View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DSpace at VU

Scalable Middleware Environment for Agent-Based
Internet Applications]

Benno J. Overeindérand Frances M.T. Brazier

Department of Computer Science, Vrije Universiteit Amsterdam
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
{bjo,frances}@cs.vu.nl

Abstract. The AgentScape middleware is designed to support deployment of
agent-based applications on Internet-scale distributed systems. With the design
of AgentScape, three dimensions of scalability are considered: size of distributed
system, geographical distance between resources, and number of administrative
domains. This paper reports on the AgentScape design requirements and deci-
sions, its architecture, and its components.

1 Introduction

Agent-based Internet applications are by design autonomous, self-planning, and often
self-coordinating distributed applications. They rely on the availability of aggregated
resources and services on the Internet to perform complex tasks. However, current tech-
nology restricts developers options for large-scale deployment: there are problems with
the heterogeneity of both computational resources and services, fault tolerance, man-
agement of the distributed applications, and geographical distance with implied latency
and bandwidth limitation.

To facilitate agent-based applications, a middleware infrastructure is needed to sup-
port mobility, security, fault tolerance, distributed resource and service management,
and interaction with services. Such middleware makes it possible for agents to perform
their tasks, to communicate, to migrate, etc.; but also implements security mechanisms
to, for example, sandbox agents to prevent malicious code harm the local machine, or
vice versa, protect an agent from tampering by a malicious host.

The AgentScape middleware infrastructure is designed to this purpose. Its multi-
layered design provides minimal but sufficient support at each level. The paper presents
the AgentScape design and implementation, with a discussion on decisions made, and
concludes with future directions.

2 Scalable Multi-Layered Design of Agent Middleware

A number of high-level agent concepts are first introduced to define their role in the
paper. The requirements for scalable agent middleware are then discussed, followed by
the current software architecture of the AgentScape middleware [6].

* This research is supported by the NLnet Foundation, http://www.nInet.nl/.

https://core.ac.uk/display/15452862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 B.J. Overeinder and FEM.T. Brazier

2.1 Concepts

Within AgentScapelocationsexist, agentsare active entities, anservicesare exter-

nal software systems accessed by agents hosted by AgentScape middleware. Agents
in AgentScape are defined according to the weak notion of agencyi)[&utonomy:

agents control their own processég); §ocial ability: ability to communicate and coop-
erate; {ii) reactiveness: ability to receive information and respoiw);aro-activeness:

ability to take the initiative.

Agents may communicate with other agents and may access services. Agents may
migrate from one location to another location. Agents may create and delete agents;
agents can start and stop service access. All operations of agents are modulo authoriza-
tion and security precautions, e.g., an agent is allowed to start a service if it has the
appropriate credentials (ownership, authorization, access to resources, etc.).

Mechanisms are provided to make external services available to agents hosted by
AgentScape middleware. For example, external services are wrapped and presented as
Web services, using SOAP/WSDL generated dynamic interfaces.

A location is a “place” in which agents and services can reside. (see also Fig. 1).
More precisely stated, agents and services are supported by agent servers and (Web)
service gateways (respectively) which belong to a location. From the perspective of
agents, agent servers give exclusive access to the AgentScape middleware. Similarly,
service gateways provide access to services external to AgentScape.

<! m | b (O agent
0% 50 00500 O
S 8 <:> service
3 ' |AgentScape| IAgentScape)AgentScape S i |AgentScape| IAgentScape]
' |middleware middleware middleware i | |middleware middleware
Solaris ‘ Linux W2K/XP Solaris Mac OS X

Fig. 1. Conceptual model of the AgentScape middleware environment.

2.2 Requirements

Successful deployment of Internet applications has to take dimensions of scale into ac-
count [5]. Applications and systems on Internet-scale networks have to include mecha-
nisms to deal with:ij number of entities in a distributed system: agents (create, delete,
migration), resources (add and delete resources to/from distributed platform, allocate
resources), lookup service (resolve identifiers of entities to contact address,igtc.); (
geographical size: the distance between different resources (communication latency and
bandwidth); {ii) number of administrative domains: security mechanisms for authenti-
cation and authorization.

The design goals set in the AgentScape project are to provide efficient support for
distributed systems that scale along the dimensions outlined above. A distinction is
made between agent application level support and agent middleware mechanisms. At
the agent application level, functionality to develop and implement scalable applica-
tions must be made available. The application programming interface must reflect this,

Scalable Middleware Environment for Agent-Based Internet Applications 3

e.g., to allow for latency hiding and mobility, or give access to scalable services in the
middleware layer. The agent middleware’s task is to implement the functionality pro-
vided by the application programming interface and the available services. This implies,
amongst others, support for asynchronous communication mechanisms for latency hid-
ing, include scalable services for name resolution (lookup service), and an effective
management system that scales with the number of agents and resources.

2.3 Software Architecture

The leading principle in the design of the AgentScape middleware is to develop a mini-
mal but sufficient open agent platform that can be extended to incorporate new function-
ality or adopt (new) standards into the platform. The multiple code base requirement,
e.g., supporting agents and services developed in various languages, makes that lan-
guage specific solutions or mechanisms cannot be used.

This design principle resulted in a layered agent middleware, with a smd}
dleware kernelimplementing basic mechanisms and high-lewatidleware services
implementing agent platform specific functionality and policies (see Fig. 2). This ap-
proach simplifies the design of the AgentScape kernel and makes the kernel less vul-
nerable to errors or improper functioning. A minimal set of middleware services are
agent servers, host managers, and location managers. The current, more extensive set
includes a lookup service and a web service gateway.

@ D AgentScape
AgentScape component

API .
interface of
Agent Host Location component
Server Manager Manager
AgentScape
kernel interface
AOS kernel

Fig. 2. The AgentScape software architecture.

Minimal Set of Services

Middleware services can interaohly with the local middleware kernel. That is, all
interprocess communication between agent servers and web service gateways is exclu-
sively via their local middleware kernel. The kernel either directly handles the transac-
tion (local operation) or forwards the request messages to the destination AgentScape
kernel (remote operation).

The agent server gives an agent access to the AgentScape middleware layer (see
also Fig. 2). Multiple code base support in AgentScape is realized by providing different
agent servers per code base. For security considerations, it is important to note that an
agent is “sandboxed” by an agent server. For Java agents this is realized by the JVM, for
Python (or other interpreted scripting languages like Safe-Tcl) by the interpreter, and
for C or C++ (binary code) agents are “jailed”.

4 B.J. Overeinder and FEM.T. Brazier

A location manager is the coordinating entity in an AgentScape location (thus man-
aging one or more hosts in one location). The host manager manages and coordinates
activities on a host. The host manager acts as the local representative of the location
manager, but is also responsible for local (at the host) resource access and manage-
ment. The policies and mechanisms of the location and host manager infrastructure are
based on negotiation and service level agreements [4].

Additional Services

Extensibility and interoperability with other systems are realized by additional middle-
ware services. The web service gateway is a middleware service that provides controlled
(by AgentScape middleware) access to SOAP/WSDL web services. Agents can obtain
WSDL descriptions in various ways, e.g., via UDDI and can generate a stub from the
WSDL document to access a web service. However, stub generation using the Axis
WSDL2Java tool is slightly modified so that calls on the web service interface are di-
rected to the AgentScape web service gateway. If access is authorized, the web service
gateway performs the operation on the web service and routes the results transparently
back to the agent that issued the call.

3 Implementation and Experiences

A number of implementation alternatives have been tested and evaluated, and devel-
opment still evolves: the AgentScape project aims to provide both a scalable, robust
agent platform, and a research vehicle to test and evaluate new ideas. The AgentScape
middleware has been tested on different Linux distributions (Debian 3.1, Fedora Core
1, and Mandrake 9.2.1) and Microsoft Windows 2000 (service pack 4).

The current kernel is implemented in the Python programming language, allowing
for rapid prototyping. All following middleware services available in the current Agent-
Scape release have been implemented in Java: Java agent server, web service gateway,
host manager, and a location manager. The current lookup service, implemented in
Python, is a centralized service that basically does its job, but is not scalable and se-
cure. A next generation lookup service is under development: a distributed peer-to-peer
lookup service.

4 Related Work

Over the last few years, a number of agent platforms have been designed and imple-
mented. Each design has its own set of design objectives and implementation decisions.
JADE is FIPA compliant agent platform [1]. In JADE, platform and containers are
similar concepts as location and hosts in AgentScape. A JADE platform is a distributed
agent platform (location), and with one or more containers (hosts). A special front end
container listens for incoming messages from other platforms. The AgentScape location

manager fulfills a similar function. The front end container is also involved in locating
agents on other JADE platforms. In AgentScape this is a different (distributed) service.
Mobility in JADE is limited to one platform (intra-platform), whereas in AgentScape,
agents can migrate to any location.

Scalable Middleware Environment for Agent-Based Internet Applications 5

Cougaar is a Java-based agent architecture that provides a survivable base on on
which to deploy large-scale, robust distributed multi-agent systems [2]. The design
goals are scalability, robustness, security, and modularity. Cougaar is not standards’
compliant, and messages are encoded using Java object serialization. The lack of stan-
dards’ compliance was in part due to Cougaar's complex planning language, which does
not easily fit into the ACL format, and Cougaar’s research focus of a highly scalable and
robust system as opposed to interoperability.

DIET is an agent platform that addresses present limitations in terms of adaptability
and scalability [3]. It provides an environment for an open, robust, adaptive and scalable
agent ecosystem. The minimalistic “less is more” design approach of DIET is similar
to AgentScape. The platform is implemented in Java. Mobility is implemented by state
transfer only, so no code is migrated. Agents can only migrate if their classes are already
in the local classpath of the target machine. Security is not specifically addressed in
DIET.

5 Summary and Future Directions

The design rationale for scalability in AgentScape lies in the three dimensions as de-
fined in Section 2.2. The integrated approach to solve the scalability problem is a unique
signature of the AgentScape middleware. The small but extensible core of AgentScape
allows for interoperability with other open systems.

Future directions in the AgentScape project are a new middleware kernel developed
in Java and completion of the implementation of security model. Agent servers for
binary agents (C and C++) and Python agents are being considered. A new decentralized
lookup service based on distributed hash tables is also being developed.

References

1. F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with a FIPA-
compliant agent frameworlSoftware: Practice and Experiencgl(2):103-128, 2001.

2. A. Helsinger, M. Thome, and T. Wright. Cougaar: A scalable, distributed multi-agent archi-
tecture. InProceedings of the International Conference on Systems, Man and Cybernetics
(IEEE SMC 2004)The Hague, The Netherlands, October 2004.

3. C. Hoile, F. Wang, E. Bonsma, and P. Marrow. Core specification and experiments in DIET: A
decentralised ecosystem-inspired mobile agent systeRrobeedings of the 1st International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS2892y 623-630,
Bologna, Italy, July 2002.

4. D.G.A. Mobach, B.J. Overeinder, O. Marin, and F.M.T. Brazier. Lease-based decentralized
resource management in open multi-agent systemBrdoeedings of the 18th International
FLAIRS ConferengeClearwater Beach, FL, May 2005.

5. B.C. Neuman. Scale in distributed systems. In T. Casavant and M. Singhal, editacs,
ings in Distributed Computing Systenmages 463—-489. IEEE Computer Society Press, Los
Alamitos, CA, 1994.

6. N.J.E. Wijngaards, B.J. Overeinder, M. van Steen, and F.M.T. Brazier. Supporting Internet-
scale multi-agent systemBata Knowledge Engineering1(2—-3):229-245, 2002.

7. M. J. Wooldridge and N. R. Jennings. Intelligent agents: Theory and prattieeknowledge
Engineering Revieyd 0(2):115-152, 1995.

