
Supporting Life Cycle Coordination in Open Agent Systems

F.M.T. Brazier, D.G.A. Mobach, B.J. Overeinder, and N.J.E. Wijngaards
IIDS Group, Department of Artificial Intelligence, Faculty of Sciences,

Vrije Universiteit Amsterdam, de Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{frances,mobach,bjo,niek }@cs.vu.nl

Abstract

Coordination mechanisms need the proper support if they
are to function within large-scale, heterogeneous multi-agent
systems. This paper presents a life cycle model for mobile
agents in which a number of different states and transitions
are defined. An agent’s state can be used to provide coordi-
nation mechanisms with useful status information, enabling
these mechanisms to deal with realistic situations, in which
agents are not always directly available, and the agent popu-
lation possibly consists of many different types of agents.

1 Introduction

Coordination between agents is an active topic within the
multi-agent system research community. Within a multi-
agent system, coordination between agents is needed to ac-
complish collective tasks. Coordination between agents im-
plies the need for the effective usage of communication and
allocation of resources. Within open systems, the availabil-
ity of agents and other (external) resources is essential. The
resource aspects of agents typically translate to agent life cy-
cles: agents can be active, suspended, migrating or termi-
nated. This paper presents a life cycle model for life cycle
coordination in open multi-agent systems.

2 Coordination

Within the domain of multi-agent systems, coordination is
needed to ensure that agents can perform their tasks in a co-
herent manner. Coordination allows agents to tune their ac-
tions and interactions to those of other agents, increasing the
overall problem solving capability of a multi-agent system.
In the following section, a number of reasons for coordina-
tion within a multi-agent system are discussed.

2.1 Coordination techniques

A number of techniques are currently being used for coordi-
nation [1, 5, 6], ranging from techniques based on organiza-
tional models that impose coordination structures on agents,

to coordination solutions based more on negotiation between
agents or coalition formation [8]. Other techniques are based
on the well-known contract net protocol [9]. This protocol
regulates coordination with contracts. In general, the focus
of discussion on these coordination techniques is on the com-
munication issues involved. Resource availability issues re-
lated to realistic multi-agent system environments are not of-
ten addressed. The following section discusses these issues.

2.2 Coordination in large-scale multi-agent
systems

As the focus of the multi-agent system community shifts to-
wards larger and more heterogeneous agent systems, coordi-
nation mechanisms are needed that can deal with large agent
systems running many different types of mobile agents. In
the literature, attempts are made to determine the suitabil-
ity of current coordination solutions for these new domains.
Cabri et al. [3] and Omicini and Zambonelli [7] address the
issue of mobility, to determine which coordination mecha-
nisms are suitable for coordinating mobile agents. Durfee [4]
discusses the issue of scalability and scalability properties of
current coordination solutions.

Within large scale multi-agent systems, a number of is-
sues can be identified that have an impact on the function-
ing of coordination mechanisms. First, traditional views on
coordination often assume that agents are always available,
and can take part in the coordination process. This is not the
case in realistic, large-scale distributed agent systems. In a
large-scale, open agent system, agents migrate from host to
host, agents are suspended, agents are terminated suddenly
or crash without warning. Coordination mechanisms need to
be able to deal with agents in these situations.

Second, coordination mechanisms in multi-agent systems
need to be aware that agents use external resources to per-
form their tasks, such as, for example, databases or direc-
tory services. In a realistic multi-agent environment, these
services are not always directly available to all agents on de-
mand. Coordination mechanisms need to take into account
that resources can be occupied or off-line.

In traditional homogeneous multi-agent systems, this fun-
damental support is fairly straightforward, because all agents

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15452869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


are known to be based on the same architecture. However, in
open agent systems, this assumption does not hold, as agents
from different platforms may need to coordinate their actions
with each other. A “common ground” between these agents
needs to be available to enable agent coordination. In this pa-
per, the life cycle of an agent provides this common ground,
and life cycle management is presented as a means to support
agents engaging in coordination activities with each other.

3 The Role of the Life Cycle Model

This section describes a basic life cycle model for mobile
agents, and the possibilities this model offers for providing
support for coordination in multi-agent systems.

3.1 Agent Life Cycle

The life cycle model in Figure 1 provides a model of the most
basic states of a mobile agent and the transitions between
these basic states. More sophisticated life cycle models can
be defined by extending this model.

Suspended

Migrating

Activated

departurearrival

creation termination

terminationsuspensionresumption

Figure 1: The agent life cycle model.

The model describes three states in which an agent can ex-
ist: Activated, Suspended and Migrating. In the active state,
an agent is running and able to perform actions, observa-
tions, and pursue its goals. In the suspended state, an agent
is not. The migrating state is the state in which an agent is
traveling between two locations within a multi-agent system.

The model also defines the possible transitions between
these states. From the activated state, agents are able to sus-
pend or terminate. From the suspended state, agents are able
to terminate, resume, or leave a host. From the migrating
state, agents are only able to arrive at a host. Finally, a state
transition is identified in the model for creation of the agent.

The model differs from other models with respect to its
central state: the suspended state. From an agent’s perspec-
tive, the most important state is the active state, in which it
can perform its tasks. However, from a management per-
spective, it can be argued that the suspended state is the most
important state of an agent, as in this state, the entire agent,
including its internal state, is stored, which allows for a man-
agement system to perform actions on the agent without in-
terfering with its tasks.

Also, making the suspended state the central state in the
life cycle of an agent ensures that an agent always passes
through this state when it changes state: An agent that mi-
grates to another location, first passes through the suspended
state before the migrating state is reached. Similarly, an
agent that arrives at a location, first passes through the sus-
pended state before it is activated. This ensures that agents
are always suspended before they begin their execution at
a location, or before they leave a location. This could be
beneficial from various perspectives: Security checks can be
performed to see if agents are carrying stolen data; Perfor-
mance checks can be performed to schedule the resumption
of an agent; Accounting actions can be performed (such as
agent registration and the determination of access privileges
for an agent).

3.2 Life Cycle Model Implications for Coordi-
nation

Because the life cycle model described above is common to
all agents within a multi-agent system, it can be used as a
basis for coordination mechanisms to build upon. The life
cycle model provides a clear view of the possible states of
agents within a system. This information can aid in defining
specific situations that coordination mechanisms will have
to deal with. For example, coordination mechanisms may
need to be aware of the different life cycle states of agents:
agents that migrate could lose the ability to perform the tasks
they were performing at their original location. Coordination
mechanisms should be able to detect migration and adapt the
coordination scheme accordingly. Similarly, coordination
mechanisms may need to be aware of suspending agents:
agents that are suspended for a longer period of time for a
specific reason should perhaps be excluded from a coordina-
tion scheme.

The agent life cycle information described above needs to
be made available by platforms to enable coordination mech-
anisms to make use of it. A life cycle management module
could provide this information, together with additional life
cycle management information. A life cycle management
module monitors and influences agent life cycles. For ex-
ample, coordination mechanisms could prevent agents from
suspending when they perform an important role within a
coordination scheme.

2



4 AgentScape

The agent life cycle model presented in Section 3.1 and the
life cycle management module briefly discussed above have
been adopted as part of the AgentScape framework.

The main objective of the AgentScape project [10] is to
provide a framework to support the development of large-
scale, distributed multi-agent systems. AgentScape is a mid-
dleware layer that supports these large-scale agent systems.
The rationale behind the design decisions are (i) to provide a
platform for large-scale agent systems, (ii) support multiple
code bases and operating systems, and (iii) interoperability
with other agent platforms.

Agent
Server

AgentScape OS Kernel

D
ire

ct
or

y
S

er
vi

ce
s

Server
Object

M
an

ag
em

en
t

services
location

module
life cyclesecurity

module

module

migration

module

comm.

Figure 2: An AgentScape middleware architecture.

Within AgentScape, the life cycle model allows for a uni-
form approach to creating, starting, killing, suspending and
migrating agents. To enable the management of agents, the
agent life cycle model discussed in this paper is adopted
within the AgentScape OS as shown in Figure 2. The figure
also shows that both a life cycle module and a management
service are part of the architecture. AgentScape services also
(easily) adopt the model for specific purposes. For exam-
ple, the agent factory [2] uses the model as a basis for uni-
form agent (re-)generation. The Agent Factory makes use of
the life cycle management module to suspend agents, change
their configuration, and resume the agents again.

The current AgentScape prototype uses the presented life
cycle model for the basic agent creation, deletion, and migra-
tion operations. Future prototypes will incorporate a com-
plete management service based on the OSI management
functional areas: Fault-tolerance management, configuration
management, account management, performance manage-
ment, and security management.

5 Discussion

As multi-agent systems are becoming larger and more dy-
namic, coordination techniques will need to be able to han-
dle these new conditions. Especially the availability of re-
sources has to be considered, if coordination techniques are
to be successful in these large-scale systems. The life cy-
cle model described in this paper can be used as a starting
point for coordination models to define the proper handling
of dynamic agent populations and resource usage.

The life cycle model has already proven its versatility in
the design and implementation of agent creation, deletion,
and migration of agents in the AgentScape prototype. The
life cycle model will also be a central notion in the manage-
ment system that will be part of the AgentScape system.

Acknowledgments

This research is funded by the NLnet Foundation,
http://www.nlnet.nl/. The authors acknowledge Maarten van
Steen, Andrew Tanenbaum, Etienne Posthumus and Guido
van ’t Noordende for their contributions to the AgentScape
framework.

References

[1] R. A. Bourne, C. B. Excelente-Toledo, and N. R. Jen-
nings. Run-time selection of coordination mechanisms
in multi-agent systems. InProceedings of the 14th
European Conference on Artificial Intelligence, pages
348–352, Berlin, Germany, 2000.

[2] F. M. T. Brazier, B. J. Overeinder, M. van Steen, and
N. J. E. Wijngaards. Agent factory: Generative migra-
tion of mobile agents in heterogeneous environments.
In Proceedings of the 2002 ACM Symposium on Ap-
plied Computing (SAC 2002), pages 101–106, Madrid,
Spain, March 2002.

[3] G. Cabri, L. Leonardi, and F. Zambonelli. XML datas-
paces for mobile agent coordination. InProceedings of
the 2000 ACM symposium on Applied computing 2000,
pages 181–188. ACM Press, 2000.

[4] E. H. Durfee. Scaling up agent coordination strategies.
IEEE Computer, 34(7):39–46, July 2001.

[5] N. R. Jennings. Coordination Techniques for Dis-
tributed Artificial Intelligence, pages 187–210. Wiley,
1996.

[6] H. S. Nwana, L. C. Lee, and N. R. Jennings. Coordi-
nation in software agent systems.The British Telecom
Technical Journal, 14(4):79–88, 1996.

3



[7] A. Omicini and F. Zambonelli. Tuple centres for the
coordination of Internet agents. InProceedings of the
1999 ACM symposium on Applied computing, pages
183–190. ACM Press, 1999.

[8] O. Shehory, S. K. Sycara, and S. Jha. Multi-agent
coordination through coalition formation. InIntelli-
gent Agents IV: Agent Theories, Architectures and Lan-
guages, Lecture Notes in Artificial Intelligence, number
1365, pages 143–154. Springer, 1997.

[9] R. G. Smith. The contract net protocol: High-level
communication and control in a distributed problem
solver. IEEE Transactions on Computing, 29(12), De-
cember 1980.

[10] N. J. E. Wijngaards, B. J. Overeinder, M. van Steen,
and F. M. T. Brazier. Supporting Internet-scale multi-
agent systems. Data and Knowledge Engineering,
2002. in press.

4


