
AUTOMATED (RE-)DESIGN OF SOFTWARE AGENTS

FRANCES M.T. BRAZIER AND NIEK J.E. WIJNGAARDS
Intelligent Interactive Distributed Systems Group, Division of
Computer Science, Faculty of Sciences, Vrije Universiteit Amsterdam,
de Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands
Email: {frances, niek}@cs.vu.nl URL: http://www.iids.org

Abstract. Autonomous software agents are dynamic entitities: they are
capable of discovering a need for change - for additional knowledge
and/or functionality on the basis of their analysis of specific situations.
Agent factories are capable of redesigning and reactivating agents on
the basis of the information provided by agents and/or knowledge
available within the agent factories. As a result agents may evolve in
ways their designers could never have pre-conceived. The artefacts
themselves are dynamic in a way that can not be compared to any
other type of design in current design practice. A number of prototype
agents and agent factories have been built to evaluate the feasibility of
this concept and its consequences.

1. Introduction

Design and re-design are often intertwined. In a changing world in which
needs, desires, requirements, manufacturing processes and technology
continually change, designs often need to adapt. New designs are often
based on existing designs: the question as to whether a design process is a
re-design process or not, is not always easily answered or relevant. Human
designers identify new needs and desires, and designs evolve.

In some cases of automated design processes, however, the situation may
slightly differ. Automated software design is an example of a domain in
which reference models, components and rules are used to automatically
design an artefact (software). In many cases the design process is
deterministic and can be fully tracked. It becomes more interesting when
the software designed has a will of its own. This is the case for software
agents. Intelligent software agents are autonomous pieces of code: they
typically act in unpredictable environments on the basis of changing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15452880?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 FRANCES BRAZIER AND NIEK WIJNGAARDS

knowledge. They are designed to learn from their interaction with their
environment and communication with other agents. They can also be
designed to discover their own limitations. They have a degree of self-
awareness and evolve.

This paper describes an approach to automated re-design of agents, based
on agents' self-awareness. Agents are capable of discovering a need for
additional knowledge and/or functionality. On the basis of their analysis of
specific situations and their mandates (the need to act in a given situation)
agents can decide to be adapted. Agent factories provide this functionality:
agent factories are capable of adapting agents' code and state and re-
activating them. Agent factories perform the re-design. The agents
themselves decide which agent factory they trust to perform a re-design
taskº. In contrast to non-automated design the artefact has acquired an active
role in the design process. As a result an agent may evolve in a way its
designer could never have pre-conceived: the design artefact becomes a
dynamic artefact.

This paper describes the principles behind adaptive artefacts of the kind
described above. Section 2 addresses the phenomenon of self-awareness in
agents, Section 3 sketches the re-design process and Section 4 illustrates this
process for an information retrieval agent. Section 5 discusses the results
and places the results in the context of current and future research.

2. Agents’ Self-Awareness

This section focuses on the role/meaning of self-awareness of agents.
Section 2.1 introduces the concept of an adaptive system. Section 2.2
describes the types of knowledge, information and functionality needed to
acquire self-awareness. Section 2.3 discusses degrees of self-awareness.

2.1 ADAPTIVE SYSTEMS

Adaptive systems, or dynamic artefacts, are artefacts that change due to
changes in their environment. Examples of dynamic artefacts include
buildings that adjust lighting and temperature on the basis of occupation of
rooms (Mozer, 1999), elevators that second-guess the behaviour of their
clientele, auto-pilots of aeroplanes, which take, and relinquish, control to the
human pilots, or self-configuration of autonomous (spacecraft) systems
(Williams and Nayak, 1996).

º In theory the agent factory could be part of each and every agent but in current
prototypes these functions have been separated.

AUTOMATED (RE-)DESIGN OF SOFTWARE AGENTS 3

Software agents are a specific type of autonomous systems that adapt as
a result of interaction with their environment and/or communication with
other agents. Personification is an example: information gathering agents
often maintain profiles of other agents (possibly human (Wells and Wolfers,
2000)), and adapt these profiles on the basis of interaction with these agents.

Another example of adaptive agent behaviour, e.g. by (Rus, Gray and
Kotz, 1996) in distributed information gathering, occurs when an agent is
capable of abandoning a previous goal or plan, and adopting a new goal or
plan which better fits the current situation of the agent. Most often the
learning techniques involved determine the type and level of adaptation e.g.
as described by (Reffat and Gero, 2000; Grefenstette, 1992).

2.2 SELF-AWARENESS: TYPES OF KNOWLEDGE, INFORMATION AND
FUNCTIONALITY

Self-aware agents need to have the following knowledge, information, and
functionality:

- Self-awareness knowledge: the agent must have knowledge that
describes the agent's functionality and behaviour, as well as non-
functional characteristics of the agent.

- Monitoring information: the agent must be able to monitor its
functioning and behaviour in a given situation.(e.g. when it wishes to
be adapted and re-activated),

- Self-assessment knowledge: the agent must have knowledge that
determines the extent to which an agent may function in a given
situation

- Need formulation knowledge: the agent must have knowledge with
which needs for adaptation can be determined

- Integration: self-awareness knowledge, monitoring information, self-
assessment knowledge, and need formulation knowledge must be
integrated in the (internal) functioning of a self-aware agent.

- Communication: the agent must have knowledge of the way in which it
can choose an agent factory, and interact with an agent factory (e.g.
protocols and languages for either an intermediary or direct interaction
with the factory).

How this knowledge, information and functionality is acquired depends
on an agent’s design. If, for example, an agent’s architecture is based on a
generic agent model (e.g. Brazier, Jonker and Treur, 2000) with a specific
component for internal "own process control", this component may be a
perfect candidate for self-awareness knowledge and functionality.

4 FRANCES BRAZIER AND NIEK WIJNGAARDS

2.3 DEGREE OF SELF-AWARENESS

An adaptive agent needs to be aware of its own abilities (which may also be
named skills, or tasks, or behaviours, etc.). The knowledge about its abilities
may be simple in form (e.g., facts), or more elaborate (e.g., a model of its
own behaviour). Most important is that an adaptive agent is able to
recognise, or predict, situations in which it may, or may not, function
correctly.

Self-awareness knowledge is imprecise by nature. Although the absence,
or presence, of certain abilities may result in a strong belief in success or
failure, only by actually performing a certain task, can an adaptive agent
discover actual success.

Irrespective of the form of the knowledge, an agent has a certain degree
of self-awareness. At the one extreme of the spectrum is total non-
awareness: the agent does not know which factors determine success or
failure of a task. At the other extreme of the spectrum is total self-
awareness: the agent fully understands its own abilities, and is able to
predict with a high degree of certainty whether or not it is able to perform a
certain task.

The less precise an agent’s self-awareness knowledge, the less precise its
needs for adaptation can be formulated, and the more responsibility is
placed on an agent factory.

3. Adapting Agents

An agent factory is a facility that creates, and modifies, software agents.
Section 3.1 describes the principles on which the agent factory is based.
Section 3.2 describes the use of building blocks in the agent factory.

3.1 AGENT FACTORY

An agent factory designs and adapts agents. The agent factory is based on
five underlying assumptions (Brazier and Wijngaards, 2001a): (1) agents
have a compositional structure, (2) re-usable parts of agents can be
identified, (3) two levels of descriptions are used: conceptual and detailed,
(4) properties and knowledge of properties are available, and (5) no
commitments are made to specific (programming or modelling) languages
and/or ontologies.

The design of an agent within the agent factory is based on configuration
of building blocks: a blueprint. Building blocks include cases and partial
(agent) designs (cf. generic models / design patterns). This approach is
related to design patterns (e.g., Gamma, Helm, Johnson and Vlissides, 1994;

AUTOMATED (RE-)DESIGN OF SOFTWARE AGENTS 5

Peña-Mora and Vadhavkar, 1996), libraries of software with specific
functionality (e.g., problem-solving models (Schreiber, Akkermans,
Anjewierden, de Hoog, Shadbolt, van de Velde, and Wielinga, 1999), and
generic task models (Chandrasekaran, 1986; Brazier, Jonker, and Treur,
2000)).

The configuration-based approach relates to, e.g., model-based re-
configuration (Stumptner and Wotawa, 1998), design using re-usable design
patterns (Peña-Mora and Vadhavkar, 1996), and IBROW (Motta, Fensel,
Gaspari and Benjamins, 1999), in which re-usable parts of problem-solving
methods are 'configured'.

An agent factory includes a number of processes, some of which are
involved with account management (which client requires which quality of
service), agent packaging and handling (how to prepare an agent for transfer
to an agent platform), etc. One of the processes, the design centre, is
responsible for the (re-)design of agents. The design centre is based on a
model for (re-)design of compositional systems (Brazier, Jonker, Treur and
Wijngaards, 2001), in which explicit reasoning about strategies,
requirements, and artefact descriptions is modelled. The blueprint of an
agent functions as both its functional specification, but also as (part of the)
design rationale concerning the agent (Peña-Mora and Vadhvakar, 1996).

Within the design centre, needs for adaptation are interpreted into
disambiguated, apparently non-conflicting, and specific requirements on the
basis of which the blueprint of an agent may be modified. Strategies play an
important role in this process: not only are strategies needed to decide when
to manipulate requirements, and then to manipulate blueprints, but strategic
knowledge is also needed to guide the re-design process: how to (re)solve
conflicting requirements, what to modify in a blueprint to satisfy given
requirements, etc.

The needs for adaptation, specified by an adaptive agent, are translated
into sets of qualified requirements, on the basis of which the blueprint of the
agent is modified. The process of modifying an agent's blueprint entails
manipulating the configuration of conceptual building blocks, the
configuration of detailed building blocks, and the mapping between these
configurations. The library of building blocks is limited in size, and building
blocks with specific characteristics (functional and non-functional) need to
be retrieved, to be (correctly) configured with other building blocks.
Partially matching building blocks may need to be adapted (by other
building blocks) before combined with configured building blocks, etc.

The co-ordination of the process of manipulation of sets of qualified
requirements and the manipulation of blueprints, is not trivial. When to
switch manipulation processes, how to synchronise parallel activities, how
to allocate time and resources to each manipulation process, are of
importance.

6 FRANCES BRAZIER AND NIEK WIJNGAARDS

Strategic knowledge is needed to decide when to issue which design
strategies to one, or both, manipulation processes. And within each
manipulation process, strategic knowledge is needed to decide what to work
on, and when to do what. For example, multiple interpretations may exist for
a need for adaptation, each interpretation alternative may be in a different
'context'. Strategic knowledge is needed to determine which context to
choose.

3.2 BUILDING BLOCKS

In the agent factory building blocks are either components with open slots,
fully specified components, and/or a combination of both. Building blocks
are defined at one of the two levels of detail: conceptual and detailed. As a
result, a mapping is needed between building blocks at conceptual level and
building blocks at detailed level. (Note that this mapping may be structure
preserving, but that this is not necessarily ideal.) A detailed description of a
building block includes the operational code For each conceptual
description, a number of detailed descriptions may be devised and vice
versa. These detailed descriptions may differ in the operational language
(e.g., C, C++, Java), but also in, for example, the efficiency of the
operational code. The conceptual descriptions may differ in the modelling
paradigm (e.g., UML, DESIRE), but also in, e.g., the detail in which an
agent's functionality is modelled. In the current prototypes of the agent
factory building block descriptions in DESIRE, UML, C, C++ and Java are
supported.

Building blocks themselves are configurable, but cannot be combined
indiscriminately. The open slot concept is used to regulate the ways in
which components may be combined. An open slot in a component has
associated properties at both levels of detail that prescribe the properties of
the entity to be 'inserted'.

Specific 'glue' may be needed to aid the insertion of a building block in
an open slot. Glue, which exists at both conceptual and detailed levels of
design, is used to transform certain information to the correct
format/ontology.

A mapping between building blocks relates a building block containing a
conceptual description to a building block containing a detailed description.
The mapping relates open slots of the conceptual building block to the open
slots in the detailed building block.

4. Example

The examples in this section focus on a self-aware information retrieval

AUTOMATED (RE-)DESIGN OF SOFTWARE AGENTS 7

agent and an agent factory*. A scenario is described in which a self-aware
information retrieval agent discovers a need to adapt, finds and enters an
agent factory and is adapted according to its needs. Afterwards, the agent
continues its task. The elements in the scenario are shown in Figure 1. In
this example, it is assumed that information is annotated by an ontology
framework designed for the Semantic Web.

Agent
Factory

client

information
retrieval
agent

information
source 2

information
source 1

Figure 1. The actors in the scenario: a client of the information retrieval agent, the
information retrieval agent, an agent factory, and a number of information sources.

Section 4.1 describes the scenario from the point of view of the adaptive
information retrieval agent. The re-design process itself, is performed by an
agent factory. Section 4.2 describes the re-design part of the scenario, from
the point of view of the agent factory. Section 4.3 describes other examples.

4.1 EXAMPLE OF AGENT SELF-AWARENESS

A client, possibly a human agent, issues a request for an airline reservation
to an information retrieval agent. The information retrieval agent consults
the specified information source, and discovers it cannot interpret
information in that information source. Suppose, for example, that the
information source is expressed in a Dutch vocabulary for seat-reservation
of aeroplanes, and the agent only understands an English version of the
vocabulary.

The information retrieval agent has a certain degree of self-awareness.
The extent, or granularity, of its self-awareness influences the ability of the
agent to formulate its needs for adaptation.

In our example the information retrieval agent possesses the following
facts concerning interaction with other agents and external objects:

I_speak_protocol(http)

I_speak_protocol(fipa_acl_v1.0b)

I_understand_ontology_framework(xml)

* Issues such as security, authorisation, and payment (Wayner, 1995) are not
discussed in this paper.

8 FRANCES BRAZIER AND NIEK WIJNGAARDS

I_understand_ontology_framework(rdf)

I_understand_ontology_framework(daml+oil)

I_understand_ontology(airplane_seat_reservations_English)
The information source, e.g., annotated in DAML+OIL (Horrocks, van

Harmelen, Patel-Schneider, Berners-Lee, Brickley, Connoly, Dean, Decker,
Fensel, Hayes, Heflin, Hendler, Lassila, McGuinness and Stein, 2001) has a
meta-description which states the following characteristics of its contents:

expressed_in_ontology_framework(daml+oil)

expressed_in_ontology(airplaine_seat_reservations_Dutch)
The information retrieval agent is able to determine, on the basis of this

information, that it is unable to understand the information source. Although
it may download the specific ontology (e.g., by using Sesame by Broekstra,
Kampman and Van Harmelen, 2001), it doesn't know how to use the
ontology, as it doesn't have any understanding of the ontology. The agent
formulates a request for adaptation to the agent factory, in which the
following is expressed:

request(possibility_for_adaptation)

required_functionality(I_understand_ontology(
airplane_seat_reservations_Dutch))

The agent factory acknowledges the request and the information retrieval
agent contacts a directory service, discovers an agent factory close by that it
trusts and is capable of performing the desired change, and migrates to this
agent factory, where it is subsequently adapted. The information retrieval
agent is, in this example, not 'alive' during its adaptation. When the agent
factory has finished adapting the information retrieval agent, the agent is
sent back to its original location, and 'awakened'.

The information retrieval agent becomes awake, receives a message from
the agent factory with details about the success of its adaptation, and adds a
new fact to its self-awareness knowledge:

I_understand_ontology(airplane_seat_reservation_Dutch)
The information retrieval agent continues its original task, and consults

the information source in order to satisfy the request sent by its client.

4.2 AGENT FACTORY EXAMPLE

Agents with a high degree of self-awareness are able to formulate specific
needs for adaptation. For example, the information retrieval agent issued the
following requirements for adaptation:

request(possibility_for_adaptation)

required_functionality(I_understand_ontology(
airplane_seat_reservations_Dutch))

For an agent to be adapted, yet retain its 'memory' after adaptation, an

AUTOMATED (RE-)DESIGN OF SOFTWARE AGENTS 9

important issue needs to be resolved. This involves not only sending its
blueprint to the agent factory, but also sending its memory (because its
memory may need to be changed to 'fit' its adapted blueprint).

It is assumed that the blueprint of the information retrieval agent has
become available to the agent factory. On the basis of the blueprint of the
information retrieval agent, and the desired adaptation, the agent factory
adapts the blueprint of the agent. This involves a number of steps.

One of the first steps is refining the needs for adaptation into more
specific requirements. E.g., the need for adaptation

required_functionality(I_understand_ontology(
airplane_seat_reservations_Dutch))

may be refined into a qualified requirement as shown below:
requirement(hard, interpret ontology(

airplane_seat_reservations_Dutch)
as ontology(

airplane_seat_reservations_English))
That is, as both ontologies are quite similar, a mapping may be devised

by which the Dutch ontology is interpreted in terms of the English ontology.
This requirement may be further refined, resulting in a set of qualified
requirements which can be (temporarily) committed to by the agent factory.

The blueprint of the agent is modified in accordance with this more
specific set of qualified requirements. Figure 2 shows part of the conceptual
building block configuration of the agent before it went to the agent factory,
by only focussing on functional aspects (not including information flow
within the agent). The abbreviation "BB/kb" denotes a conceptual building
block containing a knowledge-base; "BB/comp" denotes a conceptual
building block containing a component, which may be composed of other
components.

The agent is based on a generic agent model (Brazier, Jonker and Treur,
2000), in which separate processes are distinguished for control of the agent
(own process control), interaction with objects in the external world (world
interaction management), interaction with agents (agent interaction
management), and specific tasks of an agent (agent specific task). In
addition processes for maintenance of information on the world, or other
agents are distinguished (not present in this specific agent).

The adaptation of an agent is a re-design process. The re-design process
within the Agent Factory is based on the generic model of design (Brazier,
Langen, Ruttkay and Treur, 1994). This model explicitly distinguishes
between reasoning about the overall co-ordination of the (re-)design
process, manipulation of sets of qualified requirements, and manipulation of
blueprints.

10 FRANCES BRAZIER AND NIEK WIJNGAARDS

BB
information

retrieval
agent

opc slot

wim slot

ast slot

BB/kb: agent identity determination

BB/kb: interpret client requests

BB/kb: kb combo

BB/kb: self-awareness determination

BB/comp: http world interaction

BB/kb: kb combo

BB/kb: simple http info search

aim slot BB/kb: client interaction management

BB/comp: sequence

BB/comp: daml+oil interpretation

BB/kb: airplane-seat-reservation_English

Figure 2. Part of the initial building block configuration of
the information retrieval agent.

Although an agent is configured from building blocks, many alternatives
may be considered during the re-design of an agent's blueprint. Strategic
knowledge is used to guide the re-design process (Brazier, Langen and
Treur, 1998; Brazier, Splunter and Wijngaards, 2001).

As an example of a situation in which strategic knowledge is needed,
consider the following. Although the original version of the agent
understands the English ontology for aeroplane seat reservations, this
understanding is based on an old version of that ontology. For both the
English and Dutch ontologies, new versions are available. The issue to be
resolved is whether the old version of the Dutch ontology is used, or the
English version is updated first, and then the new version of the Dutch
ontology is used. The agent has not specified any need for adaptation
concerning an update of its ontologies. As the agent is being re-designed, it
is not available for comments, so it cannot aid in resolving the issue. The
agent factory’s strategic knowledge is responsible for resolving this issue.

The re-design process iterates between manipulating sets of qualified
requirements, and manipulating blueprints (in order to satisfy requirements
from a temporarily committed-to set of qualified requirements). After a
number of these iterations, a blueprint has been devised which satisfies a set
of qualified requirements, which is an interpretation of the needs for
adaptation. Figure 3 shows the resulting conceptual building block
configuration after adaptation of the agent by the agent factory.

The blueprint of an agent consists of both a configuration of conceptual
building blocks and a configuration of detailed building blocks. Strategic
knowledge is required to decide when to focus on which of the two
configurations (either conceptual or detailed) of building blocks. In this
example, the decision is to first complete the configuration of conceptual

AUTOMATED (RE-)DESIGN OF SOFTWARE AGENTS 11

building blocks before modifying the configuration of detailed building
blocks.

BB
information

retrieval
agent

opc slot

wim slot

ast slot

BB/kb: agent identity determination

BB/kb: interpret client requests

BB/kb: kb combo

BB/kb: self-awareness determination

BB/comp: http world interaction

BB/kb: kb combo

BB/kb: simple http info search

aim slot BB/kb: client interaction management

BB/comp: sequence

BB/comp: daml+oil interpretation

BB/kb: airplane-seat-reservation_English

BB/kb: kb combo

BB/kb: airplane-seat-reservation_Dutch

Figure 3. Part of the resulting building block configuration of
the information retrieval agent.

The rationale for this decision being that modifications in the
configuration of detailed building blocks are more difficult to accomplish
(and revoke), than modifications to the configuration of conceptual building
blocks. With respect to the relation between conceptual and detailed
building blocks another strategy is employed:

New conceptual building blocks, need to be related to detailed building
blocks for which a number of specific non-functional properties are the
same (in this case: programming language and slot format) as in the detailed
building blocks in the current configuration.

In our case this ensures that the agent is built entirely from detailed
building blocks written in, e.g., Java and adhering to a specific format for
the slots of the detailed building blocks. This strategy should most likely be
replaced by the strategy that:

New conceptual building blocks, need to be related to detailed building
blocks with non-functional properties that can co-exist with the non-
functional properties (in this case: programming language and slot format)
of the detailed building blocks in the current configuration.

The latter, alternative strategy would make it possible for, e.g., detailed
building blocks written in Prolog to be 'wrapped' by a Java-based Prolog
interpreter, and used in conjunction with other Java-based detailed building
blocks.

A problem that may occur, is when none of the related detailed building
blocks can be combined with the detailed building blocks in the current
configuration. Again strategic knowledge is needed to decide what to do,

12 FRANCES BRAZIER AND NIEK WIJNGAARDS

e.g., should alternatives be sought for detailed building blocks in the current
configuration, or should the configuration of conceptual building blocks be
modified? In the current example the last option was chosen.

The assembly process is a subprocess of the agent factory, which
assembles an executable agent on the basis of the configuration of detailed
building blocks and compiles this into executable code. In the current
prototype, this is a fairly straightforward process. However, during assembly
incompatibilities between detailed building blocks may be discovered. Such
incompatibilities are resolved by reactivating the re-design process. The
binary, executable version of the agent, plus the memory of the information
retrieval agent, is used to 'awaken' the agent in its original location with its
new functionality.

4.3 OTHER EXAMPLES

A self-aware agent may have knowledge about its own self-awareness: its
degree and extent of self-awareness with respect to different situations. This
enables an agent to formulate a need for adaptation concerning precisely this
aspect. For example, if an agent notices it inability to succesfully perform a
number of tasks, it may formulate a need for adaptation to this purpose.

A self-aware agent may also employ an agent factory to (temporarily)
remove part of its functionality, e.g. because it is too large (in binary size, an
important aspect for mobile self-aware agents), or too computationally
expensive. At a later point in time, it may request to have the functionality
re-installed.

5. Discussion and Future Research

The agent factory is compared to a number of related approaches in Section
5.1, after which our research on agent factories is compared to our previous
research. Results of this paper are discussed in Section 5.3.

5.1 COMPARISON

The agent factory can be compared to component-based development, agent
construction kits, software reusability, case-based reasoning, and
configuration design.

The agent factory's approach to combining components seems similar to
the approach taken in component-based development (CBD) of software
(Sparling, 2000). One distinction with our approach is that our approach
includes annotations of components at two levels of abstraction (conceptual
and operational). In CBD, interfaces are described for components (which

AUTOMATED (RE-)DESIGN OF SOFTWARE AGENTS 13

are independent of an operational language); this correlates to the open slots
in components. From our perspective CBD provides a useful means to
describe operational descriptions of the building blocks used by the agent
factory.

Currently a relatively large number of tools and/or frameworks exists for
the (usually semi-automatic) creation of agents, however not automated
adaptation. Examples include e.g. AgentBuilder (Reticular Systems, 1999),
D'agents/AgentTCL (Gray, Kotz, Cybenko, and Rus, 1997), ZEUS (Nwana,
Ndumu, Lyndon, and Collis, 1999), NOMADS (Suri, Bradshaw, Breedy,
Groth, Hill, Jeffers, Mitrovich, Pouliot and Smith, 2000), Sensible Agents
(Barber, McKay, MacMahon, Martin, Lam, Goel, Han and Kim, 2001), and
Tryllian's Agent Development Kit (Tryllian, 2001). All of these approaches
commit to a specific operational description of agents, and usually also
commit to a specific conceptual description of their agents. The agent
factory does not make such commitments, which makes the agent factory
more general purpose (with all the common advantages and disadvantages).

The agent factory aims at pragmatically circumventing a number of
issues related to software reusability (e.g., Biggerstaff and Perlis, 1997). A
major problem is annotating reusable pieces of software such that they can
be retrieved at a later time (by other people) and reused with a minimal
number of changes (Peña-Mora and Vadhvakar, 1996). In the agent factory
the latter is endeavoured as well. The former is currently solved in a
pragmatic way: components are annotated, and, when needed, a mapping is
provided to other annotations. This, however, is not a scalable solution, and,
as such, one of our current foci of research. An important decision
concerning standardisation is that the agent factory does not aim to adhere
to one specific standard, but a number of standards.

In case-based reasoning approaches (e.g., Kolodner, 1993; Maher and
Pu, 1997) libraries of cases are consulted to find a case which matches a
problem, upon which the retrieved case is adapted. This approach differs
from the agent factory in that cases are modified internally, instead of
combined with other cases. Techniques for retrieving cases from case
libraries are, of course, relevant to retrieving components from libraries.

The approaches taken by design-as-configuration (e.g., as described in
(Stefik, 1995), CommonKads (Schreiber, Akkermans, Anjewierden, de
Hoog, Shadbolt, van de Velde, and Wielinga, 1999), and elevator
configuration (Schreiber and Birmingham, 1996)) focus on constructing a
satisfactory configuration of elements on the basis of a given set of
requirements (also named: constraints). In most of these approaches no
explicit manipulation of requirements is present, nor is a multi-levelled
description of the elements taken into account. Models and theories on
configuration-based design are relevant to the agent factory, in particular to
the processes involved in combining conceptual and operational

14 FRANCES BRAZIER AND NIEK WIJNGAARDS

descriptions.

5.2 COMPARISON TO PREVIOUS RESEARCH

Previous research (Brazier, Jonker and Treur, 2000; Brazier, Jonker, Treur
and Wijngaards, 2000 & 2001) focussed on automated redesign of multi-
agent systems at a conceptual level. The current research extends this work
in three aspects.

The first distinction with previous work is that the agent factory no
longer focuses on re-designing agents on the basis of first principles at a
conceptual level. The agent factory uses building blocks to construct, and
adapt, agents. Building blocks are reusable parts of agents, ranging from
skeletons for larger parts of agents (i.e., templates) to specific functionality
(i.e., components).

The second distinction with previous work is a broadening of the scope
of the re-design process. The agent factory modifies not only the conceptual
description of an agent, but also its detailed description (operational code).
This necessitates knowledge about the relationship between the conceptual
description and detailed description in a template or component, and
knowledge related to practical implications of design choices.

The third distinction with previous work is that the client of the re-design
process is not available for consultation during the re-design process, as it is
the subject of the re-design process as well. The redesign process is based
on the agent’s self-awareness knowledge.

5.3 DISCUSSION

Automated design of adaptive software agents is a fascinating area of
research. The interplay between client, artefact and designer plays an
important role: adaptive artefacts are both client and subject of (re-)design.
Artefacts are designed to be adaptive: they need to recognise needs for
change. The agent factory adapts the agent according to their needs.

An agent needs self-awareness knowledge to determine needs for
adaptation. The ‘degree of’ self-awareness of an agent determines the
‘degree of’ interpretative knowledge needed by an agent factory: the more
imprecise an agent’s needs for adaptation are, the more responsibility an
agent factory has for interpretation of needs for adaptation.

This paper describes the relation between self-awareness knowledge and
the knowledge available to an agent factory. Automated adaptation of agents
(a re-design process) is not straightforward. Agents are designed at both a
conceptual level and a detailed level: a configuration of conceptual building
blocks and a configuration of detailed building blocks are needed.

Self-aware agents themselves decide which agent factory is to perform a

AUTOMATED (RE-)DESIGN OF SOFTWARE AGENTS 15

re-design task. Such self-modifying agents (Brazier and Wijngaards, 2001b)
may evolve in ways that their designers could never have pre-conceived.
This may be a testbed for creativity as both agents and agent factories have
reflective capabilities, a pre-requisite for creativity.

The approach taken in the agent factory is similar, to some extent, to
approaches such as IBROW (Motta, Fensel, Gaspari and Benjamins, 1999).
In IBROW semi-automatic configuration is supported of intelligent problem
solvers. Their building blocks are 'reusable components', which are not
statically configured, but dynamically 'linked' together by modelling each
building block as a CORBA object. The CORBA-object provides a wrapper
for the actual implementation of a reusable component. A Unified Problem-
solving Method development Language UPML (Fensel, Motta, Benjamins,
Crubezy, Decker, Gaspari, Groenboom, Grosso, van Harmelen, Musen,
Plaza, Schreiber, Studer and Wielinga, 2002) has been proposed for the
conceptual modelling of their building blocks. The agent factory differs in a
number of aspects, which include: multiple conceptual and detailed
languages, no pre-defined wrappers for detailed building blocks, agents
consist of one (multi-threaded) process, and the process of reconfiguration is
an automated (re-)design process.

Current research within the IIDS group focuses on the design and
implementation of an Agentscape: an agent operating system together with
a set of services. The Agent Factory is one of the services. A number of
prototype agent factories have been designed, implemented and tested,
providing insight in the functionality required from an agent operating
system, and the functionality to be provided to mobile agents aware of their
options for adaptation.

Acknowledgements

The authors wish to thank the graduate students Hidde Boonstra, David Mobach, Oscar
Scholten and Sander van Splunter for their explorative work on the application of an agent
factory for an information retrieving agent. This work was supported by NLnet Foundation,
http://www.nlnet.nl/.

References

Barber, K. S., McKay, R. M., MacMahon, M. T., Martin, C. E., Lam, D. N., Goel, A., Han,
D. C. and Kim, J.: 2001, Sensible Agents: An Implemented Multi-Agent System and
Testbed, in Proceedings of the Fifth International Conference on Autonomous Agents
(Agents-2001), New York: ACM Press, pp. 92-99.

Biggerstaff, T. J. and Perlis, A. J. (eds.): 1997, Software Reusability. Volume 1, Concepts and

16 FRANCES BRAZIER AND NIEK WIJNGAARDS

models. New York: ACM Press.
Brazier, F. M. T., Jonker, C. M. and Treur, J.: 2000, Compositional Design and Reuse of a

Generic Agent Model, Applied Artificial Intelligence Journal, 14, 491-538.
Brazier, F. M. T., Jonker, C. M., Treur, J. and Wijngaards, N. J. E.: 2000, Deliberate

Evolution in Multi-Agent Systems, in J. Gero (ed.), Proceedings of the Sixth
International Conference on AI in Design, AID'2000, Dordrecht: Kluwer Academic
Publishers, 2000, pp 633-650.

Brazier, F. M. T., Jonker, C. M., Treur, J. and Wijngaards, N. J. E.: 2001, Compositional
Design of a Generic Design Agent, Design Studies journal, 22, 439-471.

Brazier, F. M. T., Langen, P. H. G. van and Treur, J.: 1998, Strategic Knowledge in
Compositional Design Models, in J. S. Gero and F. Sudweeks (eds), Proceedings of the
Fifth International Conference on Artificial Intelligence in Design, AID'98, Dordrecht:
Kluwer Academic Publishers, Dordrecht, pp. 129-147.

Brazier, F. M. T., Langen, P. H. G. van, Ruttkay, Zs. and Treur J: 1994, On formal
specification of design tasks, in J. S. Gero and F. Sudweeks (eds), Proceedings Artificial
Intelligence in Design (AID'94), Dordrecht: Kluwer Academic Publishers, pp. 535-552.

Brazier, F. M. T., Splunter, S. van and Wijngaards, N. J. E.: 2001, Strategies for integrating
multiple viewpoints and levels of detail, in J. S. Gero and K. Hori (eds), Proceedings of
workshop on Strategic Knowledge and Concept Formation III, Sydney: Key Centre of
Design Computing and Cognition, University of Sydney. December 2001, pp. 103-128.

Brazier, F. M. T. and Wijngaards, N. J. E.: 2001a, Automated servicing of agents, Journal of
AISB, special issue on Agent Technology, 1(1), 5-20.

Brazier, F. M. T. and Wijngaards, N. J. E.: 2001b, Designing Self-Modifying Agents, in J. S.
Gero and M. L. Maher (eds), Proceedings of Computational and Cognitive Models of
Creative Design, the fifth international roundtable conference V, Sydney: Key Centre of
Design Computing and Cognition, University of Sydney. December 2001, pp. 93-112.

Broekstra, J., Kampman, A. and van Harmelen, F.: 2001, Sesame: An Architecture for Storing
and Querying RDF Data and Schema Information, in D. Fensel, J. Hendler, H.
Lieberman, and W. Wahlster (eds), Semantics for the WWW, Boston: MIT Press, pp. 272-
309.

Chandrasekaran, B.: 1986, Generic Tasks in Knowledge-Based Reasoning: High Level
Building Blocks for Expert System Design, IEEE Expert, 1(3), 23-30.

Fensel, D., Motta, E., Benjamins, V.R., Crubezy, M., Decker, S., Gaspari, M., Groenboom,
R., Grosso, W., van Harmelen, F., Musen, M., Plaza, E., Schreiber, A.Th., Studer, R. and
Wielinga, B. J.: 2002, The Unified Problem-solving Method Development Language
UPML, Knowledge and Information Systems, to appear.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: 1994, Design Patterns: Elements of
reusable object-oriented software, Reading, Massachusetts: Addison Wesley Longman.

Gray, R., Kotz, D., Cybenko, G. E. and Rus, D.: 1997, Agent Tcl, in W. Cockayne and M.
Zyda (eds), Mobile Agents: Explanations and Examples, Greenwich, CT: Manning
Publishing, 1997, pp. 58-95.

Grefenstette, J.: 1992, The evolution of strategies for multiagent environments, Adaptive
Behavior, 1(1), 65-90.

Horrocks, I., van Harmelen, F., Patel-Schneider, P., Berners-Lee, T., Brickley, D., Connoly,
D., Dean, M., Decker, S., Fensel, D., Hayes, P., Heflin, J., Hendler, J., Lassila, O.,
McGuinness, D. and Stein, L. A.: 2001. DAML+OIL,
http://www.daml.org/2001/03/daml+oil-index.html.

Kolodner, J. L.: 1993, Case-Based Reasoning. San Mateo, California: Morgan Kauffman.
Maher, M. L. and Pu, P. (eds): 1997, Issues and Applications of Case-Based Reasoning to

AUTOMATED (RE-)DESIGN OF SOFTWARE AGENTS 17

Design, Hillsdale, New Jersey: Lawrence Erlbaum Associates.
Motta, E., Fensel, D., Gaspari, M. and Benjamins, V.R.: 1999, Specifications of Knowledge

Component Reuse, in Proceedings of the 11th International Conference on Software
Engineering and Knowledge Engineering (SEKE-99), Skokie, IL: Knowledge Systems
Institute, pp. 17-19.

Mozer, M. C.: 1999, An intelligent environment must be adaptive, IEEE Intelligent Systems
and their Applications, 14(2), 11-13.

Nwana, H., Ndumu, D., Lyndon, L., and Collis, J.: 1999, ZEUS: A Tookit and Approach for
Building Distributed Multi-agent System, in Proceedings of the Third International
Conference on Autonomous Agents (Autonomous Agents'99), New York: ACM Press, pp.
360-361.

Peña-Mora, F. and Vadhavkar, S.: 1996, Design Rationale and Design Patterns in Reusable
Software Design, in J. S. Gero and F. Sudweeks (eds.), Artificial Intelligence in Design
(AID’96), Dordrecht: Kluwer Academic Publishers, pp. 251-268.

Reffat, R. M. and Gero, J. S.: 2000, Computational Situated Learning in Design, in: J. S.
Gero (ed), Artificial Intelligence in Design '00, Dordrecht: Kluwer Academic Publishers,
Dordrecht, pp. 589-610.

Reticular Systems Inc: 1999, AgentBuilder: An integrated toolkit for constructing intelligent
software agents. White Paper, http://www.agentbuilder.com, February 1999.

Rus, D., Gray, R. and Kotz, D.: 1996, Autonomous and Adaptive Agents that Gather
Information, in AAAI'96 International Workshop on Intelligent Adaptive Agents, AAAI
Technical Report WS-96-04, pp. 107-116.

Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., Van de Velde, W.
and Wielinga, B.: 1999, Knowledge Engineering and Management, the CommonKADS
Methodology, Cambridge, MA: MIT press.

Schreiber, A. Th. and Birmingham, W. P. (eds.): 1996, Special Issue on Sisyphus-VT.
International Journal of Human-Computer Studies (IJHCS), 44(3/4), 275-280.

Sparling, M.: 2000, Lessons learned through six years of component-based development.
Communications of the ACM, 43(10), 47-53.

Stefik, M.: 1995, Introduction to Knowledge Systems, San Francisco, California: Morgan
Kaufmann Publishers, Inc.

Stumptner, M. and Wotawa, F.: 1998, Model-Based Reconfiguration, in J. S. Gero and F.
Sudweeks (eds), Artificial Intelligence in Design, AID'98, Dordrecht: Kluwer Academic
Publishers, pp. 45-64.

Suri, N., Bradshaw, J. M., Breedy, M. R., Groth, P. T., Hill, G. A., Jeffers, R. Mitrovich, T.
S., Pouliot, B. R. and Smith, D. S.: 2000, NOMADS: Toward a Strong and Safe Mobile
Agent System, in Proceedings of the Fourth International Conference on Autonomous
Agents, New York: ACM Press, pp. 163-164,

Tryllian: 2001, Agent Development Kit, Technical White Paper, Version 1.0, June 2001,
http://www.tryllian.nl/sub_downl/Technical%20white%20paper%20ADK%20v1.0.pdf

Wells, N. and Wolfers, J.: 2000, Finance with a Personalized Touch, Communications of the
ACM, Special Issue on Personalization, 43(8), 31-34.

Williams, B. C. and Nayak, P. P.: 1996, A Model-Based Approach to Reactive Self-
Configuring Systems, in Proceedings of the AAAI'96 & IAAI'96, Cambridge, MA: AAAI
Press / MIT Press, 2, pp. 971-978.

