
On MAS Scalability

Frances Brazier
Department of Mathematics

and Computer Science
Vrije Universiteit Amsterdam

de Boelelaan 1081a, 1081 HV
Amsterdam, The Netherlands

frances@cs.vu.nl

Maarten van Steen
Department of Mathematics

and Computer Science
Vrije Universiteit Amsterdam

de Boelelaan 1081a, 1081 HV
Amsterdam, The Netherlands

steen@cs.vu.nl

Niek Wijngaards
Department of Mathematics

and Computer Science
Vrije Universiteit Amsterdam

de Boelelaan 1081a, 1081 HV
Amsterdam, The Netherlands

niek@cs.vu.nl

ABSTRACT
In open dynamic multi-agent environments the number of
agents can vary significantly within very short periods of
time. Very few (if any) current multi-agent systems have,
however, been designed to cope with large-scale distributed
applications. Scalability requires increasing numbers of new
agents and resources to have no noticeable effect on perfor-
mance nor to increase administrative complexity. In this
paper a number of implications for techniques and manage-
ment are discussed. Current research on agent middleware
is briefly described.
1

1. INTRODUCTION
Agents, from an AI perspective, are autonomous, pro-active,
reactive, and social entities [16]. They need to be able to
communicate with other agents, and interact with the rest
of the world (data repositories, objects in a virtual environ-
ment, etc.). They may be mobile, thus requiring a notion
of location. They may or may not have a name or traceable
owner. Agents, from a Computer Systems perspective, are
(multi-threaded) processes (or sets of processes) that may
migrate from one machine to another.

Ideally, multi-agent systems are highly dynamic open sys-
tems, with an ever-changing population of agents: new agents
emerge (or are created), existing agents die, move, learn/
forget etc. The dynamics of such systems are hard to pre-
dict. The number of agents in large scale distributed ap-
plications such as e-business applications (virtual shopping
malls and auctions), Internet-wide data warehouses, and
navigation systems, can vary considerably over time. The

1appeared in Editors: Tom Wagner and Omer Rana. Pro-
ceedings of Second International Workshop on Infrastruc-
ture for Agents, MAS, and Scalable MAS, Tom Wagner and
Omer F. Rana (eds), Montreal, Canada, May 28th, 2001.
pp. 121 - 126.

systems need to be able to scale (in terms of the number of
agents and available resources) almost immediately without
noticeable loss of performance, or considerable increase in
administrative complexity [21].

This problem of scalabilty is not an AI problem in itself. It is
a problem with which the distributed computing community
is still wrestling. A solution requires collaboration between
these two disciplines. This paper addresses some aspects of
this problem (security, for example, is not addressed). Sec-
tion 2 provides an overview of the current status of multi-
agent frameworks with respect to scalability. Section 3 dis-
cusses scaling techniques and agent management. Section 4
discusses different services with which agents can be located.
Section 5 outlines our current work on an agent operating
system.

2. EXISTING MAS FRAMEWORKS
Scalability is an important, yet under-researched, aspect of
agent platforms. This is partly due to the current status of
agent technology. A large volume of research focuses on the
development of intelligent agents that are able to communi-
cate with other agents, interact with an external world, be
autonomous, and react to their environment. A number of
multi-agent frameworks/environments have been developed
to construct multi-agent systems, but not for systems with
(very) large numbers of agents.

One aspect of current research on multi-agent systems is
that a large system is deemed to consist of hundreds of
agents, maybe a thousand, but not millions. The claim that
Auctionbot is scalable, for example, is supported by an ex-
periment with only 90 agents [39]. Larger numbers of agents
require scalable development frameworks and support envi-
ronments.

The term “scalability” is not always used to refer to archi-
tecture, services and performance. In some cases it is used
to refer to scalable functionality. For example, the SAIRE
approach [23], claims to be scalable because it supports het-
erogeneous agents. Shopbot [9] claims to be scalable because
its agents can adapt to understand new websites. In both
cases, the term is extensibile functionality would seem to be
more appropriate.

Researchers and developers of multi-agent frameworks are
beginning to realise that scalability is an issue. A number of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15452857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


multi-agent frameworks (e.g. DECAF [17], InfoSleuth [22],
April [20], AgentTcl [14], JAFMAS [7], Plangent [24] DE-
SIRE [4]) do not seem to address the problem of scalability
at all.

Other multi-agent frameworks rely on another framework
to solve the problem of scalability. For example, scalablity
in the CoABS (DARPA Control of Agent Based Systems)
approach [32] is based adequate support from computational
grids in providing a plug-in backplane for agents [11].

In other multi-agent frameworks, aspects of scalability are
specifically addressed. In ZEUS [38] scalability is defined
to be the growth rate of the maximum communication load
(as a function of the number of agents). Their conclusions
are that the maximum communication load grows at worst
linearly with the number of agents. This addresses a loss
of performance problem, and is a step towards develop-
ing scalable multi-agent frameworks. In OAA (Open Agent
Archiecture) [19] matchmaking agents are described which
can handle larger number of agents. The RETSINA MAS in-
frastructure [31] is designed to support multi-agent systems
that run on a number of LANs and to avoid single-point of
failures (e.g., in agent name services).

Turner and Jennings [34] propose to (automatically) change
the organization of agents in the multi-agent system to han-
dle an increase in the population of a multi-agent system.
For example, more middle agents or matchmakers are in-
troduced to reduce overhead. Their approach is a possible
step towards addressing administrative problems related to
scalability.

None of the aformentioned approaches addresses minimizing
the loss of performance as well as minimizing administrative
overhead.

Research on specific services in multi-agent systems such
as directory services also address scalability. The approach
taken by Shehory [29] is an example in which agents locate
agents based on each agent’s own caching lists of agents they
know. The theoretical analysis is based on a population of
size 10,000; no experiments have yet been conducted.

3. MANAGING SCALABILITY
Scalability problems generally manifest themselves as per-
formance problems. In this section we describe well-known
techniques that can tackle these problems. Administrative
complexity in the form of agent management issues is also
briefly discussed.

3.1 Scaling techniques
Three scaling techniques are discussed which may be used
to minimise loss of performance: (1) hiding communication
latencies, (2) distribution, and (3) replication.

Hiding communication latencies is applicable in the case of
geographical scalability, that is, when an agent system needs
to span a wide-area network. To avoid waiting for responses
to requests that have been issued to remote agents or ser-
vices the requesting agent is programmed to do other useful
work. This approach does require that an agent can be

interrupted when the expected response (if any) is to be
delivered.

Distribution generally involves partitioning a (large) set of
data into parts that can be handled by separate servers. A
well-known example of distribution is the natural partition-
ing of the set of Web pages across the approximately 25
million Web servers that are currently connected through
the Internet. Other examples of distribution include the
vertical or horizontal partitioning of tables in distributed
databases [25].

When considering large-scale networks like the Internet it
becomes crucial to combine distribution with latency hiding.
Unfortunately, this is not always possible, for example when
an agent simply needs an immediate response.

A third, and widely applied technique is to place multiple
copies of data sets across a network, also referred to as repli-
cation. The underlying idea is that by placing data close to
where they are used, communication latency is no longer an
issue, so that agent-perceived performance is high. Having
multiple copies means that such performance is good for all
agents, no matter where they are located.

Unfortunately, replication introduces a serious problem. When-
ever a replica is updated, that replica becomes inconsistent
with the other replicas. Matters become worse when mul-
tiple concurrent updates need to be carried out simultane-
ously, because all replicas have to be the same after all up-
dates have been processed. Keeping replicas consistent in-
troduces a consistency problem that can be solved only by
means of global synchronization. However, global synchro-
nization in a large-scale network is inherently nonscalable,
as it requires communication between all parties that are to
be synchronized.

The only solution to the consistency problem is to allow
replicas to be somewhat out of synch with respect to up-
dates. In other words, a weak consistency model is adopted.
The form of, and to what extent weak consistency can be tol-
erated is highly application dependent. As a consequence,
scalable multi-agent systems will need to support config-
urable and perhaps even adaptive replication strategies. No
single strategy will show to be optimal under all conditions.
Even for relatively simple systems such as the Web, differ-
entiating strategies can make a lot of difference [26].

3.2 Agent Management
In a multi-agent system spread across a large-scale network
with a vast number of agents possibly roaming from node
to node, a massive management problem is caused solely by
the scale of the system. Two related issues are discussed in
this section. First, we discuss the extent to which agents
know each other (also referred to as referential coupling).
Second, we discuss orphaned agents, that is, agents that are
no longer “in use” and cannot cannot be traced back to an
owner.

3.2.1 Referential Coupling
An important concept in agent-based distributed systems is
the coupling between agents. Cabri et al. [5] make a distinc-
tion between temporal coupling and referential coupling (re-



ferred to as spatial coupling). Referential coupling is about
whether agents explicitly refer to each other, or that they
can otherwise remain anonymous. Temporal coupling deals
with the issue whether two or more agents can communi-
cate only if they are all up and running. When it comes to
management issues, it is mainly referential coupling that is
important.

In referentially coupled systems, agents explictly refer to
each other. As a consequence, references need to be sys-
temwide unique, but may also need to be true identifiers [37].
A true identifier is a reference that cannot be reused and is
associated with exactly one agent. In addition, each agent
can have at most one true identifier. Generating true iden-
tifiers is practically feasible. However, the real problem lies
in the dereferencing process, that is, resolving a reference
to the current address of the associated agent. If agents
are not allowed to move, resolving a reference is relatively
easy: its current address is encoded in the reference. For
mobile agents, matters may become exceedingly difficult, as
explained below.

In referentially uncoupled systems, agents are anonymous.
Anonymity has the advantage that the system does not nec-
essarily need to keep track of an agent’s current location.
However, it does introduce the problem how communication
and agent coordination should be realized. There are basi-
cally two approaches to support anonymous communication
and coordination.

First, a publish/subscribe mechanism can be used, using
what is known as subject-based addressing. In this ap-
proach, an agent is allowed to publish a message by attach-
ing a subject to it. Agents that are interested in messages
on a specific subject should subscribe to that subject. The
underlying communication system ensures that published
messages are delivered to their subscribers. The technique
for this matching is either based on network-level multicas-
ting (as in TIBCO/Rendezvous [33]), application-level mul-
ticasting [3], flooding [8, 18], or by means of a network of
brokers (as in IBM MQSeries [15]). Obviously, each of these
approaches has its own scalability problems.

A second approach to support anonymous communication
and coordination is to make use shared dataspaces that
are based on generative communication [13] such as JavaS-
paces [12]. These shared dataspaces implement an associa-
tive memory that can also be used for searching and match-
ing agents, as discussed below. Building efficient implemen-
tations for local-area networks is already difficult; large-scale
wide-area multi-agent systems make matters worse [28]. There
are no obvious solutions.

3.2.2 Orphaned Agents
Returning to referentially coupled systems, there is another
intricate management problem that needs to be addressed
within a large-scale MAS. If agents explicitly refer to each
other, it becomes relatively easy to impose a (possibly hi-
erarchical) structure by which one agent is responsible for
managing other agents, notably its siblings. Management in
this context generally refers to life cycle management: cre-
ating and destroying agents. However, what happens to an
agent that is no longer referenced by other agents?

In many ways, this problem is akin to garbage collection
in distributed systems [1], a notoriously hard problem to
solve when there are many (passive) objects floating around.
Considering that agents act autonomously, the situation be-
comes somewhat different. For example, a (possibly tem-
porarily) anonymous autonomous agent that is actively col-
lecting information should most likely be allowed to survive.
However, it is probably not acceptable to allow such an agent
to live forever in a more or less anonymous way.

A solution to collecting “garbage” agents, that is, agents
that are no longer useful, is to make use of leases. A lease
is essentially a contract that allows an agent to continue its
work (even anonymously) until the lease expires. At that
point, the host on which an agent is executing has the right
to exterminate the agent. A lease-based approach to garbage
collection in large-scale distributed systems has shown to
be practically feasible. Agents should be allowed to extend
their lease. Note this approach may also work in referentially
uncoupled systems.

4. SCALABLE SERVICES
Many scalability problems in large-scale distributed systems,
including agent-based systems, are related to limited scal-
ability of searching and matching facilities. Unfortunately,
some of these problems are inherently nonscalable and can
be tackled only by considering the application for which
agents are developed. In the following, the types of problems
involved are discussed.

4.1 Names, Identifiers, Attributes, and Ad-
dresses

Naming plays an important role in any distributed system.
Names are used in many different ways, but their main pur-
pose is to facilitate matching and communication. We dis-
tinguish four different types of names:

Human-friendly name: This type of name is a character
string to be used by end users for looking up objects
and agents. A typical example of such names are URLs
as used in the Web.

Identifier: An identifier is generally a name intended to
be read by machines only. As discussed above, identi-
fiers are often used as unique references to objects and
agents.

Address: An address is a name that specifies exactly where
and how an object or agent can be contacted. As such,
it describes a location, but often implicitly also the
protocol through which communication can take place.
In the Domain Name System (DNS), a human-friendly
name is translated to a network-level address associ-
ated with the Internet protocol (IP).

Attribute: An attribute is a descriptive name, associated
with one or more values, and is used to describe a
property of an object or agent. Attributes are mostly
used to assist searching for an object using only partial
information on the properties that the returned object
should have.

Given these types of names, scalable naming in multi-agent
systems is generally concerned with two issues. The first



issue is how to efficiently resolve a human-friendly name
or an identifier to an address. The second one is how to
accomplish efficient attribute-based searching or matching.
Different scalability problems relate to each of these issues.

4.2 Scalability in Naming Services
A naming service such as DNS is used to resolve a human-
friendly name to an address. DNS can scale to millions of
names by physically distributing the name space across mul-
tiple servers, and applying a simple name resolution mecha-
nism. As an example, consider resolving the name www.cs.

vu.nl. This name is handled by at least three name servers.
A DNS root name server is capable of resolving the name
nl, for which it returns the address of the name server that
can handle names in the nl domain. Using this address,
and agent can request name resolution of www.cs.vu, which
will return the address of the name server handling the vu

domain. In turn, the vu name server can be asked to re-
solve www.cs for which it returns the address of the cs name
server. The latter, finally, knows the address of the Web
server named www.

True scalability of DNS comes from the fact that name-to-
address mappings are extensively cached by all name servers.
In other words, DNS internally makes extensive use of repli-
cation. This replication does not lead to inconsistencies as
we described above, for in most cases name-to-address map-
pings hardly ever change. In other words, updates are rare
compared to lookups.

Unfortunately, when dealing with mobile agents, DNS can-
not be used to locate an agent because name-to-address
mappings are no longer stable. Instead, whenever an agent
moves to another location, it update its address, thereby
changing the name-to-address mapping. Other solutions are
necessary.

4.3 Scalability in Location Services
As an alternative to using a naming service, specialized lo-
cation services have been constructed. A location service
is tailored to maintain identifier-to-address mappings, and
assumes that these mappings change regularly. There are
various approaches to efficiently locating mobile agents [27],
but only few can actually scale worldwide and can support
arbitrarily migrating agents.

As it turns out, special attention needs to be paid to adding
an efficient location service to a large-scale multi-agent sys-
tem. In our own work on wide-area distributed systems,
a distributed search tree has been constructed that can dy-
namically adapt itself to the migration pattern of an individ-
ual agent [35]. A coupling between human-friendly names
and addresses of mobile agents is described in [2]. Any näıve
solution to locating mobile agents in a large-scale multi-
agent system that needs to support highly mobile agents
can only fail. It is beyond the scope of this paper to go into
further details, but the interested reader is referred to [27]
for further information.

4.4 Scalability in Directory Services
Naming and location services are difficult to scale, but nev-
ertheless solutions exist that can be used in large-scale multi-

agent systems. Matters become harder in the case of attribute-
based searching and matching. Scalable attribute-based search-
ing and matching falls into the category of building scalable
directory services [30]. The canonical example of a wide-
area directory service is LDAP (Lightweight Directory Ac-
cess Protocol). LDAP servers form a simplified implemen-
tation of X.500 directory services and currently deployed in
modern distributed systems such as those based on Win-
dows 2000 [6].

In its simplest form, an agent submits a query to a direc-
tory service in the form of a boolean expression in which
each term is an (attribute, value) pair. The service returns
a list of references to objects (or agents) that match the
query. In other words, a returned object has its attribute
values set according to the query as submitted by the agent.
What makes a directory service so difficult to scale, is that
to construct the list of matching objects, it is, in principle,
necessary to search the entire set of objects that are regis-
tered by the service.

To circumvent such an exhaustive search, the only approach
that can be followed is to build an index of mappings from
attribute values to object references. Only in this way will
it become possible to immediately identify the objects that
match a query. Unfortunately, building and maintaining
such an index on a worldwide scale is infeasible.

Solutions to general-purpose worldwide scalable directory
services do not exist. At best, specialized directory services
can be built that restrict the type of query that can be
submitted, or limit the set of (attribute, value) pairs. An
example of such a limited directory service is JavaSpaces,
but as we argued above, even there we are confronted with
severe scalability problems.

Again, we are faced with a difficult and challenging problem,
for which presumably only application-specific solutions will
work.

5. AGENTSCAPE
AgentScape is a focus of current research. It is a system
that currently being designed as a worldwide distributed,
scalable, secure, and extensible agent framework. It aims to
provide support in two ways. First, support is provided on
the level of a basic agent operating system. Second, sup-
port is provided by services, such as location and directory
services, automated creation of agents, and management of
agents, objects, locations and groups. AgentScape provides
basic building blocks which can be extended and build upon
by application developers.

5.1 AgentScape Operating System
AgentScape is a basic agent middleware system, intended
to be usable for a wide range of multi-agent applications.
As middleware, it offers primitives on the level of agents,
shielding application developers from details at lower levels.
In a sense, AgentScape is similar to UNIX. Within UNIX,
everything is a file, on which operations are defined. Within
AgentScape, two main concepts are distinguished: agents
and objects. An agent is an active process, while an object
is passive. Operations are defined on agents, akin to file op-
erations in UNIX: move (mv), change owner (chown), change



group (chgrp), change security modus (chmod), create, re-
move (rm), etc. Similar operations are defined on objects.
Unique to AgentScape is the use of objects that are physi-
cally distributed across multiple machines, and that encap-
sulate their own distribution strategy. These objects are
adopted from the Globe wide-area distributed system [36].

An important issue for AgentScape is that its model of
agents and objects enable scalable solutions. In our ap-
proach, agents are expected to be mobile and can be im-
plemented in different ways. This approach allows for im-
plementing applications that require a high degree of inter-
operability across heterogeneous platforms. For a similar
reason, our objects have self-managing capabilities. In con-
trast, most distributed-object models are based on remote
objects in which the object state is not distributed, and is
managed by the server the object is located [10]. Clients
are only provided transparent access to an object through a
proxy.

A default version of AgentScape will be present in every
application using our middleware (akin to the presence of
an operating system kernel). However, the middleware it-
self will be highly extensible to allow for application-specific
solutions.

5.2 AgentScape Services
An agent operating system intended to be used in a world-
wide setting needs services to enable retrieval of, for exam-
ple, agents. Specific directory services are provided, with
which agents, distributed (and possibly replicated) objects,
and groups of agents or objects can be found. Another ser-
vice is a multi-agent factory with makes automated agent
creation and modification possible. Finally, management
services are provided to reactively and pro-actively control
agents, objects, locations, and groups in AgentScape. The
challenge for these services is that they are scalable across
a worldwide network and they can support vast numbers of
agents and objects.

6. FINAL REMARKS
In this paper, we have addressed some important design is-
sues for scalable multi-agent systems. If we are to build
worldwide distributed agent-based systems, we argue that
the real challenges lie in solving the scalability problems
mentioned in this paper. Unfortunately, there are no ob-
vious solutions, so what is needed is middleware that can
support a myriad of solutions, each probably tailored to spe-
cific application domains. If these problems are not solved,
the road to large-scale agent deployment will be exceedingly
difficult to follow.

7. ACKNOWLEDGEMENTS
This work was supported in part by NLnet Foundation.

8. REFERENCES
[1] S. Abdullahi and G. Ringwood. “Garbage Collecting

the Internet: A Survey of Distributed Garbage
Collection.” ACM Comput. Surv., 30(3):330–373, Sept.
1998.

[2] G. Ballintijn, P. Verkaik, E. Amade, M. van Steen, and
A. S. Tanenbaum. “A Scalable Implementation for

Human-Friendly URIs.” Technical Report IR-466, Vrije
Universiteit, Department of Mathematics and
Computer Science, Oct. 1999.

[3] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao,
R. Strom, and D. Sturman. “An Efficient Multicast
Protocol for Content-based Publish-Subscribe
Systems.” In Proc. 19th Int’l Conf. on Distributed
Computing Systems, Austin, TX, June 1999. IEEE.

[4] F. Brazier, B. D. Keplicz, N. Jennings, and J. Treur.
“DESIRE: Modelling Multi-Agent Systems in a
Compositional Formal Framework..” International
Journal of Cooperative Information Systems, special
issue on Formal Methods in Cooperative Information
Systems, 6:67–94, 1997.

[5] G. Cabri, L. Leonardi, and F. Zambonelli.
“Mobile-Agent Cooordination Models for Internet
Applications.” Computer, 33(2):82–89, Feb. 2000.

[6] D. Chappell. Understanding Windows 2000 Distributed
Services. Microsoft Press, Redmond, WA, 2000.

[7] D. Chauhan. “Developing coherent multiagent systems
using jafmas.” In Proc. International Conference on
Multi Agent Systems, ICMAS98, Cite des Sciences - La
Villette, Paris, France, July 1998.

[8] A. Demers et al. “Epidemic Algorithms for Replicated
Data Management.” In Proc. Sixth Symp. on Principles
of Distributed Computing, pp. 1–12, Vancouver, Aug.
1987. ACM. Also in Operating Systems Review,
22(1):8-32, Jan. 1988.

[9] R. B. Doorenbos, O. Etzioni, and D. S. Weld. “A
Scalable Comparison-Shopping Agent for the
World-Wide Web.” In W. L. Johnson and
B. Hayes-Roth, (eds.), Proc. Proceedings of the First
International Conference on Autonomous Agents
(Agents’97), pp. 39–48, Marina del Rey, CA, USA,
1997. ACM Press.

[10] W. Emmerich. Engineering Distributed Objects. John
Wiley, New York, 2000.

[11] I. Foster and C. Kesselman, (eds.). Computational
Grids: The Future of High Performance Distributed
Computing. Morgan Kaufman, San Mateo, CA., 1998.

[12] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces,
Principles, Patterns and Practice. Addison-Wesley,
Reading, MA., 1999.

[13] D. Gelernter. “Generative Communication in Linda.”
ACM Trans. Prog. Lang. Syst., 7(1):80–112, 1985.

[14] R. Gray, D. Kotz, G. Cybenko, and D. Rus. “Agent
Tcl.” In W. Cockayne and M. Zyda, (eds.), Proc.
Mobile Agents: Explanations and Examples. Manning
Publishing, 1997.

[15] IBM Inc. IBM MQSeries Publish/Subscribe User’s
Guide, 7th edition, Nov. 2000.

[16] N. Jennings and M. Wooldridge. “Intelligent agents:
theory and practice.” The Knowledge Engineering
Review, 10(2):115–152, 1995.



[17] J. G. Keith. “Towards a Distributed,
Environment-Centered Agent Framework.

[18] M.-J. Lin and K. Marzullo. “Directional Gossip:
Gossip in a Wide-Area Network.” In Third European
Dependable Computing Conference, volume 1667 of
Lect. Notes Comput. Sc., pp. 364–379. Springer-Verlag,
Berlin, Sept. 1999.

[19] D. Martin, A. Cheyer, and D. Moran. “The Open
Agent Architecture: a framework for building
distributed software systems.” Applied Artificial
Intelligence, 13(1/2):91–128, 1999.

[20] F. McCabe and K. Clark. “April: Agent Process
Interaction Language.” In N. Jennings and
M. Wooldridge, (eds.), Proc. Intelligent Agents, volume
890 of Lecture Notes in Computer Science.
Springer-Verlag, 1995.

[21] B. Neuman. “Scale in Distributed Systems.” In
T. Casavant and M. Singhal, (eds.), Readings in
Distributed Computing Systems, pp. 463–489. IEEE
Computer Society Press, Los Alamitos, CA., 1994.

[22] M. Nodine, B. Perry, and A. Unruh. “Experience with
the InfoSleuth agent architecture.” In Proc. Proceedings
of the AAAI-98 Workshop on Software Tools for
Developing Agents, 1998.

[23] J. B. Odubiyi, D. J. Kocur, S. M. Weinstein,
N. Wakim, S. Srivastava, C. Gokey, and J. Graham.
“SAIRE–a scalable agent-based information retrieval
engine.” In Proc. Proceedings of the first international
conference on Autonomous agents, pp. 292–299, Marina
del Rey, CA USA, Feb. 1997.

[24] A. Ohsuga, Y. Nagai, Y. Irie, M. Hattori, and
S. Honiden. “Plangent: An Approach to Making Mobile
Agents Intelligent.” IEEE Internet Computing, 1(4),
July 1997.

[25] T. Özsu and P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall, Upper Saddle River,
N.J., 2nd edition, 1999.

[26] G. Pierre, I. Kuz, M. van Steen, and A. Tanenbaum.
“Differentiated Strategies for Replicating Web
Documents.” Comp. Comm., 24(2):232–240, Feb. 2001.

[27] E. Pitoura and G. Samaras. “Locating Objects in
Mobile Computing.” IEEE Trans. Know. Data Eng.,
12, 2000. To appear.

[28] A. Rowstron. “Run-time Systems for Coordination.”
In A. Omicini, F. Zambonelli, M. Klusch, and
R. Tolksdorf, (eds.), Coordination of Internet Agents:
Models, Technologies and Applications, pp. 78–96.
Springer-Verlag, Berlin, Aug. 2001.

[29] O. Shehory. “A Scalable Agent Location Mechanism.”
In Proc. Lecture Notes in Artificial Intelligence,
Intelligent Agents VI, 1999.

[30] B. Sheresh and D. Sheresh. Understanding Directory
Services. New Riders, Indianapolis, IN, 2000.

[31] K. Sycara, M. Paolucci, M. van Velsen, and
J. Giampapa. “The RETSINA MAS Infrastructure.”
Technical Report CMU-RI-TR-01-05, Robotics
Institute Technical Report, Carnegie Mellon, 2001.

[32] C. Thompson, T. Bannon, P. Pazandak, and
V. Vasudevan. “Agents for the Masses.” In Proc.
Agent-Based High Performance Computing - Problem
Solving Applications and Practical Deployment at
Autonomous Agents 1999, Seattle, Washington, USA,
May 1999.

[33] TIBCO Software Inc., Palo Alto, CA.
TIB/Rendezvous Concepts, Release 6.4, Oct. 2000.

[34] P. J. Turner and N. R. Jennings. “Improving the
Scalability of Multi-agent Systems.” In Proc. Proc. 1st
International Workshop on Infrastructure for Scalable
Multi-Agent Systems, 2000.

[35] M. van Steen, F. Hauck, P. Homburg, and
A. Tanenbaum. “Locating Objects in Wide-Area
Systems.” IEEE Commun. Mag., 36(1):104–109, Jan.
1998.

[36] M. van Steen, P. Homburg, and A. Tanenbaum.
“Globe: A Wide-Area Distributed System.” IEEE
Concurrency, 7(1):70–78, Jan. 1999.

[37] R. Wieringa and W. de Jonge. “Object Identifiers,
Keys, and Surrogates–Object Identifiers Revisited.”
Theory and Practice of Object Systems, 1(2):101–114,
1995.

[38] P. D. Wilde. “Stability, Fairness and Scalability of
Multi-Agent Systems.

[39] P. R. Wurman, M. P. Wellman, and W. E. Walsh.
“The Michigan Internet AuctionBot: A configurable
auction server for human and software agents.” In K. P.
Sycara and M. Wooldridge, (eds.), Proc. Proceedings of
the 2nd International Conference on Autonomous
Agents (Agents’98), pp. 301–308, New York, 9–13,
1998. ACM Press.


