowledge needed to acquire co-operation, as shown in Figure 4.

Cooperation Management task control

Monitor
Project

Generate
Project

required project

info on other agents

required monitoring info

monitoring info to output

required info on other agents

commitments to output

own generated project

incoming project info

monitoring info

Figure 4 Refinement of Co-operation Management in the generic co-operative agent model GCAM

To achieve co-operation between a number of agents requires specific plans devised
specifically for this purpose. These plans are the result of reasoning by the component
Generate Project. This component identifies commitments needed for all agents involved,
and modifies existing plans when necessary.

12

� � � � ����� �	 �
��� � ��� � � �

������������ ������������������� ��!�"#�$�
�%� ���%&

')(+*�(+, -�. (
-+*�/1032$/
4 5 6
(
7 , 2 8+(:9�.<;=(:9�4 >�(

7 , (+>�-+, (
7 , 2 8+(:9�.

?@2�A�AB4 . AC(+*$. D� � � � ����� �	 �
� � ��� � � � �

� E�F �G�HEI� � J�� �
� K�� EH� L�� �NM:M�O

� E�F �G�HEG��� � � � � � ��� EH� L

��� � �+� � � ����� � P � � �

E�� � ��� �G� E�F �G�HEG�H� J�� �$� K�� E�� L

� E�F ��F �H�$� K�� E�� L

Figure 5 Composition of the component Generate Project in GCAM

The composition of the component Generate Project in Figure 5 includes the two
components Prepare Project Commitments (for composing an initial project team) and
Generate and Modify Project Recipe (to determine a detailed schedule for the project, in
interaction with the project team members) for these two purposes. Execution of a plan,
also part of co-operation, is monitored by each individual agent involved. This is the task of
the component Monitor Project. The two sub-components of this component depicted in
Figure 6, Assess Viability (to determine the feasibility of a plan) and Determine
Consequences (consequences of changes for the agents involved). The generic model of a
cooperative agent is based on the approach put forward in [28]. For a more detailed
explanation of the composition of processes, the knowledge involved and the interaction
between components, see [9].

Monitor Project - task control

Determine
Consequences

Assess
Viability

project info assessment info to DC info on project changes

assessment info to output

Figure 6 Composition of the the component Monitor Project in GCAM

13

6.1.3 Generic Model of a BDI-Agent: GBDIM

An agent that bases its control of its own processes on its own beliefs, desires,
commitments and intentions is called a BDI-agent. The BDI-agent model is a refinement of
the model for a weak agent GAM. The refinement of own process control in the Generic
Model for BDI-agents, GBDIM, is shown in Figure 7.

own process control task control

desire
determination

belief
determination

intention and
commitment
determination

transfer_desire_info_for_bd

transfer_desire_info_for_id

transfer_belief_info_for_id

transfer_ic_info_for_bd

transfer_committed_goal_
and_plan_info

transfer_belief_info

transfer_belief_
info_for_dd

transfer_world_and_
agent_info

Figure 7 Refinement of the component Own Process Control in the generic BDI-agent model GBDIM

Beliefs, desires, and intentions together with commitments, are determined in separate
components with interaction between all three. A distinction is made between (1) intentions
and commitments with respect to goals, and (2) intentions and commitments with respect to
plans. This distinction involves different types of knowledge and, as a result, is modelled
by two different components as depicted in Figure 8.

intention and commitment determination task control

goal
determination

plan
determination

Figure 8 Refinement of the component Intention and Commitment determination

14

Please note that the influence of intentions and commitments with respect to goals directly
influences intentions and commitments with respect to plans, and vice versa. For more
detail see [8].

Goal
Management

Own Process Control

Strategy
Management

Norm
Management

Plan
Management

belief info to nm

normative meta goals

goal control

plan control

belief info to gm

evaluation info

monitor information

selected goals

goal information

selected actions

belief info to sm

norms

Figure 9 A Generic Model for a Deliberative Normative Agent: GDNM

6.1.4 Generic Model of a Deliberative Normative Agent: GDNM

In many agent societies norms are assumed to play a role. It is claimed that not only
following norms, but also the possibility of ‘intelligent’ norm violation are of importance.
Principles for agents that are able to behave deliberatively on the basis of explicitly
represented norms are identified and incorporated in a generic model for a deliberative
normative agent. Using this agent model, norms can be communicated, adopted and used as
meta-goals on the agent’ s own processes. As such they have impact on deliberation about
goal generation, goal selection, plan generation and plan selection.
 This generic model for an agent that uses norms in its deliberative behaviour is a
refinement of the generic agent model GAM. A new component is included for society
information, the component Maintenance of Society Information (MSI) at the top level and
the component Own Process Control is refined as shown in Figure 9. For more details, see
[16].

6.2 Generic Models of Problem Solving Methods and Tasks

The specific tasks for which agents are designed vary significantly. Likewise the variety of
tasks for which generic models based on specific problem solving methods have been
developed is wide: diagnosis, design, process control, planning and scheduling are
examples of tasks for which generic models are available. In this section compositional
generic task models (developed in DESIRE) for the first three types of tasks are briefly

15

described. These task models can be combined with any of the agent models described
above: they can be used to specialise the agent specific task component.

6.2.1 A Generic Model for Diagnostic Tasks: GDIM

Tasks specifically related to diagnosis are included in the generic task model of diagnosis
(for a top level composition, see Figure 10). This generic model (the Generic DIagnosis
Model GDIM) is based on determination and validation of hypotheses. It subsumes both
causal and anti-causal diagnostic reasoning. Application of this generic model for both
types of diagnosis is discussed in [13].

diagnostic reasoning system task control

hypothesis

determination
hypothesis

validation
hypotheses

observation info assessments

symptoms presence

diagnosis

required
observations

hyp target info

focus info

Figure 10 Generic task model of Diagnosis: GDIM

The component Hypothesis Determination is used to dynamically focus on certain
hypotheses during the process. Hypothesis Validation includes determination of the
observations (Observation Determination) needed to validate a hypothesis (which are
transferred to the external world to be performed), and evaluation of the results of
observation with respect to the hypothesis in focus (Hypothesis Evaluation).

hypothesis validation task control

hypothesis
evaluation

observation
determination predictions

to be observed

obs info to HE

focus hyp to HE

focus hyp to OD

performed obs

eval info

obs info
to output

obs target
info to HE

Figure 11 Composition of the component Hypothesis Validation in GDIM

16

6.2.2 A Generic Model for Design Tasks: GDEM

The compositional Generic DEsign Model (GDEM; see Figure 12) [10] is based on a
logical analysis of design processes and on analyses of applications, including elevator
configuration and design of environmental measures [14]. In this model Requirement
Qualification Sets Manipulation (component RQS Manipulation or RQSM), Design Object
Description Manipulation (component DOD Manipulation or DODM), and Design Process
Co-ordination (DPC), are distinguished as three separate interacting processes. The model
provides a generic structure which can be refined for specific design tasks in different
domains of application.
 An initial design problem statement is expressed as a set of initial requirements and
requirement qualifications. Requirements impose conditions and restrictions on the
structure, functionality and behaviour of the design object for which a structural description
is to be generated during design. Qualifications of requirements are qualitative expressions
of the extent to which (individual or groups of) requirements are considered hard or
preferred, either in isolation or in relation to other (individual or groups of) requirements.
At any one point in time during design, the design process focuses on a specific subset of
the set of requirements. This subset of requirements plays a central role; the design process
is (temporarily) committed to the current requirement qualification set: the aim of
generating a design object description is to satisfy these requirements.

Design task control

Design
Process

Co-ordination

DOD
Manipulation

RQS
Manipulation

design process objective description design process evaluation report

overall design strategy to RQSM

 overall design
 strategy to DODM

 RQSM process
 evaluation report

 RQSM
 results

 RQS information

RQS

 DODM
 results

DOD

intermediate DOD information

intermediate RQS information

 intermediate DODM results

 D
O

D

 inform
ation

DODM process
evaluation report

Figure 12 Composition of the Design Task: GDEM

 During design the subsets of the set of requirements considered may change as may the
requirements themselves. The same holds for design object descriptions representing the
structure of the object to be designed.

The component Requirement Qualification Set Manipulation has four sub-components:

17

• RQS modification: the current requirement qualification set is analysed, proposals for
modification are generated, compared and the most promising (according to some
measure) selected,

• deductive RQS refinement: the current requirement qualification set is deductively refined
by means of the theory of requirement qualification sets,

• current RQS maintenance: the current requirement qualification set is stored and
maintained,

• RQSM history maintenance: the history of requirement qualification sets modification is
stored and maintained.

The component Manipulation of Design Object Descriptions also has four sub-components:

• DOD modification: the current design object description is analysed in relation to the

current requirement set, proposals for modification are generated, compared and the
most promising (according to some measure) selected,

• deductive DOD refinement: the current design object description is deductively refined by
means of the theory of design object descriptions,

• current DOD maintenance: the current design object description is stored and maintained,
• DODM history maintenance: the history of design object descriptions modification is stored

and maintained.

More detail on this model can be found in [10]. In [11] the different levels of strategic
reasoning in the model are described in more detail, including the component Design
Process Co-ordination for the highest level of strategic reasoning.

6.2.3 A Generic Model for Process Control Tasks: GPCM

Process control involves three sub-processes: process analysis, simulation of world
processes, and plan determination. These sub-processes are represented explicitly at the
top-level of the Generic Process Control Model GPCM depicted in Figure 13.

process control task: task control

selected observations

selected actions

plan

determination

simulated

world processes

process

analysis
evaluation information

spy points finalisation

current world
state for simulation

selected actions to process analysis

proposed actions

world obs info

simulation information

Figure 13 Process composition of process control: GPCM

Process Analysis involves evaluation of the process as a whole, and determination of the
observations to be performed in the external world. This is depicted below in Figure 14 in
the composition of the component Process Analysis.

18

process analysis task control

process

evaluation

determine

observations

eval info

selected

observations

world and
simulation
obs info

for evaluation evaluation information

performed world obs

plans for eval

plans for determ obs

Figure 14 Process composition of process analysis: information links

 Note that two types of observations can be performed: incidental observations that
return an observation result for only the current point in time, and continuous observations
that continuously return all updated observation results as soon as changes in the world
occur.

6.3 Generic Models of Reasoning Patterns

An example of a generic model for a specific reasoning pattern, is a model for reasoning
patterns in which assumptions are dynamically added and retracted (sometimes called
hypothetical reasoning), is discussed. Reasoning with and about assumptions entails
deciding about a set of assumptions to be assumed for a while (reasoning about
assumptions), and deriving which facts are logically implied by this set of assumptions
(reasoning with assumptions). The derived facts may be evaluated; based on this evaluation
some of the assumptions may be rejected and/or a new set of assumptions may be chosen
(reasoning about assumptions). For example, if an assumption is chosen, and the facts
derived from this assumption contradict information obtained from a different source (e.g.,
by observation), the assumption may be rejected and the converse may be assumed.
 Reasoning with and about assumptions is a reflective reasoning method. It proceeds by
the following alternation of object level and meta-level reasoning, and upward and
downward reflection:

• inspecting the information currently available (epistemic upward reflection),

• determining a set of assumptions (meta-level reasoning),

• assuming this set of assumptions for a while (downward reflection of assumptions),

• deriving which facts follow from this assumed information (in the object level reasoning)

• inspecting the information currently available (epistemic upward reflection),

• evaluating the derived facts (meta-level reasoning)

• deciding to reject some of the assumptions and/or to choose a new set of assumptions based on this

evaluation (meta-level reasoning).
 and so on

As an example, if an assumption ‘a is true’ is chosen, and the facts derived from this
assumption contradict information that is obtained from a different source, the assumption
‘a is true’ may be rejected and the converse ‘a is false’ may be assumed. This reasoning
pattern also occurs in diagnostic reasoning based on causal knowledge.

19

system task control

assumption

determination

assumption

evaluation

observation

result

prediction

external

world

assessments

required observations

predictions

hypotheses

assumptions

observation results

epistemic info

Figure 15 A generic model for reasoning with and about assumptions: GARM

 The generic model for reasoning with and about assumptions consists of four primitive
components: External world, Observation Results Prediction, Assumption Determination,
Assumption Evaluation (see Figure 15). The first two of these components represent the
object level, the last two the meta-level. The component Observation Result Prediction
reasons with assumptions, the two components Assumption Determination and Assumption
Evaluation reason about assumptions. Note that this generic reasoning model is applied,
among others, in de generic model for diagnosis GDIM presented in Section 6.2.1.
However, the model has other types of application as well. For example, on the basis of this
generic reasoning model, more specialised models have been designed for:
• a generic model for default reasoning with explicit strategic knowledge on resolution of

conflicting defaults (GDRM)
• a generic model for reasoning on the basis of a Closed World Assumption (GCWARM),

with possibilities for context-sensitive informed and scoped variants of the Closed
World Assumption

7. Supporting Software Environment

The compositional design method DESIRE is supported by a software environment. The
DESIRE software environment includes a number of facilities. Graphical design tools
support specification of conceptual and detailed design of processes and knowledge at
different abstraction levels. A detailed design in DESIRE provides enough detail to be able
to develop an operational implementation automatically in any desired environment. An
implementation generator supports prototype generation of both partially and fully
specified models. The code generated by the implementation generator can be executed in
an execution environment. Screenshots of interaction with the tools illustrate the support
the tools provide. Figure 16 shows the result of the creation (by a mouse click, and then
filling the names) of two components Agent and the External World and two links between
the components. The precise specifications of these components and links are created in
interaction with the graphical editors to make the drawing, as shown in Figures 17 and 18.
Moreover, if within one of the components a compositional structure using subcomponents
is required, by a mouse click on this component a new drawing area can be opened, where
again components can be introduced.(zoom in).

20

external world

Figure 16 Graphical design tool for process composition

Figure 17 depicts the initial specification of the Agent component in which, for example,
the input and output information types are defined. Figure 18 shows the specification of an
information link between the External World and the Agent. For example, the type of
information to be exchanged, namely action_info, is specified in this window. Figure 19
shows how information types are defined. The example information type temperatures
requires a new sort TEMP_VALUE.

Object Input Information Typ e: observation_results

Object Output Information Typ e: action_info

Additional Information Typ e: Specification:

Object Input Information Typ e: observation_result_info

Figure 17 Component editing window for a component

21

Information type: Information type:

external world

Figure 18 Editor for information links

Information type: temperatures

Information type References

Figure 19 Editor for information types

22

8. Discussion

The basic principles behind compositional multi-agent system design described in this
paper (process and knowledge abstraction, compositionality, reusability, formal semantics,
and formal evaluation) are principles generally acknowledged to be of importance in both
software engineering and knowledge engineering. The operationalisation of these principles
within a compositional development method for multi-agent systems is, however, a
distinguishing element. Such a method can be supported by a (graphical) software
environment in which all three levels of design are supported: from conceptual design to
implementation. Libraries of both generic models and instantiated components, of which a
few have been highlighted in this paper, support system designers at all levels of design.
Generic agent models, generic task models and generic models of reasoning patterns help
structure the process of system design. Formal semantics provide a basis for methods for
verification - an essential part of such a method.
 A number of approaches to conceptual-level specification of multi-agent systems have
been recently proposed. On the one hand, general-purpose formal specification languages
stemming from Software Engineering are applied to the specification of multi-agent
systems (e.g., [35], [40] for approaches using Z, resp. Z and CSP). A compositional
development method such as DESIRE is committed to well-structured compositional
designs that can be specified at a higher level of conceptualisation than in Z or VDM and,
in particular, allows for specification in terms of knowledge bases, which especially for
applications in information-intensive domains is an advantage. Moreover, designs can be
implemented automatically using automated prototype generators. In [34] an approach to
the composition of reactive system components is described. Specification of components
is done on the basis of temporal logic. Two differences with our approach are the following.
First, their approach is limited to reactive components. In our approach components are
allowed to be non-reactive as well. Another difference is that in their case specification of
the type of the composition of components is limited. In our case the task control
specification forms the part of the composition specification where the dynamics of the
composition is defined in a tailored manner, using temporal task control rules. This enables
to specify, for each composition, precisely the type of composition that is required. This is
also a difference with [35] and [40].
 On the other hand, new development methods for the specification of multi-agent
systems have been proposed. These methods often commit to a specific agent architecture.
For instance, [32] describe a language on the one hand based on the BDI agent architecture
[39], and on the other hand based on object-oriented design methods.
 In [42] an agent is constructed from components using a central message board within
the agent which manages the interaction between the agent’ s components and integrates the
activity within the agent. Our approach is more general in the sense that a component-based
architecture of an agent (e.g., the model GAM) need not to commit to such a central
message-board; if desired, it is one of the architectural possibilities. Moreover, components
within DESIRE are more self-contained in the sense that they include knowledge bases and
relate to specific inference procedures and settings. In contrast, in [42] components are
quite heterogeneous; for example, a component can be just a knowledge base, which only
gets its dynamic semantics if it is processed by another component. Another difference is
that in [42] components are specified as a type of logic programs. It is not clear how
declarative and/or procedural semantics of these programs are defined. For example, they
allow component replacement as one of the steps in dynamics. This suggests dynamic
semantics that are on the programming level; how to define such semantics on a conceptual
level is far from trivial. In our approach semantics is defined on a conceptual design level
based on traces of compositional states.

23

 The Concurrent MetateM framework [22] is another modelling framework for multi-
agent systems. A comparison is discussed for the structure of agents, inter-agent
communication and meta-level reasoning (for a more extensive comparison, see [37]).
 For the structure of agents, in DESIRE, the knowledge structures that are used in the
knowledge bases and for the input and output interfaces of components are defined in terms
of information types, in which sort hierarchies can be defined. Signatures define sets of
ground atoms. An assignment of truth values true, false or unknown to atoms is called an
information state. Every primitive component has an internal information state, and all
input and output interfaces have information states. Information states evolve over time.
Atoms are persistent in the sense that an atom in a certain information state is assigned to
the same truth value as in the previous information state, unless its truth value has changed
because of updating an information link.
 Concurrent MetateM does not have information types, there is no predefined set of
atoms and there are no sorts. The input and output interface of an object consists only of the
names of predicates. Two valued logic is used with a closed world assumption, thus an
information state is defined by the set of atoms that are true.
 In a DESIRE specification of a multi-agent system, the agents are (usually)
subcomponents of the top-level component that represents the whole (multi-agent) system,
together with one or more components that represent the rest of the environment. A
component that represents an agent can be a composed component: an agent task hierarchy
is mapped into a hierarchy of components. All (sub-)components (and information links)
have their own time scale.
 In a Concurrent MetateM model, agents are modelled as objects that have no further
structure: all its tasks are modelled with one set of rules. Every object has its own time-
scale.
 The communication between agents in DESIRE is defined by the information links
between them: communication is based on point-to-point or broadcast message passing.
Communication between agents in Concurrent MetateM is done by broadcast message
passing. When an object sends a message, it can be received y all other objects. On top of
this, both multi-cast and point-to-point message passing can be defined.
 In DESIRE, meta-reasoning is modelled by using separate components for the object
and the meta-level. For example, one component can reason about the reasoning process
and information state of another component. Two types of interaction between object- and
meta-level are distinguished: upward reflection (from object- to meta-level) and downward
reflection (from meta- to object-level). The knowledge structures used for meta-level
reasoning are defined in terms of information types, standard meta-information type can
automatically be generated.
 For meta-reasoning in Concurrent MetateM, the logic MML has been developed. In
MML, the domain over which terms range has been extended to incorporate the names of
object-level formulae. Execution of temporal formulae can be controlled by executing them
by a meta-interpreter. These meta-facilities have not been implemented yet.
 The compositional approach to agent design in this paper has some aspects in common
with object oriented design methods; e.g., [5], [17], [41]. However, there are differences as
well. Examples of approaches to object-oriented agent specifications can be found in [4],
[31]. A first interesting point of discussion is to what the difference is between agents and
objects. Some tend to classify agents as different from objects. For example, [29] compare
objects with agents on the dimension of autonomy in the following way:

‘An object encapsulates some state, and has some control over this state in that it can only be
accessed or modified via the methods that the object provides. Agents encapsulate state in just the
same way. However, we also think of agents as encapsulating behaviour, in addition to state. An
object does not encapsulate behaviour: it has no control over the execution of methods – if an object
x invokes a method m on an object y, then y has no control over whether m is executed or not – it

24

just is. In this sense, object y is not autonomous, as it has no control over its own actions. In
contrast, we think of an agent as having exactly this kind of control over what actions it performs.
Because of this distinction, we do not think of agents as invoking methods (actions) on agents –
rather, we tend to think of them requesting actions to be performed. The decision about whether to
act upon the request lies with the recipient.’ .

Some others consider agents as a specific type of objects that are able to decide by
themselves whether or not they execute a method (objects that can say ‘no’), and that can
initiate action (objects that can say ‘go’).
 A difference between the compositional design method DESIRE and object-oriented
design methods in representation of basic functionality is that within DESIRE declarative,
knowledge-based specification forms are used, whereas method specifications (which
usually have a more procedural style of specification) are used in object-oriented design.
Another difference is that within DESIRE the composition relation is defined in a more
specific manner: the static aspects by information links, and the dynamic aspects by
(temporal) task control knowledge, according to a pre-specified format. A similarity is the
(re)use of generic structures: generic models in DESIRE, and patterns (cf. [3], [23]) in
object-oriented design methods, although their functionality and compositionality are
specified in different manners, as discussed above.

References

 [1] Abadi, M., Lamport, L., Composing Specifications, ACM Transactions on Programming Languages
and Systems, Vol. 15, No. 1, 1993, pp. 73-132.

 [2] Akihik, O., Yasuo, N., Yutaka, H., Masaonri, H., and Shinichi, H., Plangent: An Appreoahc to
Making Mobile Agents Intelligent. IEEE Internet Computing 1(2), 1997.

 [3] Alexander, C. (1977). A Pattern Language. Oxford University Press.

 [4] Aridor, Y., and Lange, D.B. (1998). Agent Design Patterns: Elements of Agent Application Design.
Proc. of the Second Annual Conference on Autonomous Agents, Agents’ 98, ACM Press, pp. 108-
115.

 [5] Booch, G. (1994). Object-Oriented Analysis and Design (2nd ed.). Addison-wesley. reading, MA.

 [6] Brazier, F.M.T., Cornelissen, F., Gustavsson, R., Jonker, C.M., Lindeberg, O., Polak, B., Treur, J.,
Compositional Design and Verification of a Multi-Agent System for One-to-Many Negotiation. In:
Proceedings of the Third International Conference on Multi-Agent Systems, ICMAS'98, IEEE
Computer Society Press, 1998, pp. 49-56.

 [7] Brazier, F.M.T., Dunin-Keplicz, B., Jennings, N.R., Treur, J. , Formal specification of Multi-Agent
Systems: a real-world case. In: V. Lesser (ed.), Proc. of the First International Conference on Multi-
Agent Systems, ICMAS’ 95, MIT Press, Cambridge, MA, 1995, pp. 25-32. Extended version in:
International Journal of Cooperative Information Systems, M. Huhns, M. Singh (eds.), special issue
on Formal Methods in Cooperative Information Systems: Multi-Agent Systems, vol. 6, 1997, pp. 67-
94.

 [8] Brazier, F.M.T., Dunin-Keplicz, B., Treur, J., and Verbrugge, L.C., Modelling the internal behaviour
of BDI-agents. In: J.-J. Ch. Meyer and P.Y. Schobbes (eds.), Formal Models of Agents (Selected
papers from final ModelAge Workshop). Lecture Notes in AI, vol. 1760, Springer Verlag, 1999, pp.
36-56.

 [9] Brazier, F.M.T., Jonker, C.M., Treur, J., Formalisation of a cooperation model based on joint
intentions. In: J.P. Müller, M.J. Wooldridge, N.R. Jennings (eds.), Intelligent Agents III (Proc. of the
Third International Workshop on Agent Theories, Architectures and Languages, ATAL'96), Lecture
Notes in AI, volume 1193, Springer Verlag, 1997, pp. 141-155. Extended version in: International
Journal of Cooperative Information Systems, vol. 9, 2000, pp. 171-207.

25

[10] Brazier, F.M.T., Langen, P.H.G. van, Ruttkay, Zs., Treur, J., On formal specification of design tasks.
In J.S. Gero & F. Sudweeks (eds.), Artificial Intelligence in Design ’ 94, Dordrecht: Kluwer
Academic Publishers , 1994, pp. 535–552.

[11] Brazier, F.M.T., Langen, P.H.G. van, and Treur, J., Strategic Knowledge in Compositional Design
Models. In: J.S. Gero, F. Sudweeks (eds.), Proceedings of the Fifth International Conference on
Artificial Intelligence in Design, AID'98. Kluwer Academic Publishers, Dordrecht, 1998, pp. 129-
147.

[13] Brazier, F.M.T., Treur, J., Wijngaards, N.J.E., The Acquisition of a Shared Task Model. In: N.
Shadbolt, K. O’ Hara, G. Schreiber (eds.), Advances in Knowledge Acquisition, Proc. 9th European
Knowledge Acquisition Workshop, EKAW'96, Lecture Notes in AI, vol. 1076, Springer Verlag,
1996, pp. 278-289.

[14] Brazier F.M.T., Treur J., Wijngaards N.J.E., Modelling interaction with experts: the role of a shared
task model. In: Wahlster, W. (ed.), Proc. of the 12th European Conference on AI, ECAI'96, Wiley
and Sons, Chichester, pp. 241-245.

[15] Brown, A.W. (ed.), Component-Based Software Engineering. IEEE Computer Society Press, 1996.

[16] Castelfranchi, C., Dignum, F., Jonker, C.M. and Treur, J., Deliberative Normative Agents: Principles
and Architecture. In: N.R. Jennings, Y. Lesperance (eds.), Intelligent Agents VI. Proc. of the Sixth
International Workshop on Agent Theories, Architectures and Languages, ATAL'99. Lecture Notes in
AI, vol. 1757, Springer Verlag, 2000, pp. 364-378.

[17] Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F., and Jeremaes, P. (1994).
Object-Oriented Development: the FUSION method. Prentice Hall International: Hempel Hempstead,
England.

[18] Cornelissen, F., Jonker, C.M., Treur, J., Compositional Verification of Knowledge-based Systems: a
Case Study for Diagnostic Reasoning. In: E. Plaza, R. Benjamins (eds.), Knowledge Acquisition,
Modelling and Management, Proc. of the 10th EKAW, Lecture Notes in AI, vol. 1319, Springer
Verlag, 1997, pp. 65-80. Extended version in: Knowledge and Information Systems Journal, in press,
2002.

[19] Dardenne, A., Lamsweerde, A. van, and Fickas, S., Goal-directed Requirements Acquisition. Science
in Computer Programming, vol. 20, 1993, pp. 3-50.

[20] Darimont, R., and Lamsweerde, A. van, Formal Refinement Patterns for Goal-Driven Requirements
Elaboration. Proc. of the Fourth ACM Symposium on the Foundation of Software Engineering
(FSE4), 1996, pp. 179-190.

[21] Dubois, E., Du Bois, P., and Zeippen, J.M., A Formal Requirements Engineering Method for Real-
Time, Concurrent, and Distributed Systems. In: Proceedings of the Real-Time Systems Conference,
RTS’ 95, 1995.

[22] Fisher, M. , Representing and executing agent-based systems. In: Intelligent Agents—Proceedings of
the International Workshop on Agent Theories, Architectures, and Languages, ATAL’ 94, edited by
M. Wooldridge and N. Jennings, Lecture Notes in Artificial Intelligence, vol. 890, Springer-Verlag:
Berlin, 1995.

[23] Gamma, EE., Helm, R., Johnson, R. and Vlissides, J., Desing Patterns: Elements of reusable object-
oriented Software, Addison Wesley Longman, Reading, Massachusetts, 1994.

[24] Gray, R., Kotz, D, Cybenko, G. and Rus, D., Agent Tcl. In: W. Cockayne and M. Zyda (eds) Mobile
Agents: Explanations and Examples, Manning Publishing, 1997.

[25] Herlea, D.E., Jonker, C.M., Treur, J., and Wijngaards, N.J.E., Specification of Behavioural
Requirements within Compositional Multi-Agent System Design. In: F.J. Garijo, M. Boman (eds.),
Multi-Agent System Engineering, Proc. of the 9th European Workshop on Modelling Autonomous
Agents in a Multi-Agent World, MAAMAW’99. Lecture Notes in AI, vol. 1647, Springer Verlag, 1999,
pp. 8-27.

[26] Hooman, J., Compositional Verification of a Distributed Real-Time Arbitration Protocol. Real-Time
Systems, vol. 6, 1994, pp. 173-206.

[27] Hopkins, J., Component Primer, Communications of the ACM, 43(1):27-30, 2000.

26

[28] Jennings, N.R., Controlling Cooperative Problem Solving in Industrial Multi-Agent Systems using
Joint Intentions, Artificial Intelligence Journal 74 (2), 1995.

[29] Jennings, N.R., and M. Wooldridge (1998a), Applications of Intelligent Agents. In: Jennings, N.R.,
and M. Wooldridge (eds.) (1998b), Agent Technology: Foundations, Applications, and Markets.
Springer Verlag, pp. 3-28.

[30] Jonker, C.M., and Treur, J., Compositional Verification of Multi-Agent Systems: a Formal Analysis
of Pro-activeness and Reactiveness. In: W.P. de Roever, H. Langmaack, A. Pnueli (eds.), Proceedings
of the International Workshop on Compositionality, COMPOS’97. Lecture Notes in Computer
Science, vol. 1536, Springer Verlag, 1998, pp. 350-380. Extended version to appear in: Int. J. of
Cooperative Information Systems, 2002.

[31] Kendall, E.A., Murali Krisna, P.V., Pathak, C.V., and Suresh, C.B. (1998). Proc. of the Second
Annual Conference on Autonomous Agents, Agents’ 98. ACM press.

[32] Kinny, D., Georgeff, M.P., Rao, A.S. , A Methodology and Technique for Systems of BDI Agents.
In: W. van der Velde, J.W. Perram (eds.), Agents Breaking Away, Proc. 7th European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, MAAMAW'96, Lecture Notes in AI, vol.
1038, Springer Verlag, 1996, pp. 56-71.

[33] Kontonya, G., and Sommerville, I., Requirements Engineering: Processes and Techniques. John
Wiley and Sons, New York, 1998.

[34] Lano, K., Bicarregui, J., Maibaum, T., Fiadeiro, J., Composition of Reactive System Components.
Proceedings of the Workshop on Foundations of Component-Based Systems (FoCBS ’ 97), Zurich,
1997

[35] Luck, M., d’ Inverno, M., A formal framework for agency and autonomy. In: V. Lesser (ed.) Proc. of
the first International Conference on Multi-Agent Systems, ICMAS’ 95, pp. 254-260, AAAI Press,
1995.

[36] Martin, D.L., Cheyer, A.J. and Moran, D.B., The open agent archtiecture: A framework for building
distributed software systems, Applied Artificial Intelligence, Vol 13, 1999, pp 91-128.

[37] Mulder, M., Treur, J., and Fisher, M., Agent Modelling in MetateM and DESIRE. In: M.P. Singh,
A.S. Rao, M.J. Wooldridge (eds.), Intelligent Agents IV, Proc. Fourth International Workshop on
Agent Theories, Architectures and Languages, ATAL'97. Lecture Notes in AI, vol. 1365, Springer
Verlag, 1998, pp. 193-207.

[38] Nwana, H.S., Ndumu, D.T. Lee, L.C. and Collis, J., ZEUS: A Tool-Kit and Approach for Building
Distributed Multi-Agent Systems, In: Proceedings of the Third International Conference on
Autonomous Agents ’ 99, 1999, pp 360-361.

[39] Rao, A.S., Georgeff, M.P., Modeling rational agents within a BDI architecture. In: R. Fikes and E.
Sandewall (eds.), Proceedings of the Second Conference on Knowledge Representation and
Reasoning, Morgan Kaufman, 1991, pp. 473-484.

[40] Rice, M.D., and Seidman, S.B., Architectural issues in Component-Based Software Engineering.
Proceedings of the Workshop on Foundations of Component-Based Systems (FoCBS ’ 97), Zurich,
1997

[41] Rumbaugh, J., Blaha, M., Pelerlani, W., Eddy, F., and Lorensen, W. (1991). Object-Oriented
Modelling and Design. Prentice Hall, Eaglewoods Clifs, NJ.

[42] Skarmeas, N., and Clark, K., Component-based Agent construction. Department of Computer
Science, Imperial College, University of London, 1999.

[43] Sparling, M., Lessons learned through six years of component-based development, Communications
of the ACM, 43(10):47-53, 2000.

[44] Wooldridge, M., Jennings, N.R., Agent theories, architectures, and languages: a survey. In:
Wooldridge, M., Jennings, N.R. (eds.), Intelligent Agents, Proc. of the First International Workshop
on Agent Theories, Architectures and Languages, ATAL’ 94, Lecture Notes in AI, vol. 890, Springer
Verlag, 1995, pp. 1-39.

