
The Role of Local Knowledge in Complex Web Service Reconfiguration

Sander van Splunter, Pieter H.G. van Langen, and Frances M.T. Brazier
Vrije Universiteit Amsterdam, Department of Computer Science, IIDS Group

{svsplun, langen, frances}@cs.vu.nl

Abstract

As the number of web services in repositories on the
World Wide Web increases so will the number of
complex configurations of web services. However, as
the World Wide Web is dynamic, web services will
come and go, temporarily or for good. As a result,
complex web service configurations will need to be
reconfigured on demand.

To this purpose, complex web service configura-
tions need to include local knowledge about (1) the
function, structure and behaviour of each component
in a configuration, and (2) the dependencies between
components at each level of composition. Templates
are proposed as a means to represent such knowledge.
To illustrate the process of reconfiguration, an
example is given of reconfiguration of a complex web
service, for which a template is used specifying both
types of local knowledge.

1. Introduction

A web service is a service that is accessible by

means of messaging. The messages are formatted
according to standard web protocols, notations, and
naming conventions [1]. On the World Wide Web,
more and more services can now be accessed as web
services, for instance Amazon.com and Google.com.
As a consequence, the need to develop new web
services from scratch gradually diminishes: more and
more hosts offer web services that can be (re)used by
developers for their own purposes. Repositories such
as UDDI [2] are growing fast, so it is clearly becoming
more practical to implement complex web services as
configurations of existing web services.
However, as the World Wide Web is dynamic, web

services come and go, temporarily or for good,
necessitating reconfiguration of complex web service
configurations on demand. If the same functionality of
the system as a whole is required, this functionality
will need to be made explicit.
In this paper, our claim is that incorporating local

knowledge into a complex web service configuration is
necessary to support the process of automated
reconfiguration.

This paper is organised as follows. Section 2
discusses related research. Section 3 describes the
concept of local knowledge: knowledge of a
component and knowledge of dependencies between
components, represented in templates. Section 4
presents an example of the use of local knowledge to
determine the effects of substituting a single web
service in a complex configuration. Finally, Section 5
discusses the results of this paper.

2. Related Research on Web Service (Re-)
Configuration

Web service (re-)configuration can be viewed from

at least two perspectives [3]: (1) a more syntactic-
oriented business process composition using standard
technologies to describe these processes such as
SOAP, UDDI and WSDL, and orchestration languages
such as XLANG, WFSL, WSMF, and BPEL4WS, and
(2) a more semantic approach extending the business
process approach with explicit semantics to enable
automation.
ReFFlow [4] is one of the approaches to automated

Web service configuration, based on workflows.
Templates in reFFlow [5] encapsulate reusable parts of
a process model, specified in their unified process
model [6]. Configurations are specified in single level
parameterised web service-based process templates,
abstracting from web service process definition
languages. The need for annotation is identified but has
as yet not been implemented.
The METEOR-S project also focuses on automated

web service composition, in particular on Quality of
Service (QoS). Single level semantic process templates
[7] define configurations of web services with
constraints for each individual web service using
properties as name, textual description, QoS metrics,
input and output parameters. The need for composable
structures is identified but has, as yet, not been
addressed.
Parametric design has been adapted for web service

configuration [8], based on the work in the IBROW [9]
project on problem solving methods. Configurations of
web services are represented in fixed single level
templates containing parameters with adjustable

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15452872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

values, within predefined ranges and dependencies
between parameters and functionality.

3. Local Knowledge

This section first explains the use of the term local
knowledge. It then proposes a structure with which
such knowledge can be represented.

3.1. Concept

As stated above local knowledge specifies
knowledge about (1) the function, structure and
behaviour (e.g., [10]) of each component in a
configuration, and (2) the dependencies between
components at each level of composition. This
definition relies on the principle of compositionality,
which specifies that the properties of a complex system
are determined by its structure and the properties of its
constituents [11]. A strengthened and often
presupposed notion, the principle of local
compositionality, is that the properties of a complex
system are determined by its immediate structure and
the properties of its immediate constituents [11].

Our definition of local knowledge is based on the
principle of local compositionality and reads as
follows: local knowledge is knowledge about the
properties of a complex system. This knowledge
includes knowledge about the immediate structure of
the system and knowledge about the properties of the
system’s immediate constituents and their
dependencies.

3.2. Representation

Local knowledge about a complex web service is
represented in template structures using DAML-S [12].
A template describes a single level composition of one
or more abstract, annotated web services, their input
and output relations, and the conditions for (possibly
parallel) activation of these abstract web services. A
slot specifies the required properties for each of the
abstract web services for which it has been defined
(e.g., pre-conditions and post-conditions of the abstract
web service). An abstract web service is either a
primitive or a composed web service, or a template. A
multi-level web service configuration based on one or
more templates therefore includes not only information
about the individual abstract web services of which it is
composed, but also information on the requirements
each web service has to fulfil (specified by the
requirements for each slot). The control structure of a
template states the conditions of activation of the
specified abstract web services.

The effect of replacing one component with another
in a complex composed web service based on one or
more templates can be determined by first determining
the local effects of a substitution and then determining
the effects one or more levels higher in a composition.

4. Example: Web Portal Reconfiguration

This section illustrates the use of local knowledge

for reconfiguration for a specific application domain,
namely web portal creation. The complex web service
used in this section creates a browseable portal for
bibliographic data stored in multiple BibTeX-files [12].
The portal recognises different syntactical
specifications for the same author, like “Sander van
Splunter” and “Splunter, S. van”, grouping such
references together as appropriate. Section 4.1 gives an
overview of the initial configuration. Section 4.2
specifies properties of the initial configuration relevant
for the adaptation described in Section 4.3, and Section
4.4 discusses the influences of the adaptation on
properties of the whole configuration.

 retrieve data

create display
 slot

slot

AIdm
Display Creator

store data 1

Bib2RDF

filter data Identify Same
Individual As

slot

slot

data 2 slot
store

data 1 slot
extract

Sesame
Extract

data
display

handle
storage data Sesame Store

template template

Figure 1. Composition of the complex web

service for web portal creation.

4.1. Initial Configuration

Figure 1 shows the structure of the configuration of

the complex web service for web portal creation. This
configuration is based on two templates: display data
with four slots, and handle data storage with two slots.

The display data template is the main template, and
its four slots correspond to its four abstract web
services: retrieve data, store data 1, filter data and
create display. The primitive web services that have
been placed in the retrieve data, filter data and create
display slots of the template display data, are (see
Figure 1):

- Bib2RDF retrieves a single BibTeX file and
translates it to RDF statements.
- Identify Same Individual As (SIA) identifies
same author names with different syntactical
specifications, and denotes these as being the
same by adding a Same Individual As tag.
- AIdm DisplayCreator creates a portal that
displays the cooperation between different

authors. This service directly interacts with a
Sesame repository, therefore the RDF data need
not be extracted beforehand.

The store data 1 slot contains the handle data

storage template. This template, in turn, has two slots:
store data 2 and extract data 1. The primitive web
services that have been placed in these slots are:

- Store Sesame stores RDF statements in a
Sesame repository and handles Same Individual
As tags.
- Extract Sesame retrieves all resource statements
present in the Sesame repository and handles
Same Individual As tags.

Given two sources of publication references, for

example, the trace of activations of web services in the
initial composition of the web portal reads as follows:
(1) Bib2RDF : Store Sesame

The first BibTeX file is retrieved, converted to RDF
and stored in a Sesame repository
(2) Bib2RDF : Store Sesame

The same happens to the second BibTeX file.
(3) Extract Sesame : SIA : Store Sesame

After all data has been aggregated, all RDF statements
on the references are extracted, and filtered on different
syntactical specifications of authors, and the filtered
result is stored again in the Sesame repository
(4) AIdm Display Creator

This web service accesses the Sesame repository and
creates a portal on the available filtered information.

In this trace, ‘A : B’ denotes sequential activation of

web services A and B including activation of the I/O
stream of A to B. For further details on the portal
creation scenario, see [12].

4.2. Requirements and Properties of the Initial
Configuration

The store data 1 slot in the template display data,

specifies the following requirements. The abstract web
service to be placed in this slot
1) must store and extract data (in this case RDF
data);
2) needs to handles the identifiers created by the
web service in the slot filter data (in this case
identifiers created by the Identify Same Individual
As service);
3) must take less than 5.0 ms to store a Kb;
4) must take less than 3.0 ms to extract a Kb.

The third and fourth requirements are behavioural
requirements concerning the Quality of Service. The

abstract services in the configuration shown in Figure 1
adheres to these requirements.
The properties of the template handle data storage

as stated in its annotations fulfil theses requirements.
The precise values of storage and execution depend on
the template’s constituents: more refined properties of
storing depend on the services placed in the template’s
slots store data 2 and extract data 1.

The properties of the web service Store Sesame placed
in the store data 2 slot are that it:
-provides storage functionality in a Sesame repository;
-handles Same Individual As tag;
-has an average estimated execution time of 1.0 ms/Kb.

The properties of the web service Extract Sesame
placed in the extract data 1 slot are that it:
-provides extraction functionality in a Sesame
repository;
-handles Same Individual As tag;
-has an average estimated execution time of 0.8 ms/Kb.

4.3. New Adapted Configuration

The World Wide Web is a dynamic environment, in

which these services come and go. To illustrate the
implications of loss of access to a web service, the
reconfiguration of the complex web service handle
data storage, consisting of a template and two web
services, described above, is depicted. A new web
service or template is needed that fulfils the
requirements posed by the store data 1 slot of the
display data template.
A new instantiated template is found: handle data

storage 2, with three slots: store data 3, extract data 2,
and manipulate data. These slots are filled respectively
with the web services Replace SIA Tag, Store Sesame
Simple, and Extract Sesame Simple. The configuration
is illustrated in Figure 2.
The trace for storing data within the complex web

service handle store data 2 is more extensive than in
the previous case. The trace reads as follows:
(1) Store Sesame Simple : Extract Sesame Simple :
Replace SIA Tag : Store Sesame Simple

RDF data on new references is stored for aggregation,
and all data is extracted, including the data on the new
reference. Multiple syntactical references to the same
author are all replaced by one of these instances.
Storing the modified data in the repository is the last
step.

The trace for extracting data within the complex

service handle store data 2 is comparable to the
previous configuration, namely activation of Extract
Sesame Simple.

retrieve data

create display
 slot

slot

AIdm
DisplayCreator

store data 1

Bib2RDF

filter data Identify Same
Individual As

slot

slot

data 3 slot
store

data 2 slot
extract Sesame 2 Extract

data
display

handle
storage 2 data Sesame

Store

template template

manipulate
data slot

SIA tag
Replace

Simple

Simple

Figure 2. Composition of the adapted web service
for web portal creation.

The properties of the web service Store Sesame
Simple placed in the store data 3 slot are that it:
-provides storage functionality in Sesame repository;
-has an average estimated execution time of 0.7 ms/Kb.

The properties of the web service Extract Sesame
Simple placed in the extract data 2 slot are that it:
-provides extraction functionality in Sesame
repository;
-has an average estimated execution time of 0.6 ms/Kb.

The properties of the web service Replace SIA Tag in
the manipulate data slot is that it:
- r:eplaces elements related to each other by a Same
Individual;
-has an average estimated execution time of 1.1 ms/Kb.

4.4. Changes of the Properties of the Adapted
Configuration

The properties of the template handle data storage
2 fulfil the requirements set by the slot store data 1 of
the template display data. The extent to which it fulfils
execution requirements, however, depends on local
knowledge on the web services in the handle data
storage 2 template. This information is available at the
level of the instantiated template, based on the
following local information.

The execution time for extracting data depends only
on the execution time specified for the primitive web
service Extract Sesame Simple,: 0.6 ms/Kb (Note that
this is well below the required 3.0 ms/Kb).

The execution time of storing data depends on all
three constituents of handle data storage 2 as
described in the trace in the previous section. The
execution time is the sum of the activation times of all
services activations for storing RDF data:
0.7+0.6+1.1+0.7 = 3.1 ms/Kb. This is below the
required 5.0 ms/Kb.

The example above illustrates an adaptation of a
complex web service configuration, in which, from the
perspective of the main template (display data), the
behaviour changed, whilst the functionality remained

the same. This process can be done fully automatically
given the information specified as requirements for
each of the slots, and as properties for each of the
abstract web services.

5. Discussion

This paper presents an approach with which
properties of complex web services can be defined
locally and propagated to the level of the complex
service itself. For each level in a multi-levelled web
service configuration, properties of individual web
services are specified together with the dependencies
between web services at that level. Properties are
propagated to a higher level if and when appropriate,
making reconfiguration depend only on local
requirements and properties.

Wyner and Lee [13] describe a related, limited
concept of upward property propagation for
specialisation hierarchies in process modelling (e.g.,
class hierarchies), in which the propagation is equal to
the inverse of inheritance. If a property occurs in all
specialisations of a superclass, then the property also
holds for this superclass. Klas et al. [14] apply a
similar concept of upward propagation, namely as
inverse inheritance, to the creation of meta-classes over
multiple classes in databases with different data
models.

In parameterised web service configuration, Ten
Teije et al. [8] propagate the effect of the change of a
parameter/web service up to the level of the template.
This approach does not, however, support
combinations of complex web services.
The METEOR-S project supports a concept of

upward propogation that is closely related to the
concept presented in this paper. Given a web service
configuration with atomic web services, they have
devised an automated method to determine the
aggregated values of attributes concerning QoS for the
web service configuration as a whole [15]. A number
of QoS dimensions (time, cost, fidelity, and reliability)
are defined in enumerable functions and a
computational model for QoS has been devised. Both
the computational model and the constructs can be
integrated in the templates described in this paper
within a single level. Jaeger et al. [14] define
constructs with which QoS aggregation over
compositions of Web services can be specified, again
providing a means to define behaviour within a
template.
The use of local knowledge within templates to

define properties of web service configurations can be
used by human developers to reconfigure a complex
web service when necessary. Templates can also be

used as a basis for automated reconfiguration providing
local knowledge at each level in a multi-level
composition. The authors have implemented a
prototype system capable of reconfiguration using
templates. More research is needed on ontologies with
which properties can be expressed, and also on the
most relevant functions on which upward propagation
can be based.

Acknowledgements
The authors thank Debbie Richards from the

Department of Computing at Macquarie University in
Sydney, Australia, for her contributions to this
research. Furthermore, the authors are grateful to the
NLnet Foundation (www.nlnet.nl) for their support.

6. References

[1] Unified W3C Glossary and Dictionary, URL:
www.w3.org/2003/glossary/subglossary/xkms2-req, 2003.

[2] T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, M.
Hondo, Y.L. Husband, K. Januszewski, S. Lee, B. McKee, J.
Munter, and C. von Riegen, “UDDI version 3.0”. Published
specification, Oasis, 2002.

[3] B. Srivasta, and J. Koehler, “Web service composition –
current solutions and open problems”. In ICAPS 2003
Workshop on Planning for Web Services, 2003, pp. 28-35.

[4] D. Karastoyanova and A. Buchmann, “ReFFlow: a model
and generic approach to flexibility of web service
compositions”, International Conference on Information
Integration and Web-based Applications and Service (iiWAS
2004), Jakarta, Indonesia, 2004.

[5] D. Karastoyanova and A. Buchmann, “Automating the
development of web service compositions using templates”
In Proceedings of Geschäftsprozessorientierte Architekturen
Workshop at Informatik 2004, Germany, 2004.

[6] D. Karastoyanova, “A methodology for development of
web service-based business processes”. In Proceedings of
AWESOS 2004, Monash University 2004.

[7] K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma,
“Framework for semantic web process composition”,
Semantic Web Services and Their Role in Enterprise
Application Integration and E-Commerce, Special Issue of
the International Journal of Electronic Commerce (IJEC), C.
Bussler, D. Fensel, N.Sadeh (Eds.), Vol. 9, No. 2, 2004.

[8] A. ten Teije, F. van Harmelen, B.J. Wielinga,
“Configuration of web services as parametric design”. E.
Motta, N. Shadbolt, A. Stutt, N. Gibbins (Eds.): Engineering
Knowledge in the Age of the Semantic Web, 14th
International Conference, EKAW 2004, Proceedings. LNCS
3257, ISBN 3-540-23340-7, Springer, UK, 2004, pp. 321-
336.

[9] V. R. Benjamins, E. Plaza, E. Motta, D. Fensel, R. Studer,
B. Wielinga, G. Schreiber, Z. Zdrahal, and S. Decker: “An
intelligent brokering service for knowledge-component reuse
on the world-wide web”. In Proceedings of the 11th Banff
Knowledge Acquisition for Knowledge-Based System
Workshop (KAW´98), Canada, April 18-23, 1998.

[10] J.S. Gero, “Design prototypes: a knowledge
representation scheme for design”, AI Magazine 11(4): 1990,
pp. 26-36.

[11] Z.G. Szabó, “Compositionality, Stanford Encyclopedia
of Philosophy”
URL: http://plato.stanford.edu/entries/compositionality/.

[12] D. Richards, S. van Splunter, F.M.T. Brazier, and M.
Sabou, "Composing web services using an agent factory", in
Extending Web Services Technologies, The Use of Multi-
Agent Approaches Series: Multiagent Systems, Artificial
Societies, and Simulated Organizations, ISBN: 0-387-23343-
1, L. Cavedon, Z. Maamar, D. Martin, B. Benatallah, (Eds.)
Vol. 13, 2005.

[13] G. Wyner, and J. Lee, “Applying specialization to
process models”. In Proceedings of the Conference on
Organizational Computing Systems. Association for
Computing Machinery, Milpitas, California, United States,
1995, pp. 290 - 301.

[14] W. Klas, E. J. Neuhold, M. Schrefl, “Metaclasses in
VODAK and their application in database integration”. In:
Arbeitspapiere der GMD - Gesellschaft für Mathematik und
Datenverarbeitung, No. 462, Germany, 1990.

[15] J. Cardoso, A.P. Sheth, J.A. Miller, J. Arnold, K.J.
Kochut. "Modeling quality of service for workflows and web
service processes", Web Semantics Journal: Science,
Services and Agents on the World Wide Web Journal, 1(3),
2004, p. 281-308.

[16] M.C. Jaeger, G. Rojec-Goldmann and G. Mühl: “QoS
aggregation in web service compositions”. The 2005 I5
International Conference on e-Technology, e-Commerce and
e-Service (5-05), Hong Kong, 2005, pp. 181-185.

