
STRATEGIES FOR INTEGRATING MULTIPLE VIEWPOINTS
AND LEVELS OF DETAIL*

FRANCES M.T. BRAZIER, SANDER VAN SPLUNTER, AND
NIEK J.E. WIJNGAARDS
Intelligent Interactive Distributed Systems Group, Faculty of
Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1081a, 1081
HV, Amsterdam, The Netherlands
Email: {frances,sander,niek}@cs.vu.nl
URL: http://www.iids.org/

Abstract. Automated design requires explicit representation of
strategic knowledge. This paper focuses on strategic knowledge
needed to reason with and about viewpoints during the design of a
software agent. Reasoning with and about viewpoints entails not only
deciding which viewpoint to consider when and in which context, but
also at which level of detail. In this paper an information retrieval
agent is used to illustrate how these types of knowledge can be used
to design software agents.

1. Introduction

Design is a complex process, a process in which many different types of
knowledge and (knowledge of) requirements play a role. The perspective on a
process of design taken in this paper is that of ‘exploration of design space’,
where the design space consists of two subspaces: one for the possible sets of
qualified requirements and one subspace for possible designs. Viewpoints
provide a means to focus a design process within and between each of these
two spaces. The overall design strategy of the design process determines the
types of exploration strategies employed (Brazier, Langen, Ruttkay and
Treur, 1994; Brazier, Langen and Treur, 1998; Logan and Smithers, 1992;
Löckenhof and Messer, 1994).

This paper focuses on strategies used for “exploration”: (1) within a

* Concept version, to appear in Proceedings of workshop on Strategic Knowledge
and Concept Formation, December 2001.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15452867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 F. BRAZIER, S. VAN SPLUNTER AND N. WIJNGAARDS

viewpoint, and (2) for the co-ordination of viewpoints during different phases
of a design process. A description and categorisation of these strategies is
provided for the domain of design considered in this paper namely fully
automated design of software agents. An information retrieval agent is
introduced for the purpose of illustration. Note that these agents may be
designed for many different types of tasks, of which information retrieval,
diagnosis, and design, are examples. Autaomted design of internet agents is
an area in which recently some progress has been booked (Reticular Systems,
1999; Brazier and Wijngaards, 2001; O'Hare, 1996).

An assumption in this paper is that explicit representation of strategies
within a process of design provides additional structure to the process of
design (Rist, 1995). Acquiring, representing and applying strategic knowledge
within design processes has been studied by, e.g., (Gruber, 1990; Strelnikov
and Dmitrevich, 1991; Rist, 1995; Ohsuga, 1997; Hori, 1998).

Section 2 discusses research on viewpoints in general, and viewpoints with
respect to agent design, in particular. Section 3 introduces an agent factory,
capable of automated design of intelligent agents. Section 4 distinguishes four
viewpoints and introduces the concept of a design focus for the agent factory.
Strategies for reasoning about, and within, viewpoints at different levels of
detail are described in Section 5. Section 6 focuses on the results and areas
for further research.

2. Research on Perspectives: Viewpoints and Levels of Detail

Design of an artefact can be viewed from different perspectives, e.g. from a
specific point of view during a specific phase of detail in a design process.

2.1 LEVELS OF DETAIL

During a design process an initial conceptual design becomes more detailed.
This also holds for automated design of an agent. For automated design of an
agent two levels of design are distinguished: conceptual design and detailed
design. The result of detailed design is a blueprint for the agent, and contains
sufficient information for the agent to be created. The design of an agent is an
iterative process: during detailed design choices may be made that necessitate
changes to the conceptual design, etc.

2.2 VIEWPOINTS

Reasoning from different viewpoints is a necessary part of most design
processes. Domain specific contexts are often the grounds for such
viewpoints. Models of design most often incorporate reasoning from different

INTEGRATING VIEWPOINTS AND LEVELS OF DETAIL 3

viewpoints, including strategic reasoning about viewpoints, and reasoning
from the perspective of other viewpoints (Schön, 1983).

A common vision is that viewpoints are strongly related to the different
fields of expertise involved. For example in a specific example of aircraft
design engineering, electrical engineering, systems engineering, unit
management, styling specialisms and tooling expertise (Brazier, Jonker and
Treur, 1996) were involved. These domains of expertise each impose their
own restrictions (requirements for the design artefact to fulfill) and involve
specific domain expertise / knowledge (domain models). In addition
requirements imposed on the design process as a whole often have
implications for the requirements imposed within the different viewpoints, and
as such require the necessary co-ordination.

A single design agent, for example, needs strategic, reflective knowledge to
know which viewpoint to work from at each point during a process.
Reflection is required continually. This holds also for multi-agent design. In
the literature on reflection such as (Weyhrauch, 1980; Davis, 1980, Maes and
Nardi, 1998, Attardi and Simi, 1994, Clancey and Bock, 1988) a restricted
number of types of reflective reasoning are modelled. Non-trivial
combinations of different types of reflective reasoning, however, have not
been studied extensively. In literature (Fisher and Wooldridge, 1993;
Wooldridge and Jennings, 1995; Cimatti and Serafini, 1995; Wagner, 1996)
on multi-agent systems, most often the types of reflective reasoning agents are
capable of performing is limited. For example, in the literature mentioned no
explicit reflective reasoning about communication is modelled.

For a fully automated design process reflective knowledge includes
strategic knowledge for choice of viewpoint, and co-ordination between
viewpoints, and also strategic knowledge on how to reason within each
viewpoint. The need to be able to express different viewpoints within software
design has been recognised by (Finkelstein, Kramer, Nuseibeh, Finkelstein
and Goedicke, 1992). Their approach, however is does not include reflective
strategic reasoning about choices during design.

2.3. VIEWPOINTS ON AGENTS

For automated design, the choice of a conceptual framework may facilitate, or
obstruct, the use of specific viewpoints. This is related to the granularity of
the description of an artefact (e.g., see (Stefik, 1995)): it is impossible to deal
with parts of an artefact which cannot be described; this holds for all tasks,
not just design, e.g. diagnosis, classification, and configuration. In this paper
agents are modelled using a conceptual framework developed to model
knowledge intensive multi-agent systems.

DESIRE is a formal knowledge-level modelling and specification

4 F. BRAZIER, S. VAN SPLUNTER AND N. WIJNGAARDS

framework for knowledge-intensive (multi-agent) systems (Brazier, Dunin-
Keplicz, Jennings and Treur, 1995, 1997; Brazier, Jonker and Treur, 1998).
Both conceptual models and detailed formal specifications are supported by
the framework. The compositional nature of the models, and the separation
between processes and knowledge makes it possible to build knowledge
intensive systems from reusable components. Automated prototype generation
on the basis of detailed formal specifications facilitates verification and
validation of knowledge intensive systems.

The DESIRE framework, used to design and develop multi-agent sytems,
distinguishes different types of knowledge needed to specify the design of an
agent:

1. knowledge composition
2. process composition
3. information exchange
4. control
These types of knowledge can be mapped onto viewpoints with which the

design of an agent can be specified; a knowledge perspective, a process
composition perspective, an information exchange perspective and a control
perspective. These perspectives can be described at both a conceptual level
and a detailed level. Requirements, often expressed in terms of properties and
structure of an artefact, may be related to one, or more, viewpoints and levels
of detail.

INTEGRATING VIEWPOINTS AND LEVELS OF DETAIL 5

own
process
control

world
interaction

management

agent
specific
tasks

Information
Retrieval
Agent

agent
interaction

management

communicated
info

observation
results

agent info
to opc

own process info to aim
own process info to wim

info to be
communicated

observations
and actions

agent info
to ast

world info to ast

communication info from ast
action and observation info from ast

Figure 1. Architecture of a simple information retrieval agent.

The architecture of a simple information retrieval agent is shown in Figure
1. This architecture models an agent that:

1. reasons about its own processes (component Own Process Control),
2. communicates with other agents (component Agent Interaction

Management),
3. interacts with the external world (component World Interaction

Management),
4. maps requests for information onto queries (within component Agent

Specific Tasks is a component Information Retrieval).
In this architecture, information exchange is modelled by information links

between interfaces of components. The names of the information links denote
the types of information transferred. The control of activation of components
and information links can be fully specified. For example, a complex
sequential control mechanism can be employed. Alternatively, all four
components can run in parallel, and all information links can be made 'awake',
that is, information is transferred once it becomes available.

A more complex agent architecture includes components for management
of cooperation with other agents, explicit maintenance of information about
other agents, and explicit maintenance of information about the external
world, as defined in the generic agent model (Brazier, Jonker and Treur,
2000).

6 F. BRAZIER, S. VAN SPLUNTER AND N. WIJNGAARDS

3. Agent Factory

Agents are constructed from building blocks by an automated agent factory
(Brazier and Wijngaards, 2001). Adapting an agent entails adapting the
configuration of its templates and components. Adaptation may be performed
by an external service (e.g., by an agent factory) or by an agent itself (e.g., as
self-modification of an agent (Brazier and Wijngaards, 2001b)). Section 3.1
describes characteristics of an agent factory and Section 3.2 describes
knowledge needed in the agent factory. Section 3.3 describes an example of
combining building blocks. Section 3.4 discusses the relation of research on
the agent factory to previous research.

3.1 CHARACTERISTICS OF AN AGENT FACTORY

An agent factory builds and adapts agents. The agent factory is based on five
underlying assumptions: (1) agents have a compositional structure, (2) re-
usable parts of agents can be identified, (3) two levels of descriptions are
used: conceptual and detailed, (4) properties and knowledge of properties are
available, and (5) no commitments are made to specific languages and/or
ontologies.

On the basis of these assumptions agents can be designed and adapted.
Whether the need for adaptation arises in an agent itself, or in another agent is
not relevant in this context. Limited interaction with a client of an agent
factory is of relevance, as this implies that an agent factory has to be able to
(fully) automatically (re-)design agents.

The design of an agent within the agent factory is based on configuration
of building blocks. Building blocks may include cases and partial (agent)
designs (cf. generic models / design patterns). This approach relates to design
patterns (e.g., Gamma, Helm, Johnson and Vlissides, 1994; Peña-Mora and
Vadhavkar, 1996; Riel, 1996) and libraries of software with specific
functionality (e.g., problem-solving models (Schreiber, Akkermans,
Anjewierden, de Hoog, Shadbolt, van de Velde, and Wielinga, 1999) or
generic task models (Brazier, Jonker, and Treur, 1996)).

In the agent factory building blocks can be templates with open slots, fully
specified components, and/or a combination of both. Building blocks are
defined at both levels of detail: conceptual and detailed. As a result a
structural preserving mapping can be made, if wished, between building
blocks at conceptual level and building blocks at detailed level. (Note that this
is not always ideal.) A detailed description for an agent most often includes
operational detail (e.g. code). For each conceptual description, a number of
detailed descriptions may be devised and vice versa. These detailed
descriptions may differ in the operational language (e.g., C, C++, Java), but

INTEGRATING VIEWPOINTS AND LEVELS OF DETAIL 7

also in, for example, the efficiency of the operational code. A mapping
between building blocks relates a building block containing a conceptual
description to a building block containing a detailed description. The mapping
relates open slots of the conceptual building block to the open slots in the
detailed building block.

Building blocks themselves are configurable. Templates and/or
components cannot be combined indiscriminately. The open slot concept is
used to regulate the ways in which templates and components may be
combined. An open slot in a template or component has associated properties
at both levels of detail that prescribe the properties of the entity to be
'inserted'.

Specific 'glue' may be needed to aid the insertion of a building block in an
open slot. Glue, which exists at both conceptual and detailed levels of design,
is used to transform certain information to the correct format/ontology.

3.2 KNOWLEDGE NEEDED IN AN AGENT FACTORY

An agent factory capable of automatically re-designing an agent needs to
combine knowledge on its domain (i.e., design of intelligent agents), its
process (i.e., re-design processes), and the application of its domain to its
process.

Knowledge on the domain, i.e. design of intelligent agents, requires
knowledge:

- of agents
- at two levels of design: conceptual and detailed
- per level of detail: properties on structure, function, behaviour, and non-

functional aspects
- of relations between levels of detail
- of relations among properties
- of building block combinations
- of glue

Knowledge on the process, i.e. re-design, entails knowledge on:
- manipulation of sets of qualified requirements
- manipulation of design object descriptions
- co-ordination of re-design process

Knowledge on the process of re-design in the domain of intelligent agents
entails knowledge on:

- refinement and modification of qualified requirements
- retrieval of building blocks (including intelligent matching)
- assessment of qualified requirements on the basis of a partial description of

an agent
- resolution of conflicts among qualified requirements

A number of models are used in the (re-)design of intelligent agents. A generic
model of a design process (Brazier, Langen, Ruttkay and Treur, 1994) has

8 F. BRAZIER, S. VAN SPLUNTER AND N. WIJNGAARDS

been used to design the agent factory. This generic model of design has an
associated logical theory of design (Brazier, Langen and Treur, 1996). Within
this model and theory of design, design strategies (Brazier, Langen and Treur,
1998) and design rationale can be modelled (Brazier, Langen and Treur,
1997), and conflict management can be explicitly described (Brazier, Langen
and Treur, 1995).

Second, a number of issues are related to the design of agents. The
characteristics that play a role are described in (Brazier, Jonker and Treur,
1998). A generic model of an agent (Brazier, Jonker and Treur, 2000), based
on a notion of weak agency proposed by Wooldridge and Jennings (1995) has
been used: weak agency is characterised by autonomy, social ability,
reactiveness, and pro-activeness. In contrast the notion of strong agency is
based on the characteristics of mentalistic and intentional notions (related to
the notion of intentional stance by Dennet (1987)). Models of co-operation
and co-ordination between agents have been proposed (Brazier, Jonker and
Treur, 1996).

3.3 BUILDING BLOCKS

The architecture of a simple information retrieval agent described above is
available as a building block (template) within the agent factory. The
conceptual building block for this simple information retrieval agent contains
the architecture description shown in Figure 1. A number of the components
and information types contain open slots that need to be filled in.

The components with open slots are shown in Figure 2. The component
Own Process Control (opc) has an open slot, in which specific functionality
needs to be included for the specific simple information retrieval agent.
Likewise, the component World Interaction Management (wim) has an open
slot, which needs to include knowledge about the specific means with which
the agent can interact with resources in the external world. The component
Agent Specific Task (ast) has an open slot which needs to include specific
knowledge on transforming requests from a user into queries on information
sources, and results of queries on information sources into answers to users.

The fourth component of the agent, agent interaction managent (aim), does
not have an open slot. The template of the simple information retrieval agent
is based on the assumption that the simple information agent only
communicates with one other agent, e.g. its owner.

INTEGRATING VIEWPOINTS AND LEVELS OF DETAIL 9

BB
information

retrieval
agent

opc slot

wim slot

ast slot

Figure 2. Component open slots of building block.

In the example used in this paper, the open slots in the template for the
simple information retrieval agent are filled in as shown below in Figure 3.

BB
information

retrieval
agent

opc slot

wim slot

ast slot

BB/kb: agent identity determination

BB/comp: http world interaction

BB/kb: simple html info search

Figure 3. Building block with extended component slots.

The control inside this building block is pre-defined, no control slot is
available for extension. A number of information types used by the agent need
to be extended, see Section 4. A detailed building block for the information
retrieval agent template is available (in Java). The structure of the code may
mirror the architecture of the agent, but it may also be quite different, e.g. for
reasons of efficiency. The open slots in the detailed building block are related
to the open slots in the conceptual building block.

3.4 RELATION TO PREVIOUS RESEARCH

The agent factory, in essence, re-designs descriptions of agents. Previous
research (Brazier, Jonker and Treur, 2000; Brazier, Jonker, Treur and
Wijngaards, 2000) focussed on automated redesign of multi-agent systems at
a conceptual level without the use of building blocks at two levels of detail.
The automated servicing service is an extension of this work in two aspects.

The first distinction with previous work is that the agent factory is not
primarily focussed on re-designing agents on the basis of first principles on a
conceptual level, as described in (Brazier, Jonker, Treur and Wijngaards,
2000). The agent factory uses building blocks to construct, and adapt, agents.
Building blocks are reusable parts of agents, ranging from skeletons for larger
parts of agents (i.e., templates) to specific functionality (i.e., components).

The second distinction with previous work is a broadening of the scope of
the re-design process. The agent factory modifies not only the conceptual
description of an agent, but also its detailed description (operational code).
This necessitates knowledge about the relationship between the conceptual
description and detailed description in a template or component.

10 F. BRAZIER, S. VAN SPLUNTER AND N. WIJNGAARDS

4. Multiple Viewpoints

The four viewpoints distinguished in Section 2.4 are relevant at both the
conceptual and the detailed level of design. Section 4.1 describes the
viewpoints, and Section 4.2 describes how a design focus makes use of
viewpoints and levels of detail.

4.1 VIEWPOINTS

The four viewpoints identified in the agent factory are described in this
section. These viewpoints are perspectives that can be taken on a (partial)
design description during a design process (both conceptual and detailed
design).

4.1.1 Process Composition Viewpoint
The process composition viewpoint focuses on the components of processes
in the description of an agent.

- process - subprocess relation
- task models / process models
- input and output interfaces of a process
- information links between input and output interfaces of a process
- …

The process composition view on the simple information retrieval agent
shown in Figure 1, focuses on information on, e.g., the composition relation
between processes, as shown in Figure 4.

information retrieval agent

own process control

agent interaction management

world interaction management

agent specific task

Figure 4. Process composition for information retrieval agent.

4.1.2 Information Exchange Viewpoint
The information exchange viewpoint focuses on information types and their
relations in the description of an agent.

- input information type of a process
- output information type of a process
- meta-relations among information types

INTEGRATING VIEWPOINTS AND LEVELS OF DETAIL 11

- meta-level relations among interfaces of a process
- information type composition relations
- information links, including their source and destination information types

and -processes.
- …

4.1.3 Knowledge Viewpoint
The knowledge viewpoint focuses on knowledge in the description of an
agent:

- knowledge bases
- numerical algorithms
- neural networks
- facts-bases
- information-type mappings (used in information links)
- …

4.1.4 Control Viewpoint
The control viewpoint focuses on control in the description of an agent.
Information in this viewpoint includes:

- activation of (sub)processes
- activation of information links
- activation of knowledge-bases & algorithms
- fine-grained control on inference engines
- …

4.2 DESIGN FOCUS

This paper assumes that a need for modification has been determined by an
earlier step in a design process and that the requirements on which
“exploration” within the design object space are based, are known. A specific
design focus can be defined by:

1. a level of abstraction (either conceptual or detailed),
2. a viewpoint (or combination of viewpoints),
3. modification context (structural, functional, behavioural, and non-

functional properties of (parts of) the agent).
Strategic knowledge is needed to determine which focus is chosen at which
level of detail: conceptual or detailed. Choices made at each level of
abstraction influence choices at the other level of abstraction.

Strategic knowledge is needed to determine when to focus on which
viewpoint. Each viewpoint shows, and hides, specific details of the agent.

Strategic knowledge is needed to determine demarcation of the part of an
agent in which modification is to take place. An example of this is 'divide and
conquer': by choosing, for example, to modify the world interaction
management ability of an agent, the agent's specific task and the control of the

12 F. BRAZIER, S. VAN SPLUNTER AND N. WIJNGAARDS

top-level of the agent, for example, can be safely ignored.
An example of a design focus is a combination of a conceptual level of

detail, a process composition viewpoint, and an agent's specific task. Possible
modifications for this example design focus include adding or removing an
agent specific task by adding or removing (composed) processes.

In addition strategic knowledge is needed to know how to combine these
factors and when to switch between foci.

5. Strategies

Strategies provide a means to consider, and co-ordinate a design process: in
particular to consider and co-ordinate design foci as defined above.

The description of strategies in this section is structured by the definition
of a design focus. A distinction is made between local strategies for selecting
a level of abstraction, a viewpoint, and a modification context, versus more
global strategies on design foci based on these single strategies. Section 5.1
describes strategies for selecting a level of abstraction, a viewpoint, and a
modification context. Section 5.2 describes strategies for changing design
foci. Section 5.3 illustrates the aforementioned strategies for the re-design of
the example information retrieval agent.

5.1 SINGLE FACTOR STRATEGIES

The 'single factor' strategies provide options for each of the three parts of the
design focus based on a given situation. These strategies are needed to delimit
the search space of design foci. Section 5.1.1 describes strategies for a level
of abstraction, section 5.1.2 describes strategies for a viewpoint, and section
5.1.3 describes strategies for a modification context.

5.1.1 Level of abstraction selection strategies
Strategies for selecting a level of abstraction may include:

- If no information is present within the modification context for a specific
viewpoint, consider selecting another level of abstraction.

- ”translate” modifications (and their implications) at one level of
abstraction to modifications at the other level of abstraction.

- always select the conceptual level of abstraction first, as it provides most
structure for the design process.

- select the detailed level first if very specific techniques are required for
which detailed building blocks are available, and later select the
conceptual level to find a model of an agent within which the building
block combinations at detailed level can be incorporated.

- Only select the detailed level if all modifications have been made at the

INTEGRATING VIEWPOINTS AND LEVELS OF DETAIL 13

conceptual level (strict hierarchical approach).

5.1.2 Viewpoint selection strategies
Strategies for selecting a viewpoint may include:

- modification implication driven viewpoint selection: the number of
(expected) violations of requirements for one specific viewpoint is
important. The view with the most unfulfilled requirements is selected.

- in inconsistency driven viewpoint selection, the viewpoint with the most
inconsistencies, is selected first.

- in interdependency driven viewpoint selection, the impact of modification
within one viewpoint for another viewpoint is the selection criterion.

- in complexity driven viewpoint selection, the viewpoint with the most
constraints for other viewpoints is chosen first.

- a pre-defined order of viewpoints to achieve a specific goal, e.g. by first
taking a process composition viewpoint, then an information exchange
viewpoint, then a knowledge viewpoint and finally a control viewpoint.

5.1.3 Modification context selection strategies
Strategies for selecting a modification context may include:

- uninformed traversal of compositional structure: breadth first, depth first,
bottom-up, top-down, smallest before larger, from outside to inside, …

- more informed: complexity oriented, size of the modification context…
- task-order based: traverse order in which subtasks of a larger task are

executed; if that order can be determined: backward or forward traversal.
- expected complexity of modification: select simplest, or most complex,

modification context.

5.2 DESIGN FOCUS SELECTION STRATEGIES

Strategies are needed to move from one design focus to another, to eventually
satisfy the need for modification. Changing a design focus involves reasoning
about

- the given situation,
- the alternatives,
- the need for modification,
- the approach taken, and
- the previous design foci.

The given situation provides information on whether, e.g., a given
modification has succeeded, whether the need for modification has been
resolved, etc.

A new design focus is determined by a more global strategy which may be
(and often is) based on options determined for each of the factors involved
(level of detail, viewpoint and modification context)

The need for modification has an obvious influence on the selection of

14 F. BRAZIER, S. VAN SPLUNTER AND N. WIJNGAARDS

design foci. A need for modification which is, e.g., to change the name of an
agent requires less extensive modifications to an agent than, e.g., to change an
agent's specific task, is directly or indirectly based on the requirements for the
design process as a whole.

A strategy for resolving a need for modification usually involves a number
of steps (a plan), each of which involves a design focus and a subsequent
modification. The results of each step influence the choice. When determining
the next design focus to use, it is of importance whether the design process is
able to pursue multiple design foci in parallel. The assumption for this paper
is that design foci are pursued in sequence, not in parallel.

In general, a number of reasons for changing a design focus can be
determined:

- Finished reasoning. The simplest situation is when the modification
process has finished attempting all modifications within the current design
focus: no more progress can be made in the current design focus and
switching to another design focus may be fruitful.

- Forced interruption. Instead of waiting for the modification process to
finish attempting all modifications within the current design focus, the
modification process may be forced by specific time constraints to change
to another design focus. The interval for these changes can be set
randomly, or can be foreordained. Furthermore the means for enforcing a
switch of design focus must be known; e.g., is the modification process
able to wrap up is current line of reasoning, or does it has to stop
immediately, or can the last `representative` modification result be
returned.

- Motivated interruption. Interruption of the modification process within a
design focus may be motivated. A modification process focussed on a
design focus decides to stop making modifications within that design
focus, without having finished its modification alternatives. Alternatively,
it could be decided that a modification in another design focus may yield
more progress.

In this paper, the motivated changes of a design focus are most interesting,
as these employ explicit, informed, strategies.

A design focus consists of three parts: a selected level of detail, a selected
viewpoint, and a selected modification context. The change to a design focus
with respect to a previous design focus can be measured as the extent to
which the three parts of the design focus remain unchanged: the amount of
persistence of a design focus. Four qualitative degrees of persistence of
design focus are distinguished: maximum persistence, reasonable persistence,
minimum persistence, and complete change. An assumption is that the need
for modification does not change; as such a change usually implies a major
change of design focus. Each of the degrees of persistence of design focus is
described below.

INTEGRATING VIEWPOINTS AND LEVELS OF DETAIL 15

5.2.1 Maximum persistence of design focus
A maximum persistence of design focus means that the new design focus is
exactly the same as the previous design focus: the new design focus has the
same level of detail, the same viewpoint, and the same modification context.

Strategies for choosing such a new design focus are, for example,
- the selected modification method has not yet yielded satisfactory results, an

alternative modification method may yield better results.

5.2.2 Reasonable persistence of design focus
A reasonable persistence of design focus means that the new design focus is
almost the same as the previous design focus: two of the three parts remain
unchanged and one part is changed.

Strategies for changing the level of detail without changing the selected
viewpoint and the selected modification context are, for example,

- the strategies described in section 5.1.1.
- a modification has succeeded within the current design focus, and the

success of a modification at the other level of detail needs to be verified.
Strategies for changing the viewpoint without changing the selected level

of detail and the selected modification context are, for example,
- the strategies described in section 5.1.2.
- A modification to a design involves changes within a number of

viewpoints.
Strategies for changing the modification context without changing the

selected level of detail and the selected viewpoint are, for example,
- the strategies described in section 5.1.3.
- another modification context needs to be focussed on within the selected

level of detail and viewpoint.
- a generic model is applied (e.g., the generic agent model) and its sub-

components are further specialised with other (generic) models.

5.2.3 minimum persistence of design focus
A minimum persistence of design focus means that the new design focus
loosely resembles the previous design focus: one of the three parts of remains
unchanged and two parts are changed.

Strategies for changing the level of detail and viewpoint without changing
the selected modification context are, for example,

- a combination of strategies described in section 5.1.1 and section 5.1.2.
- implications of a change within the modification context need to be

verified at the other level of detail from another point of view.
Strategies for changing the level of detail and modification context without

changing the selected viewpoint are, for example,
- a combination of strategies described in section 5.1.1 and section 5.1.3
- having switched from the other level of detail and having analysed the

16 F. BRAZIER, S. VAN SPLUNTER AND N. WIJNGAARDS

implications of the modification, switch back to the original level of detail
and switch to the next modification contextwithin the same viewpoint.

Strategies for changing the viewpoint and modification context without
changing the selected level of detail are, for example,

- a combination of strategies described in section 5.1.2 and section 5.1.3.
- One part of the agent has been succesfully modified, subsequent

modifications need to take place in other parts of the agent from a different
point of view, e.g. when working from the outside of an agent's
architecture to the inside.

5.2.4 Complete change of design focus
A complete change of design focus means that the new design focus does not
resemble the previous design focus at all: different levelof detail, viewpoint,
and modification context are selected.

Strategies for complete changing a design focus are, for example,
- a combination of strategies described in section 5.1.1, section 5.1.2, and

section 5.1.3.

5.3 EXAMPLE STRATEGIES

In this section an example is given of strategies employed in the agent factory.
An overview of the re-design of the example information retrieval agent is
given in section 5.3.1. Strategies employed for inserting a component building
block into an open slot are given in section 5.3.2.

5.3.1 Re-design of information retrieval agent
A prototype of the agent factory automatically designs an information
retrieval agent. Building blocks are combined at a conceptual and a detailed
level of design culminating in a simple information retrieval agent. The
composition of building blocks of an existing simple information retrieval
agent has been described in Section 3.3. In this section strategies are
discussed with which an information retrieval agent is re-designed.

The existing information retrieval agent is capable of searching for
information on html-pages, available via the http-protocol. A new requirement
imposed on this agent is that the agent needs to be capable of using the ftp-
protocol to retrieve information. The origin of this requirement lies, in this
example, outside of the agent; its owner may have posed this requirement. A
more complex agent may deduce, on the basis of analysis of its own
behaviour, that it is lacking certain capabilities and contact an agent factory
to be re-designed.

The information retrieval agent needs to be changed in a number of ways.
The agent needs to know (1) that multiple world interaction protocols exist,
(2) its own preferences between protocols, (3) how to compose queries and

INTEGRATING VIEWPOINTS AND LEVELS OF DETAIL 17

(4) how to process query results.
This implies that the components in the slots in own process control, world

interaction management and agent specific task need to be modified.
The World Interaction Management slot of the simple information retrieval

agent, which originally contained only the http protocol, needs to be modified.
The http component needs to be replaced by a building block with three
components: one for http world interaction, one for ftp world interaction, and
one to determine which protocol to choose. Figure 5 depicts the three
components in the open slot in world interaction management.

BB
information

retrieval
agent

opc slot

wim slot

ast slot

BB/kb: agent identity determination

BB/comp:
strategic
choice out
of 2 comp

BB/kb: simple http info search

BB/kb: kb combo BB/kb: world interaction preferences determination

strat
slot
comp-1
slot
comp-2
slot

BB/kb: world interaction co-ordination

BB/comp: http world interaction

BB/comp: ftp world interaction

BB/kb: kb combo

BB/kb: simple ftp info search

Figure 5. Process composition of the new information retrieval agent

Figure 5 shows the new process composition based on the simple
information agent retrieval template. The component open slots of the simple
agent information retrieval template have been filled in as follows:

- The own process control slot now contains a building block with two
components: a knowledge-base to determine an agent's identity and
capabilities, and a knowledge-base to determine preferences on world
interaction protocols.

- The world interaction management slot contains a building block with a
composed component for strategic process co-ordination of independent
processes. This new building block contains three open slots. The first
open slot is for strategic knowledge to co-ordinate the processes. The
second open slot is is for one of the protocols for world interaction: the
http world interaction. The last component slot is for the other protocol for
world interaction: ftp world interaction.

- The agent specific task slot contains a building block with a number of
components: a component to determine how information can be acquired
via html/http, and a component to determine how information can be
acquired via ftp.

The new process hierarchy of the information retrieval agent is shown
below in Figure 6.

18 F. BRAZIER, S. VAN SPLUNTER AND N. WIJNGAARDS

information retrieval agent

own process control

agent interaction management

world interaction management

agent specific task

html world interaction process coordination ftp world interaction

Figure 6. New process hierarchy of the information retrieval agent.

A number of information types also need to be extended to incorporate the
terminology related to ftp. The information type observation results information,
shown in Figure 7, needs to be extended to include the information type ftp
results. In addition, the information type observation results information also
needs to include language elements to express results from both http and ftp
actions.

obs.results info slot BB/it: obs results

obs res
protocol slot
obs res
content slot

BB/it: ftp

BB/it: http results

BB/it: http

BB/it: ftp results

Figure 7. Extension of the information type observation results information with ftp observation
results.

The information type observations, shown in Figure 8, now also includes
the information type ftp observations. In addition, the information type
observations has been extended to include language elements to express both
http and ftp observation actions.

observations slot BB/it: to observe

observation
protocol slot
observation
content slot

BB/it: ftp

BB/it: http
observations

BB/it: http

BB/it: ftp
observations

Figure 8. Extension of the information type observations with ftp observations.

The information type actions, shown in Figure 9, has been extended to
include the information type ftp actions. In addition, the information type
actions has been extended to include language elements to express both http
and ftp actions.

INTEGRATING VIEWPOINTS AND LEVELS OF DETAIL 19

actions slot BB/it: to perform

action
protocol slot
action
content slot

BB/it: ftp

BB/it: http actions

BB/it: http

BB/it: ftp actions

Figure 9. Extension of the information type actions with ftp actions.

The information type own characteristics, shown in Figure 10, has been
extended with the information type protocol preferences. In addition, the
information type own characteristics has been extended to include language
elements to express preferences on http and ftp protocols.

own characteristics slot
BB/it: identity info

BB/it: protocol prefs

Figure 10. Extension of the information type own characteristics with protocol preferences.

The transformation of the information retrieval agent capable of
interacting via http into an information retrieval agent capable of interacting
via http and ftp, required the modifications described above. Subsequent
additions of world interaction protocols are straightforward - the relevant
building blocks are added next to the existing building blocks for html/http
and ftp.

5.3.2 Strategies for building block insertion: a trace
To illustrate the use of strategies in parts of the example described in the
previous section a trace of the process is discussed in more detail.

Assume the design process has reached the point where both the
conceptual and detailed building blocks for interacting with the world using
ftp have been found in its library. One of the requirements specified explicit
strategic co-ordination of the use of the http world interaction or ftp world
interaction components.

In this example strategies are described with which a component building
block is inserted into an open slot at two levels of abstraction. Most structure
is defined at the conceptual level, so this is the first level of abstraction the
design process focuses on. The first design focus is on the process
composition point of view, in the context of the world interaction management
open slot of the agent building block ("wim slot").

Design_focus_1(conceptual level, process composition viewpoint, wim slot)
The library is queried for a component that can be filled in with both
protocols and exert strategic process co-ordination over these protocols.
The conceptual building block named ‘BB/comp:strategic choice out of
two components’ is returned. This building block replaces the building

20 F. BRAZIER, S. VAN SPLUNTER AND N. WIJNGAARDS

block ‘BB/comp:http world interaction’ in the slot of wim.

Affixing a component building block into an open slot entails not only
defining that the building block is inserted into the open slot, but also
information flow and control flow need to be taken care of. First, it is decided
to connect the information flow of the wim-slot to the inserted building block.
For this a change in design focus is necessary; the information exchange
viewpoint is useful here.

Design_focus_2(conceptual level, information exchange viewpoint, wim
slot)
Communication links are made from the input-side of the wim-slot to the
input-side of the inserted building block, and from the output-side of the
inserted building block to the output-side of the wim-slot. The definition of
the new building block states that it needs all information on the input,
and produces all information on the output, of the component with the
relevant open slot. Linking the information is therefore quite
straightforward.

If the strategy for switching between viewpoints is strictly regimented, it
may now also need to change focus to the knowledge viewpoint.

Design_focus_3(conceptual level, knowledge viewpoint, wim slot)
No knowledge modifications need to be made.

The building block is inserted in the wim slot, and information exchange
has been arranged within the wim-slot. To also arrange the transfer of control,
a new design focus is needed from the control point of view.

Design_focus_4(conceptual level, control viewpoint, wim slot)
The control over the inserted component needs to be set. The default
option for the inserted component is to be awake, in order not to conflict
with its strategic co-ordination of its control over its sub-components.

The building block has been completely inserted at the conceptual level. It
is not yet known whether the associated detailed building block may also be
inserted into the detailed agent-building block, at the detailed level.

A similar order of viewpoints is chosen as before, only now at the detailed
level of abstraction. The first focus at this level of detail is from the process
composition point of view, in the context of the world interaction management
open slot.

Design_focus_5(detailed level, process composition viewpoint, wim slot)
Modifications to the Java code:

INTEGRATING VIEWPOINTS AND LEVELS OF DETAIL 21

// the open slot of wim is emptied (http bb/component
// is removed)
BB_agent.getSlot(“wimslot”).clean_slot();
// the detailed ‘BB/comp:strategic choice out of two
// components’ is created (using class name 'BB_Strat_23').
BB_strat = new BB_Strat_23();
// insert BB_strat in the wim-slot
BB_agent.getSlot(“wimslot”).fillCompSlot(BB_strat);

After inserting the building block in the slot, the information exchange
between the slot and the building block needs to be arranged. The information
exchange viewpoint is chosen, the remaining parts of the design focus are
unchanged.

Design_focus_6(detailed level, information exchange viewpoint, wim slot)
Modifications to the Java code:
Wim_slot = BB_agent.getSlot(“wimslot”)
// create a link from input-side of wim slot to input-side
// of inserted component
Wim_slot.addInputLinkTo(Wim_slot.getInsertedComp());
// create a link from output-side of inserted component
// to output-side of wim slot
Wim_slot.addOutputLinkTo(Wim_slot.getInsertedComp());

Having inserted the building block, and arranged its information exchange,
the last step is to arrange for the newly inserted building block to be activated
when necessary. To this end the control viewpoint is adopted in the new
design focus.

Design_focus_7(detailed level, control viewpoint, wim slot):
Modifications to the Java code:
Wim_slot = BB_agent.getSlot(“wimslot”)
// the control over the inserted component is set on awake
Wim_slot.transferControlTo(Wim_slot.getInsertedComp());
Wim_slot.getInsertedComp().setControl(“awake”);

The open slot of the component world interaction management of the agent
building block has been filled on both the conceptual level and the detailed
level.

6. Discussion

Automated design requires explicit representation of strategic knowledge.
Reasoning required to (re-)design a software agent includes strategic

22 F. BRAZIER, S. VAN SPLUNTER AND N. WIJNGAARDS

knowledge on how and when to focus on specific aspects/characteristics of an
agent. Viewpoints provide a means to structure/group such aspects/
characteristics. Given these viewpoints specific knowledge is required on how
and when to focus on each of the viewpoints, and when to co-ordinate results.
In itself, nothing new: such strategic reasoning is common in design. Making
such strategies explicit is, however, non-trivial. In particular when also
considering different levels of detail and the interaction between these levels.
In the automated agent factory in which agents are configured two levels of
detail are used. A simplification of many complex design situations, but
complex enough to require specific strategies during design.

This paper presents a classification of strategies needed for automated
agent design in which reasoning with and about viewpoints is modelled by
design foci. Each design focus defines a viewpoint, a level of detail and a
modification context. Strategies are defined for each of these factors, and for
the choice of design foci at the global level.

To automatically re-design a software agent, four viewpoints are of
importance, knowledge of which is needed at both conceptual and detailed
level. This paper illustrated strategic knowledge needed to re-design a simple
information retrieval agent. It is clear that a better understanding of "good"
strategies is needed. More research may help.

Fully automated design of software agents of any type requires knowledge
of the domains of application and design strategies. A compositional approach
helps but is not sufficient: libraries of generic agent architectures, domain
specific components, strategic components, and ontologies are prerequisites to
success. Some success is being booked for specific types of internet agents.

Acknowledgements

The authors wish to thank the graduate students Hidde Boonstra, David Mobach, and Oscar
Scholten for their explorative work on the application of an agent factory for an information
retrieving agent. This work was supported by NLnet Foundation, http://www.nlnet.nl.

References

Attardi, G. and Simi, M.: 1994, Proofs in Context, in L. Fribourg and F. Turini (eds), Logic
Program Synthesis and Transformation-Meta-Programming in Logic, Proceedings of
the Fourth International Workshop on Meta-Programming in Logic, META'94. Springer
Verlag, Lecture Notes in Computer Science, 883, pp. 410-424.

Bahler, D., Dupont, C. and Bowen, J.: 1994, Anaxiomatic approach that supports negotiated
resolution of design conflicts in concurrent engineering, in J. S. Gero, F. Sudweeks
(eds), Artificial Intelligence in Design, Dordrecht: Kluwer Academic Publishers, pp.

INTEGRATING VIEWPOINTS AND LEVELS OF DETAIL 23

363-379.
Balasubramanian, S. and Norrie, D. H.: 1996, A multiagent architecture for concurrent

design, process planning, routing, and scheduling, Concurrent Engineering: Research
and Applications, 4(1), pp. 7-16.

Brazier, F. M. T. and Wijngaards, N. J. E.: 2001, Automated servicing of agents. D.
Kudenko & E. Alonso (eds), Proceedings of the AISB-01 Symposium on Adaptive Agents
and Multi-agent systems, at the Agents & Cognition AISB-01 conference, the society for
the study of artificial intelligence and the simulation of behaviour, ISBN 1.902956.17.0,
pp. 54 - 64.

Brazier, F. M. T. and Wijngaards, N. J. E.: 2001b, Designing Self-Modifying Agents. To
appear in proceedings of Computational and Cognitive Models of Creative Design, the
fifth international roundtable conference.

Brazier, F. M. T., Dunin-Keplicz, B. M., Jennings, N.R. and Treur, J.: 1995;1997, Formal
specification of Multi-Agent Systems: a real-world case, in V. Lesser (ed), Proceedings
of the First International Conference on Multi-Agent Systems, ICMAS’95, Cambridge
MA: MIT Press, pp. 25-32. Extended version in M. Huhns and M. Singh (eds),
International Journal of Co-operative Information Systems, special issue on Formal
Methods in Co-operative Information Systems: Multi-Agent Systems; 6, pp. 67-94.

Brazier, F. M. T., Jonker, C. M. and Treur J.: 1996, Modelling project co-ordination in a
multi-agent framework, in Proceedings Fifth Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, WET ICE'96, Los Alamitos: IEEE
Computer Society Press, pp. 148-155.

Brazier, F. M. T., Jonker, C. M. and Treur J.: 1998, Principles of Compositional Multi-agent
System Development, in J. Cuena (ed), Proceedings of the 15th IFIP World Computer
Congress, WCC'98, Conference on Information Technology and Knowledge Systems,
IT&KNOWS'98, pp. 347-360.

Brazier, F. M. T., Jonker, C. M. and Treur, J.: 2000, Compositional Design and Reuse of a
Generic Agent Model, Applied Artificial Intelligence Journal, 14, 491-538.

Brazier, F. M. T., Jonker, C. M., Treur, J. and Wijngaards, N. J. E.: 2000, Deliberate
Evolution in Multi-Agent Systems, in J. Gero (ed.), Proceedings of the Sixth
International Conference on AI in Design, AID'2000. Kluwer Academic Publishers,
2000, pp 633-650.

Brazier, F. M. T., Langen, P. H. G. van and Treur J.: 1996, A logical theory of design, in J.
S. Gero (ed.), Advances in Formal Design Methods for CAD, Proc. of the Second
International Workshop on Formal Methods in Design, Chapman & Hall, New York,
pp. 243-266.

Brazier, F. M. T., Langen, P. H. G. van and Treur, J.: 1995, Modelling conflict management
in design: an explicit approach, Artificial Intelligence for Engineering Design, Analysis
and Manifacturing, (AIEDAM), in I. F. C. Smith (ed.), Special Issue on Conflict
Management in Design, 9(4), 353-366.

Brazier, F. M. T., Langen, P. H. G. van and Treur, J.: 1997, A compositional approach to
modelling design rationale, Artificial Intelligence for Engineering Design, Analysis and
Manifacturing, (AIEDAM), in pp. W. H. Chung and R. Banares-Alcantara (eds), Special
Issue on Representing and Using Design Rationale, 11(2), 125-139.

Brazier, F. M. T., Langen, P. H. G. van and Treur, J.: 1998, Strategic Knowledge in
Compositional Design Models, in J. S. Gero and F. Sudweeks (eds), Proceedings of the
Fifth International Conference on Artificial Intelligence in Design, AID'98, Kluwer
Academic Publishers, Dordrecht, pp. 129-147.

24 F. BRAZIER, S. VAN SPLUNTER AND N. WIJNGAARDS

Brazier, F. M. T., Langen, P. H. G. van, Ruttkay, Zs. and Treur J: 1994, On formal
specification of design tasks, in J. S. Gero and F. Sudweeks (eds), Proceedings Artificial
Intelligence in Design (AID'94), Dordrecht: Kluwer Academic Publishers, pp. 535-552.

Campbell, M. I., Cagan, J. and Kotovsky, K.: 1998, A-Design: theory and implementation of
an adaptive, agent-based method of conceptual design, in J. S. Gero and F. Sudweeks
(eds), Artificial Intelligence in Design ’98 (AID ’98), Dordrecht: Kluwer Academic
Publishers, pp. 579-598.

Cimatti, A. and Serafini, L.: 1995, Multi-agent Reasoning with Belief Contexts II:
Elaboration Tolerance, in V. Lesser (ed), Proceedings of the First International
Conference on Multi-Agent Systems, ICMAS-95, MIT Press, pp. 57-64.

Clancey, W.J. and Bock, C.: 1988, Representing control knowledge as abstract tasks and
metarules, in L. Bolc and M. J. Coombs (eds), Computer Expert Systems, Heidelberg:
Springer-Verlag, pp. 1-77.

Cutkosky, M., Engelmore, R., Fikes, R., Gruber, T., Genesereth, M., Mark, W.,
Tenenbaum, J. and Weber, J.: 1993, PACT: An experiment in integrating concurrent
engineering systems, Special Issue on Computer Support for Concurrent Engineering,
IEEE Computer, 26, pp. 28-37.

Davis, R.: 1980, Metarules: reasoning about control, Artificial Intelligence, 15, pp. 179-222.
Dennett, D. C.: 1987, The Intentional Stance, MIT Press, Cambridge.
Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L. and Goedicke, M.: 1992,

Viewpoints: a framework for integrating multiple perspectives in system development,
International Journal of Software Engineering and Knowledge Engineering, 2(1), pp.
31-58, http://www.doc.ic.ac.uk/~ban/pubs/ijseke92.pdf

Fisher, M. and Wooldridge, M.: 1993, Specifying and Verifying Distributed Intelligent
Systems, in M. Filqueiras and L. Damas (eds), Progress in AI. Proc. EPAI'93, Springer
Verlag, Lecture Notes in AI, 727, pp. 13-28.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: 1994: Design Patterns: Elements of
reusable object-oriented software. Reading, Massachusetts: Addison Wesley Longman.

Goldmann, S.: 1996, Procura: a project management model of concurrent planning and
design, in Proc. Fifth Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, WET ICE'96, Los Alamitos: IEEE Computer Society Press.

Grecu, D. L. and Brown, D. C.: 1996, Learning by single function agents during spring
design, in J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design ’96 (AID
’96), Dordrecht: Kluwer Academic Publishers, pp. 409-428.

Gruber, T. R.: 1990, Acquiring strategic knowledge from experts, in J. H. Boose and B. R.
Gaines (eds), The Foundations of Knowledge Acquisition, Knowledge Based Systems, 4,
Academic Press Limited, pp. 115-133.

Gupta, L., Chionglo, J. and Fox, M.: 1996, A constraint-based model of communication and
co-ordination in concurrent design projects, in Proc. Fifth Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, WET ICE'96, Los Alamitos:
IEEE Computer Society Press.

Haymaker, J., Ackermann, E. and Fischer, M.: 2000, Meaning Mediating Mechanism, in J.
S. Gero, (ed), Artificial Intelligence in Design '00, Proceedings of the Sixth International
Conference on AI in Design, AID'2000, Dordrecht:Kluwer Academic Publishers, pp.
691-715.

Hori, K.: 1998, Special issue on strategic knowledge and concept formation, Knowledge
Based Systems, 11.

Jackson, M. A.: 1975, Principles of Program Design, Academic Press.

INTEGRATING VIEWPOINTS AND LEVELS OF DETAIL 25

Jennings, N. R.: 1995, Controlling Co-operative Problem Solving in Industrial Multi-Agent
Systems using Joint Intentions, Artificial Intelligence Journal,74(2), pp. 195-240.

Klein, M.: 1995, Conflict management as part of an integrated exceptionhandling approach.
AIEDAM; 9, pp. 259-267.

Löckenhoff, C. and Messer, T.: 1994, Configuration, in J. A. Breuker and W. van de Velde
(eds), The CommonKADS Library for Expertise Modelling, IOS Press, Amsterdam,
chapter 9, pp. 197-212.

Logan, B. S. and Smithers, T.: 1992, Creativity and design as exploration, in J. S. Gero and
M. L. Maher (eds), Modelling Creativity and Knowledge-Based Creative Design,
Hillsdale: Lawrence Erlbaum, pp. 149-188.

Maes, P. and Nardi, D. (eds): 1998, Meta-level architectures and reflection. Elsevier
Science Publishers.

Maurer, F., Dellen, B., Bendeck, F., Goldmann, S., Holz, H., Kötting, B. and Schaaf, M.:
2000, Merging project planning and web-enabled dynamic workflow techniques, IEEE
Internet Computing, pp. 65-74.

McAlinden, L. P., Florida-James, B. O., Chao, K-M., Norman, P. W., Hills, W., Smith, P.:
1998, Information and knowledge sharing for distributed design agents, in J. S. Gero and
F. Sudweeks (eds), Artificial Intelligence in Design ’98 (AID ’98), Dordrecht: Kluwer
Academic Publishers, pp. 537-556.

O'Hare, G. M. P.: 1996, Agent Factory: An Environment for the Fabrication of MultiAgent
Systems, in G. M. P. O'Hare and N. R. Jennings (eds.), Foundations of Distributed
Artificial Intelligence, Wiley Interscience, pp. 449-484.

Ohsuga, S.: 1997, Strategic Knowledge Makes Knowledge Based Systems Truly Intelligent,
in L. Candy and K. Hori (eds), Proceedings of the First International Workshop on
Strategic Knowledge and Concept Formation. Lutchi Research Centre, pp. 1-24.

Peña-Mora, F. and Vadhavkar, S.: 1996, Design Rationale and Design Patterns in Reusable
Software Design, in J. S. Gero and F. Sudweeks (eds.), Artificial Intelligence in Design
(AID’96), Dordrecht: Kluwer Academic Publishers, pp. 251-268.

Petrie, C.: 1994, Design space navigation as a collaborative aid, in J. S. Gero, (ed), Artificial
Intelligence in Design '94, Proceedings AID '94, Dordrecht: Kluwer Academic
Publishers, pp. 611-623.

Riel, A. J.: 1996, Object-Oriented Design Heuristics. Reading Massechusetts: Addison
Wesley Publishing Company.

Reticular Systems Inc: 1999, AgentBuilder: An integrated toolkit for constructing intelligent
software agents. White Paper, http://www.agentbuilder.com, February 1999.

Rist, R. S.: 1995, Program structure and design, Cognitive Science, 19, pp, 507-562.
Rumbaugh, J., Jacobson, I. and Booch, G.: 1999, The unified modeling language reference

manual. Reading, Massachusetts: Addison Wesley.
Schön, D. A.: 1983, The Reflective Practioner: how professionals think in action, Aldershot

(England): Arena.
Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., Van de Velde,

W. and Wielinga, B.: 1991, Knowledge Engineering and Management, the
CommonKADS Methodology. MIT press.

Stefik, M.: 1995, Introduction to Knowledge Systems, Morgan Kaufmann Publishers, Inc,
San Francisco, California.

Strelnikov, Y. N. and Dmitrevich, G. D.: 1991, Formal description and comparison of
interactive design strategies, Artificial Intelligence in Engineering, 6(4), pp. 186-195.

26 F. BRAZIER, S. VAN SPLUNTER AND N. WIJNGAARDS

Wagner, G.: 1996, A Logical and Operational Model of Scalable Knowledge- and
Perception-based Agents, in W. van der Velde and J. W. Perram (eds), Agents breaking
away, Proc. MAAMAW'96, Springer Verlag, Lecture Notes in AI, 1038, pp. 26-41.

Weyhrauch, R. W.: 1980, Prolegomena to a theory of mechanized formal reasoning,
Artificial Intelligence,13, pp. 133-170.

Wooldridge, M. J. and Jennings, N. R.: 1995, Intelligent Agents: Theory and Practice, The
Knowledge Engineering Review, 10(2), 115-152.

