
Automated Component-Based Configuration: Promises and Fallacies

Sander van Splunter? Niek Wijngaards? Frances Brazier?

Debbie Richards†
?Department of Computer Science

Vrije Universiteit Amsterdam, The Netherlands
{svsplun,niek,frances }@cs.vu.nl

†Department of Computing, Macquarie University,
Sydney, Australia

richards@ics.mq.edu.au

Abstract

Re-use of software components is standard practice in software design and development in which humans play
an important role. In many dynamic environments, however, (semi-)automated configuration of systems, is
warranted. This paper examines three such domains: Agent Factories, Web service configuration and general
software composition. The differences and similarities between these approaches, and the progress that is
being made are discussed.

1 Introduction

Re-use of software components is part of many
approaches to software design and development
((e.g.,Biggerstaff and Perlis (1997))). Most approaches
assign an important role to human developers. In dy-
namic environments (semi-)automated configuration of
systems can reduce, or even eliminate, the human effort
required. In dynamic environments (semi-)automated
configuration of systems from reusable components, is
warranted. This paper examines three such domains:
Agent Factories, Web service configuration and general
software composition. The differences and similarities
between these approaches, and the progress that is being
made, are explicitly addressed.

Agents are active entities in dynamic, changing envi-
ronments supported by the Internet. There are different
ways for agents to adapt to such changing environments
(e.g., see Splunter et al. (2003)). One is the Agent Fac-
tory approach in which first a need for change is identified
and then agents are adapted. Another is the evolutionary
approach in which agents continually adapt to their envi-
ronment through implicit learning. The first mandates an
understanding of the structure of an agent, and the com-
ponents involved. The second mandates an understanding
of the parameters involved in learning. This paper exam-
ines the first approach.

The Internet provides infrastructure to host agents and
mobile processes. It also provides the infrastructure
needed for both agents and humans to access Web ser-
vices. In many business chains a number of Web services
play a role. Web services need to be combined - config-
ured. Availability of Web services, for example, is often
crucial. If a particular Web service is not accessible an

alternative service or combination of services needs to be
found almost instantaneously. Automated configuration,
although not currently acquired, is being actively pursued.

Within component based software engineering ap-
proaches automatic configuration is not often persued,
but, when it is, it focuses mostly on the intial design. It,
thus, provides the basis for both agent and Web service
configuration.

This paper is organised as follows. Section 2 briefly
introduces and analyses three Agent Factories. Sec-
tion 3 introduces and analyses Web service configura-
tion. Section 4 introduces and analyses one approaches
to component-based configuration from a software engi-
neering perspective. Section 5 compares these three over-
all approaches to component-based configuration by fo-
cussing on strengths and weaknesses on a number of as-
pects, related to the end-products, reusable components,
and the configuration process. Section 6 concludes this
paper with directions for future research.

2 Agent Factories

Agent Factories are either services or toolkits for (semi-
)automated creation and (optionally) adaptation of soft-
ware agents. These environments are strongly related to
methodologies for agent application development. They
include support for agent modelling (e.g. AUML),
generic agent models (e.g by DESIRE, ZEUS, or InteR-
Rap) and prototype generation. Examples of prototyp-
ing environments include the ZEUS toolkit (Nwana et al.
(1998)), LEAP (Berger et al. (2001)), the (Dutch) Agent
Factory (Brazier and Wijngaards (2001)), the (Irish)
Agent Factory (Collier and O’Hare (1999)), and the (Ital-
ian) Agent Factory (Cossentino et al. (2003)). This paper

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15452881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

refers to the last three as the Dutch, Irish, and Italian agent
factoriesand describes them in more detail in this paper.

In general, agent factories produce software agents,
which are executed in the context of specific agent
plaforms.

Dutch Agent Factory. This approach focuses on au-
tomation of the creation and adaptation of compositional
agents. The nature of the components, of which an agent
is composed, is graybox. These components provide
mechanisms to implement an agent’s processes, knowl-
edge & information and control. Component composition
is regulated by explicitly defined ’open slots’ in compo-
nents & templates based on generic agent models. Com-
ponents are defined at two levels of abstraction: concep-
tual and operational. Minimal ontologies are used for
annotation of components and interfaces, without adher-
ing to standard ontologies or languages. Repositories for
building blocks have not yet been further researched; only
local re-use is supported.

The configuration process itself is automated, and in-
cludes reasoning on, and modification of, the require-
ments on the desired configuration. Configuration cre-
ation is automated, based on a generic model of design
theory: the Generic Design Model (Brazier and Wijn-
gaards (2002)). Retrieval and assembly are modelled
as separate processes. Adaptation is approached as re-
design, supported by the Generic Design Model. Com-
ponent retrieval has not yet been automated. Assembly
has been automated, partially being incorporated in the
operational architecture used for the agents. Execution of
configured agents is done by means of an agent platform.
Agent platforms for which agents have been configured
are AgentScape, FIPA-OS, and JADE.

Italian Agent Factory. The Italian Agent Factory is
based on a toolkit that supports the multi-agent system de-
sign methodology PASSI (Cossentino and Potts (2002)).

The nature of the components is graybox. Components
are configured and structured for five different configu-
ration perspectives used within PASSI: knowledge, so-
cial, computer, architectural, and resource. The first two
can be related to the conceptual level, and the remaining
three to the operational level. Conceptual components are
based on roles and tasks, operationally software compo-
nent are used for modelling. Component composition is
done by pattern merging on the conceptual level, on the
operational level code is reused linked to the conceptual
patterns. The interfaces of the software components are
locally developed and defined.

The configuration process results in a skeleton of code
that needs to be completed by a human programmer. An-
notation of the different patterns is done using AUML,
state charts, and activity diagrams. Annotation for human
desigenrs is supported by the Rational Rose tool. The cre-
ation of an extensive repository of patterns is still an open

research issue. The re-use community of the patterns is
limited to the Italian Agent Factory.

The Italian Agent Factory’s configuration creation pro-
cess is semi-automated as a support tool. Configuration
adaptation does not seem to be explicitly supported. Pat-
tern retrieval seems to be mainly done by a human de-
signer. The assembly of components is partially auto-
mated: a skeleton with partial completed code is the soft-
ware product of the Italian Agent Factory. The execu-
tion is by means of a FIPA-compliant agent platform. The
agents produced adhere to the interface standards set by
FIPA for agent platforms.

Irish Agent Factory. The Irish Agent Factory is de-
veloped as a complete system to enable Agent Oriented
Software Engineering, complete with a formal theory on
agent commitments, agent programming language, and a
run-time environment. This paper focuses on the tool to
create agents.

The Irish software components are graybox, all pro-
grammed and developed within the same methodology.
The conceptual components are modeled as roles and
tasks, time with a focus on the use of commitments. The
components’ interfaces are developed and defined locally.
Conceptually component composition is done by config-
uring a set of actuators and perceptors. Operationally
agents are created by module-based development. Dif-
ferent default sets of actuators, perceptors, and modules
are offered to support default implemnetations of differ-
ent classes of agents. Annotation is application specific
in the Irish Agent Factory’s own high level programming
language (AF-APL) with the addition of behaviour dia-
grams. Repositories of components have not been devel-
oped. Due to the specific theory, programming language,
and run-time environment the reuse community consists
only of the Irish Agent Factory.

Configuration creation is primarily done by a human
designer, where the toolkit mainly acts as a smart inter-
face. A number of default configurations is offered that
can be used for initial configuration. Component retrieval
is limited, a lookup service is associated which can (par-
tial) retrieve designs via design identifiers. Assembly is
done by either retrieving pre-fabricated configurations, or
semi-automated by the toolkit. Execution is by means of
the agent platform associated with the Irish Agent Fac-
tory.

Discussion. In the three Agent Factories discussed
above agents are developed on the basis of instantiated
’patterns’ (e.g. ’generic models’), or combinations of
agent-components. The Italian and Irish agent factories
focus on semi-automated generation; automated genera-
tion of agents is demonstrated by the Dutch agent factory.
Automated adaptation of previously configured agents is
only achieved by the Dutch Agent Factory. Nevertheless,
all three Agent Factories pave the road for component-
based agentadaptation.

All these Agent Factories produce agents for agent plat-
forms that are FIPA compliant. Each agent factory uses
its own approach to define components, interfaces, and
annotation. All agent factories provide mechanisms re-
lated to process, data/information & knowledge, and con-
trol within software agents. All agent factories distinguish
conceptual and operational levels of configuration. At the
conceptual level, the Italian agent factory merges its com-
ponents (patterns), while the Dutch and Irish agent fac-
tories combine components. All agent factories combine
components at the operational level.

All agent factories are rather small-scale, both in the
number of annotated components provided and associ-
ated (re-use) community. Annotation of components is
often not explicitly supported, but sometimes implicit in
the development of components (i.e. the Irish Agent Fac-
tory.

Not all agent factories use standard Software Engineer-
ing modelling support for creating agents. The Italians
use AUML, state charts, activity diagrams, and extended
Rational Rose. The Irish have explored the option of ex-
tending their methodology with AUML. The Dutch Agent
Factory lacks standard SE modelling support technolo-
gies.

3 Web Service Configuration

The Stencil Group1 defines web services as ”loosely cou-
pled, reusable software components that semantically en-
capsulate discrete functionality and are distributed and
programmatically accessible over standard Internet pro-
tocols”. Web services are related to the Semantic Web, in
which data is defined and linked to make it accessible and
interpretable for automated systems.

A configuration of Web services describes which Web
services combined,control, and the information exchange.
A configuration of Web services involves multiple pro-
cesses on different hosts as individual Web services are
offered and hosted by different parties. In contrast to
agents, the behaviour of both a configuration and of sin-
gle Web services is purely reactive and static. In gen-
eral, two perspectives on Web service configuration can
be identified (Srivastava and Koehler (2003)): a more
syntactic-oriented Business Process composition and a
more Semantic-Oriented service composition. The Busi-
ness Process perspective models Web services as business
processes, without attaching detailed semantics, and uses
standardised technologies to describe Web services such
as WSDL, SOAP, andUDDI. Web service configurations
are described by orchestration languages such asXLANG ,
WFSL, BPEL4WS, or WSMF. This perspective is success-
ful in human-supported discovery, composition, and mon-
itoring of Web services. The Semantic-Oriented perspec-
tive extends the Business Process perspective by identify-
ing the need of explicit semantics to enable the automa-

1http://www.stencilgroup.com/ideasscope200106wsdefined.html

tion these tasks. Standard languages (e.g.OWL) and on-
tologies (e.g.,OWL-S (formerly DAML -S)) are available
for semantically annotating Web services. This paper fo-
cuses on the two Semantic-Oriented approach discussed
below.

eFlow. eFlow (Casati et al. (2000)), developed by the
Hewlett-Packard Company, is oriented to adaptation of
workflow models of composite Web services. Web ser-
vices are treated as blackbox components. The compo-
nent structure is based on workflows: activities with a
data flow and control flow are modelled. The compo-
nent interfaces are based on standard Internet protocols,
and are described inWSDL. Component composition is
regulated using a self-defined model, in which workflow
concepts have been reused and extended. AnXML spec-
ification and aDTD to constrain syntax are used for an-
notation. The component availability is low, due to the
specificXML annotation.

eFlows main consideration is the focus on adaptation.
Adaptations is performed in the context of monitoring
Web service configuration, to minimize or eliminate hu-
man intervention. Component retrieval is done by bro-
kers using centralised repositories, and the execution and
monoring is performed by an eFlow engine.

Cardoso Cardoso and Sheth (2002) focus on the inte-
gration of new Web services in existing workflows. Web
services are blackbox components. The component struc-
ture is based on modelling activities with a data flow and
control flow, extended with annotations on the Quality
of Service (QoS). Component composition is based on
workflow integration, and supported by abstract Service
Templates. For annotation DAML-S has been used in
examples. The DAML-S Profile ontology has been ex-
tended to include more details on the QoS. This approach
has a prototype with a self-defined local repository and
discovery service, though usage of UDDI is also consid-
ered. The reuse community of the components is larger
(the additional QoS attributes are only extensions to ex-
isting standards, not rendering components incompatible
with other approaches). Component availability, includ-
ing QoS annotations, is small.

In the configuration process of Cardoso’s approach
configuration adaptation is semi-automated. The human
designer is supported in the creation and refinement of ab-
stract Service Templates. This approach is not specifically
targeted to the creation of Web service configurations
from scratch. Component retrieval is semi-automated:
based on an abstract Service Template possible Web ser-
vices for refinements are retrieved based on aspects of
QoS, similarity of textual descriptions or names, and se-
mantic similarity of inputs and outputs. The assembly and
execution a configuration is not clear.

Discussion. Within Web services configuration the ser-
vices are blackbox components with standardised inter-

faces. The component interface standards are based on
standard Internet protocols and described usingWSDL

andSOAP: generally accepted standards. The component
structure is mostly process-based: in the workflow per-
spective it consists of activities with a control and data
flow.

The components themselves are annotated in standard
annotation languages asWSDL andOWL. The latter lan-
guage is mostly used by semantic-oriented matching ap-
proaches, for which standard ontologies for Web services
are available inOWL-S. Annotating Web services is an in-
herent part of the Web service development process. Un-
fortunately, most approaches do not focus on creating rich
domain ontologies to be reused when describing other ser-
vices. A large number of Web services is available where
annotations are limited to only theWSDL descriptions. A
smaller number of components is available with semantic
rich OWL-S descriptions

The use of globally shared repositories support a global
reuse community and widely available Web services. The
communities involved in the semantic Web are still grow-
ing, which may positively influence the availability of
well-annotated re-usable Web services.

As Web services, by their very nature, can appear,
change, or disappear while being used in compositions,
the need for automated adaptation is recognised, and
progress is made. Most approaches to automated config-
uration are still in development; configuration creation is
often approached as a (simple) planning problem. Com-
ponent retrieval is semi-automated, i.e.UDDI is used as a
repository that can be queried, but human intervention is
still required to determine whether the resulting Web ser-
vice are useable. The Semantic-Oriented perspective has
extended (e.g. MatchMaker by Paolucci et al. (2002))
UDDI to handle further automated semantic querying, by
including approximate answers. Execution of Web ser-
vices configurations is done by workflow execution en-
gines, e.g.,BPWS4J, and theBPEL Orchestration Server.
For execution ofDAML -S descriptions research is still
evolving (e.g. see Gaio et al. (2003)), as the research
area is still young.

4 Component-Based Software En-
gineering

Component-based software engineering focuses, in gen-
eral, on developing components (e.g.,CORBA, Java
Beans, .NET). while software composition is often
only supported by tools, not automated, although excep-
tions are present. Examples of modelling support are
UML 2, or tools such as Rational Rose3. In this paper
Quasar(de Bruin and van Vliet (2003)), a semi-automated
approach to software composition based on feature com-
position, is discussed.

2http://www.uml.org
3http://www.rational.com

Quasar. Quasar is a tool to support top-down compo-
sition of software architectures. In this approach, an ar-
chitecture is derived to fulfill a of quality concerns. A
Quasar specific feature-solution graph is used to connect
quality requirements to solution fragments at the architec-
tural level: a form of composition knowledge. An archi-
tecture is derived by systematically composing solution
fragments. Both functional and non-functional require-
ments are addressed.

The reusable components, in this approach design so-
lutions, are often patterns but may also be individual
software components. Design solutions are represented
by use case maps (UCM) whereby both behavioural and
structural aspects are expressed. Components are dis-
tinguished from sockets and stubs, with which compo-
nent composition is regulated, via a refinement process.
Quasar usesBCOOPL(de Bruin (2003)) to specify inter-
face definitions, including pre- and post-conditions and
-processing via pre- and post-stubs. Composition tem-
plates support composition of design solutions.

Annotation of design solutions are encoded in feature-
solution graphs. These graph are not automatically gen-
erated. A number of prototype components are available.
The configuration creation process is semi-automated: ar-
chitectures are derived iteratively by first generating a ref-
erence architecture, focussing on functional requirements
followed by non-functional requirements. The choices of
which requirements to focus on, is left to the human de-
signer. This process may include backtracking to resolve
conflicting requirements.

Discussion. Component-based software configuration
is a broad field. Automated approaches in component-
based software engineering are often very domain-
specific (comparable with agent-configuration and Web
service configuration). In general, components are well-
defined structures, for which composition is explicitly
regulated by defining ’hooks’. Both components and
hooks are well-defined on a syntactical level, sometimes
involving semantic annotations (by associating features to
solutions in Quasar). Only small sets of annotated com-
ponents are available, and the more general an approach,
the more support is provided for large-scale repositories.
Simple, exact-matching, retrieval is often provided. Con-
figuration of software components is almost never fully
automated. This is due, in general, to software com-
ponents being difficult to reuse as their domain speci-
ficity conflicts with reuse genericity (Sametinger (1997)).
Assembly of software compositions is, in general, sup-
ported.

5 Comparative Analysis

Agents, services and general compositional software have
different characteristics, but also commonalities. The
comparison in this section is structured by focussing on

four aspects: component definition, component annota-
tion, component availability, and configuration process.

Component definition. Although all approaches ex-
plicitly define components, the Web service approaches
employ standards, used by a large community. The com-
ponent definition, however, is a blackbox approach, with-
out providing hooks for composition: composition re-
quires new configuration languages. In the Agent Facto-
ries and component-based software engineering compo-
nents are graybox, providing hooks for composition. All
approaches distinguish conceptual and operational levels
in their component definitions.

Web services are intended to be a globally reused, in an
open domain. The Web service community builds on the
existing (Web-)protocols, e.g. SOAP, HTTP, while the
agent community has inter-agent protocols, but have no
standards for the interfaces of the components of which
agents themselves are composed. The software compo-
sition approach provide no restrictions on domain and/or
interfaces, yet automated configuration is limited to spe-
cific domains of application.

Component annotation. The adoption of standards
for annotation facilitates the development of automated
configuration processes. Only the Web service com-
munity has emerging computer-interpretable annotation
standards, the other approaches do not as yet. Human-
understandable annotations of software engineering, like
UML, are widely applied and accepted (broader than the
Web service annotation standards). The annotations of the
Web service communities do not extend these SE stan-
dards. Within the Agent modelling community the SE
annotations are more generally accepted (e.g. AUML).

Component availability. Automated configuration of
software depends on the availability of configurable soft-
ware components: a critical mass is needed for auto-
mated configuration to be successful. Annotated Web ser-
vices are becoming more widely available, due to a large
supportive community and the creation of semantic de-
scriptions being part of the development process of Web
services. Agents, however, are often developed without
a focus on re-usability of agent-components, leading to
scarce availability of annotated agent-components. Soft-
ware components are being developed in large quantities,
around the world, but are usually not geared for auto-
mated reuse, lacking computer-interpretable annotations.

Configuration processes. Fully automated configura-
tion is not widely supported. All communities research
automated adaptation, whereby the agent community of-
ten focuses on learning algorithms without structural
adaptation. The Web service community focuses on
adaptation, mostly studied in the context of business-
processes. Component-based software engineering has

traditionally had its main focus semi-automated adapta-
tion, but is moving towards automated adaptation (e.g.,
see also the developments in self-managing, and self-
healing systems).

Discovery and retrieval of software components is im-
portant. Annotation of components will facilitate their au-
tomatic discovery and retrieval. The Semantic Web com-
munity experiments with public services, and uses rea-
soning about the annotations. Within the Agent Factories
retrieval of re-usable components is not extensively stud-
ied, and no large repositories are publicly available. For
software-composition communities repositories are avail-
able, however mainly for computer-supported discovery
and retrieval. For automated discovery and retrieval the
repositories are often limited in size and non-public.

6 Discussion & Future Work

The comparison is limited, discusses the issues involved
in each of the approaches. Internet applications require
flexibility to accomodate changes in their environment.
As manual adaptation is not pragmatic when multitudes
of agents and Web services are in use, automated adap-
tation becomes a necessity. Unfortunately, the current
state of the art, even in software engineering, does not in-
clude fully automated component-based adapation. Cur-
rent research focuses on component-based configuration
of agents, Web services, and software composition: a pre-
condition for adaptation. Progress has been made in au-
tomation of component-based configuration.

Automated component-based configuration of, e.g.,
software agents, entails a thorough understanding of both
configuration processes, and the components to be config-
ured. The agent community has made the most progress
in automation of the configuration process. The Web
service community has made the most progress in de-
velopment and annotation and in the discovery and re-
trieval of these components. The software composition
community has made the most progress in structuring
and modelling components, and on supporting the hu-
man designer. Interdisciplinary research may be most
fruitful, when (1) combining configuration-expertise with
annotation-expertise, (2) generalising and standardising
reusable, configurable, components, and (3) when the
current structuring and modelling practices of SE are
used. Once automated component-based configuration
has proven to be feasible, research can focus on auto-
mated component-based adaptation as a new challenge.

Acknowledgements

The authors wish to thank Marta Sabou for her work
on Web service configuration. The authors are also
grateful to the support provided by Stichting NLnet,
http://www.nlnet.nl/.

References

N. Berger, B. Bauer, and M. Watzke. A scalable
agent infrastructure. In2nd Workshop on Infrastruc-
ture for Agents, MAS and Scalable MAS. Autonomous
Agents.01, Montreal, 2001.

T. Biggerstaff and A. Perlis, editors.Software Reusabil-
ity: Concepts and models, volume 1. ACM Press, New
York, 1997.

F.M.T. Brazier and N.J.E. Wijngaards. Automated servic-
ing of agents.AISB Journal, 1(1):5–20, 2001. Special
Issue on Agent Technology.

F.M.T. Brazier and N.J.E. Wijngaards. Automated (re-
)design of software agents. In J.S. Gero, editor,Pro-
ceedings of the Artificial Intelligence in Design Con-
ference 2002, pages 503–520. Kluwer Academic Pub-
lishers, 2002.

J. Cardoso and A. Sheth. Semantic e-workflow com-
position. Technical report, LSDIS Lab, Computer
Science Department, University of Georgia, 2002.
http://chief.cs.uga.edu/˜jam/webwork/geneflow/papers/CS02-
20Composition20- 20TR.pdf.

F. Casati, S. Ilnicki, and L. Jin. Adaptive and
dynamic service composition in eflow. HP
Technical Report HPL-2000-39, HP, 2000.
http://www.hpl.hp.com/techreports/2000/HPL-2000-
39.pdf.

R.W. Collier and G.M.P. O’Hare. Agent factory: A re-
vised agent prototyping environment. In10th Irish
Conference on Artificial Intelligence & Cognitive Sci-
ence, University College Cork, Ireland, 1999.

M. Cossentino, P. Burrafato, S. Lombardo, and
L. Sabatucci. Introducing pattern reuse in the design
of multi-agent systems. In R. Kowalczyk, J.P. Muller,
H. Tianfield, and R. Unland, editors,Agent Technolo-
gies, Infrastructures, Tools, and Applications for E-
Services: NODe 2002 Agent-Related Workshops, Er-
furt, Germany, October 7-10, 2002., volume 2592 of
Lecture Notes in Artificial Intelligence (LNAI), pages
107–120, 2003.

M. Cossentino and C. Potts. A case tool supported
methodology for the design of multiagent systems.
In Proceedings of the 2002 International Confer-
ence on Software Engineering Research and Practice
(SERP’02), Las Vegas, NV, USA, 2002.

H. de Bruin. Bcoopl: A language for controlling compo-
nent interactions.The Journal of Supercomputing, 24
(2):131–139, 2003.

H. de Bruin and H. van Vliet. Quality-driven software
architecture composition.Journal of Systems and Soft-
ware, 66(3):269–284, 2003.

S. Gaio, A. Lopes, and L Botelho. From daml-s to
executable code. In B. Burg, J. Dale, T. Finin,
H. Nakashima, Padgham L., C. Sierra, and Willmott
S., editors,Agentcities: Challenges in Open Agent En-
vironments, pages 25–31. Springer-Verlag, 2003.

H.S. Nwana, D.T. Ndumu, and L.C. Lee. Zeus: An ad-
vanced tool-kit for engineering distributed multi-agent
systems.Applied AI, 13(1/2):129–185, 1998.

M. Paolucci, T. Kawamura, T.R. Payne, and K.P. Sycara.
Semantic matching of web services capabilities. In
Proceedings of the International Semantic Web Con-
ference 2002, pages 333–347, 2002.

J. Sametinger.Software engineering with reusable com-
ponents. Springer Verlag, New York, 1997.

S. van Splunter, N.J.E. Wijngaards, and F.M.T. Bra-
zier. Structuring agents for adaptation. In E. Alonso,
D. Kudenko, and D. Kazakov, editors,Adaptive Agents
and Multi-Agent Systems, volume 2636 ofLecture
Notes in Artificial Intelligence (LNAI), pages 174–186.
Springer-Verlag Berlin, 2003.

B. Srivastava and J. Koehler. Web service composition -
current solutions and open problems. InICAPS 2003
Workshop on Planning for Web Services, pages 28–35,
2003.

