
Multi-Agent Support for Internet-Scale Grid Management

B.J. Overeinder, N.J.E. Wijngaards, M. van Steen, and F.M.T. Brazier
Department of Computer Science, Faculty of Sciences, Vrije Universiteit Amsterdam,

de Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
{bjo,niek,steen,frances}@cs.vu.nl

Abstract

Internet-scale computational grids are emerging from various research projects. Most notably are the US National Tech-
nology Grid and the European Data Grid projects. One specific problem in realizing wide-area distributed computing
environments as proposed in these projects, is effective management of the vast amount of resources that are made
available within the grid environment. This paper proposes an agent-based approach to resource management in grid
environments, and describes an agent infrastructure that could be integrated with the grid middleware layer. This agent
infrastructure provides support for mobile agents that is scalable in the number of agents and the number of resources.

1 Introduction

Computational grids are wide-area (Internet-scale) dis-
tributed environments that differ from conventional dis-
tributed computing by their focus on large-scale resource
sharing, innovative applications, and high-performance
orientation (Foster et al., 2001).

In a grid architecture, four levels of management can
be distinguished: fabric, connectivity, single resource,
and collective multiple resources. The fabric layer typ-
ically constitutes computational resources, storage re-
sources, network resources, and code repositories. The
connectivity layer deals with easy and secure communi-
cation by providing single sign on, delegation, integration
with various local security solutions, and user-based trust
relationships. The resource layer is concerned with indi-
vidual resources, and the two primary classes of resource
layer protocols are information protocols and manage-
ment protocols. The collective multiple resources layer
provides directory services, co-allocation, scheduling,
and brokering services, monitoring and diagnostics ser-
vices, data replication services, grid-enabled program-
ming systems, workload management systems and col-
laboration frameworks (problem solving environments),
etc.

In particular, coordinating collective resources is a
complex high-level task that integrates the multiple re-
sources into a wide-area distributed system. Many of
the services in this layer can be effectively facilitated by
applying multi-agent systems. Co-allocation, schedul-
ing, and brokering services, monitoring and diagnostic
services, workload management and collaboration frame-
works, community authorization servers, community ac-
counting and payment services, and collaborative services
are processes that require intelligence, autonomy, and so-
cial capabilities: all qualities that are characteristic to

intelligent agents (Wooldridge and Jennings, 1995).
A distinct problem isscalability in Internet-scale dis-

tributed systems like the Grid. In this paper, scalability
refers to scalability of the wide-area distributed comput-
ing infrastructure and services, not of applications. Ser-
vices such as resource management, co-allocation, and
scheduling must deal with scalability problems that ap-
pear in large-scale, wide-area distributed systems (Wijn-
gaards et al., 2002). Centralized (client-server) ap-
proaches have scalability problems as there is one cen-
tral authority coordinating the activities. Hierarchical ap-
proaches already direct to a scalable solution, but peer-to-
peer interaction strategies as embraced by agent technolo-
gies seems to be the most promising approach to provide
scalable and adaptive services.

This paper presents a multi-agent infrastructure,
called AgentScape, that can be employed for an agent-
based approach to integrate and coordinate distributed re-
sources in a computational grid environment. In particu-
lar, scalability, heterogeneity, and interoperability are dis-
cussed in perspective to a grid environment and the pro-
posed multi-agent infrastructure.

2 Background

A number of initiatives to apply agents in computational
grids have been initiated in recent years. Manola and
Thompson (1999) present an overview of different per-
spectives to grid environments and describe DARPA’s
Control of Agent-Based Systems (CoABS) agent grid.
In the CoABS Grid, a number of application level and
functional requirements hold. Specifically, applications
are considered to have multi-year lifetimes, evolving and
changing requirements, are adaptable and scalable, and
allows for system management without explicitly mon-
itoring all components all the time. Practically, agent

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at VU

https://core.ac.uk/display/15452855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


technology is expected to help to provide more reliable,
scalable, survivable, evolvable, adaptable systems, and
help to solve data blizzard and information starvation
problems. From a functional point of view, the CoABS
Grid knows not only about agents, but also about their
computational requirements, and about available compu-
tational (and other) resources. Hence, the CoABS Grid
provides a unified, heterogeneous distributed computing
environment in which computing resources are seam-
lessly linked.

Bradshaw et al. (2001) remark that “cyberspace” is
currently a lonely, dangerous, and relatively impoverished
environment for software agents. Consequently, most of
today’s agents are designed for “solitary, poor, nasty,
brutish, and short” lives of narrow purpose in a relatively
bounded and static computational world. They argue that
focusing greater attention to making the environment in
which agents operate more capable of sustaining various
types of agents and collaboration groups, would simplify
some of these problems. The CoABS Grid provides the
infrastructure for large-scale integration of heterogeneous
agent frameworks. The CoABS Grid capabilities have
been extended by integrating the NOMADS agent envi-
ronment for strong mobility and safe execution and the
KAoS framework for policy-based management of agent
domains to support long-lived agents and their communi-
ties (Bradshaw et al., 2001).

A good example of an agent grid is presented by Rana
and Walker (2000). They identify the need to combine
problem-specific problem solving environments (PSEs),
facilitating interoperability between various tools and
specialized algorithm each PSE supports. An agent based
approach to integrate services and resources for estab-
lishing multi-disciplinary PSEs is described, in which
specialized agents contain behavioral rules, and can mod-
ify these rules based on their interaction with other agents
and with the environment in which they operate.

Another type of application of agents in distributed
or parallel computing is typically with master-slave com-
putations in wide-area distributed environments (Ghanea-
Hercock et al., 1999). In these systems, large computa-
tions are initiated under control of a coordinating agent
that distributes the computation over the available re-
sources by sending mobile agents to these resources. In
this perspective it is in some way similar to the Condor
system or the SETI@home experiment, which also incor-
porate coordination and distributing the computation of
the available resources. Essentially, the added value of
the distributed computing agent systems is similar to the
agent grid: coordination and seamless integration of the
available distributed resources.

Principal idea behind a grid infrastructure is resource
sharing and providing services. The introduction al-
ready outlined the four levels of management that can
be determined in the process of sharing resources over
a wide-area network. With respect to providing services
in a grid environment, Foster et al. (2002) presented an

Open Grid Services Architecture that addresses the chal-
lenges to achieve various qualities of service when run-
ning applications on top of different native platforms.
The architecture builds on concepts and technologies
from the Grid and Web services communities. The ar-
chitecture defines a uniform exposed service semantics;
defines standard mechanisms for creating, naming, and
discovering transient Grid service instances; provides lo-
cation transparency and multiple protocol bindings for
service instances; and supports integration with underly-
ing native platform facilities. The Open Grid Services
Architecture also defines interfaces and associated con-
ventions, mechanisms required for creating and compos-
ing sophisticated distributed systems, including lifetime
management, change management, and notification. Ser-
vice bindings can support reliable invocation, authenti-
cation, authorization, and delegation, if required. The
resource sharing mechanisms are complementary to the
Grid services, but can be incorporated to implement a
service-oriented architecture.

3 AgentScape: A Scalable Multi-
Agent Infrastructure

AgentScape is a middleware layer that supports large-
scale agent systems. The rationale behind the design de-
cisions are (i) to provide a platform for large-scale agent
systems, (ii) support multiple code bases and operating
systems, and (iii) interoperability with other agent plat-
forms. The consequences of the design rationale with re-
spect to agents and objects, interaction, mobility, security
and authorization, and services are presented in the fol-
lowing subsections.

3.1 The AgentScape Model

The overall design philosophy is “less is more,” that is,
the AgentScape middleware should provide a minimal but
sufficient support for agent applications, and “one size
does not fit all,” that is, the middleware should be adap-
tive or reconfigurable such that it can be tailored to a
specific application (class) or operating system/hardware
platform.

interaction

communication

location

agent

object

Figure 1: AgentScape conceptual model.



Agentsandobjectsare basic entities in AgentScape. A
location is a “place” in which agents and objects can re-
side (see Fig. 1). Agents are active entities in AgentScape
that interact with each other by message-passing commu-
nication. Furthermore, agent migration in the form of
weak mobility is supported (Picco, 2001). Objects are
passive entities that are only engaged into computations
reactively on an agent’s initiative. Besides agents, ob-
jects, and locations, the AgentScape model also defines
services. Services provide information or activities on be-
half of agents or the AgentScape middleware.

Scalability, heterogeneity, and interoperability are im-
portant principles underlying the design of AgentScape.
The design of AgentScape includes the design of agents,
objects and services, interactions, migrations, security
and authorization, as well as the agent platform itself. For
example, scalability of agents and objects is realized by
distributing objects according to a per-object distribution
strategy, but not agents. Instead, agents have a public
representation that may be distributed if necessary.

The basic idea in the AgentScape model is that most
of the functionality is provided by theagent interfaceim-
plementations such that the middleware (or the agent rep-
resentation of the middleware) can be designed to perform
basic functions. This approach has a number of advan-
tages. First as the middleware must provide basic func-
tionality, the complexity of the design of the middleware
can be kept manageable and qualities like robustness and
security of the middleware can be more easily asserted.
Additional functionality can be implemented in the agent-
specific interface implementation (see Fig. 2).

- putMessage
- moveMe

- createAgent

Agent specific interface implementation
(can be simple proxy or wrapper routine):

- killMe

- kill

- move
- suspend

- start_agent

Location Manager/Middleware interface:
- create_agent

Agent specific interface implementation
(can be simple proxy or wrapper routine):

- putMessage
- moveMe
- killMe
- createAgent

Location Manager/Middleware interface:
- create_agent
- start_agent
- kill
- suspend
- move

Agent + Interface

Location Manager/ Middleware

Figure 2: The AgentScape interface model.

Agent-agent interaction is exclusively via message-
passing communication. Asynchronous message passing
has good scalability characteristics with a minimum of
synchronization between the agents. Tuple spaces also
provide a mechanism for communication that does not en-
force synchronization between the communicating part-
ners, but also cannot enforce the actual receipt of the in-
formation.

Agent migration between locations is based on weak
mobility. Thestateof the agent is captured (e.g., the vari-
ables referenced by the agent) but not thecontextof the

agent (e.g., stack pointer and program counter).

3.2 An AgentScape Architecture

The four basic concepts agents, objects, locations, and
services are further implemented in the AgentScape ar-
chitecture. Agents and objects are supported byagent
serversand object serversrespectively. Agent servers
provide the interface and access to AgentScape to the
agents that are hosted by the agent server. Similarly, ob-
jects servers provide access to the objects that are hosted
by the object server. A location is a closely related col-
lection of agent and object servers, possibly on the same
(high-speed) network, on hosts which are managed in the
same administrative domain.

Depending on the policy or resource requirements,
one agent can be exclusively assigned to one agent server,
or a pool of agents can be hosted by one agent server. The
explicit use of agent servers makes some aspects in the
life cycle model of agents more clear. An active agent is
assigned to, and runs on a server; a suspended agent is
not assigned to an agent server. In this model, starting a
newly created, or activating an existing suspended agent,
is similar, and some design decisions of the agent life cy-
cle can be simplified.

The use of agent and object servers is transparent to
the agents. Hence, agent servers do not belong to the
AgentScape model from the agent perspective. However,
an agent could ask the middleware to determine on which
agent server the agent runs.

The AgentScape Operating System(AOS) forms the
basic fundament of the AgentScape middleware. An
overview of the AgentScape architecture is shown in
Fig. 3. The AOS offers a uniform and transparent inter-
face to the underlying resources and hides various aspects
of network environments, communication, operating sys-
tem, access to resources, etc. The AgentScape API is
the interface to the middleware. Both agents and services
(e.g., resource management and directory services) use
this interface to the AOS middleware.

The design of the AgentScape Operating System is
modular. The AOS kernel is the central active entity that
coordinate all activities in the middleware. The mod-
ules in the AOS middleware provide the basic function-
ality. Below a brief overview of the most important mod-
ules is given. The life-cycle module is responsible for
the creation and deletion of agents. The communication
module implements a number of communication services,
e.g., similar to UDP, TCP, and streaming, with different
qualities-of-service. Support for agent mobility is imple-
mented in the migration module. The location service as-
sociates an agent identifier with an address (or contact-
point). There are also location services for objects and
locations. The security architecture is essential in the de-
sign of AgentScape, as it is an integral part of the mid-
dleware. Many components in the middleware have to
request authentication or authorization in order to execute



Agent
Server

Agent
Server

Object
ServerD

ire
ct

or
y

S
er

vi
ce

s

agent

AgentScape OS Kernel

M
an

ag
em

en
t

management
container

R
es

ou
rc

e

module

comm.

module

security

migration
module

bind protocol location
services module

module

life cycle

agent/process

table

AgentScape

API

Figure 3: An AgentScape middleware architecture.

their tasks.
In AgentScape, interoperability between agent plat-

forms can be realized in two ways. First by conforming to
standards like FIPA or OMG MASIF. These agent plat-
form standards define interfaces and protocols for inter-
operability between different agent platform implementa-
tions. For example, the OMG MASIF standard defines
agent management, agent tracking (naming services), and
agent transport amongst others. The FIPA standard is
more comprehensive in that it defines also agent commu-
nication and agent message transport, and even defines
an abstract architecture of the agent platform. A second
approach to interoperability is realized by reconfiguration
or adaptation of the mobile agent. This can be accom-
plished by an agent factory as described by Brazier et al.
(2002), which regenerates an agent given a blueprint of
the agent’s functionality and its state, using the appropri-
ate components for interoperability with the other agent
platform.

3.3 AgentScape Prototype

The current prototype implementation of the AgentScape
architecture provides the following basic functionality:
creation and deletion of agents, communication between
agents and middleware, and weak migration of agents.
The AgentScape Operating System kernel and some basic
services are implemented in the programming language
Python, while the agent server is implemented in Java.
As a proof of concept, the middleware not only supports
agents written in different programming languages, but its
components are implemented in different programming
languages.

4 Supporting Agent-Based Grid
Management

Resource management is one of the central components of
wide-area distributed computing systems like a grid archi-
tecture. There have been various projects focused on grid
computing that have designed and implemented resource
management systems with a variety of architectures and
services. Krauter et al. (2002) describe a comprehensive
taxonomy for resource management architectures. The
design objectives and target applications for a Grid moti-
vate the architecture of the resource management system.

Decentralized, peer-to-peer interaction, resource trad-
ing, and machine learning are typically application areas
where multi-agent systems are a potentially effective so-
lution. Based on the definition of, for example, the Open
Grid Services Architecture (Foster et al., 2002), multi-
agent systems can be integrated with grid environments to
provide services such as resource management. To inte-
grate multi-agent systems, middleware support for agents
should also be integrated with the grid environment.

For the interoperability of AgentScape and a grid en-
vironment, or more specifically a grid middleware, two
levels of interoperability are important:runtime system
andmiddleware level.

First, interoperability, extensibility and adaptivity at
the runtime system level is incorporated in the agent in-
terface, that is, code associated with an agent’s implemen-
tation. Agents can provide their own implementation of
a runtime system which makes calls on the middleware.
This makes the agents adaptable to different environments
and extensible if other runtime services are required. The
interfaces can be loaded dynamically, and after migration



of the agent to another platform, a platform specific inter-
face implementation can be bound to the agent. This flex-
ibility makes the agent highly adaptive and extendible.

Second, interoperability and adaptivity at the middle-
ware level is provided by the component-based design of
the incorporated functionality of the middleware. That is,
the components that implement the required functionality
have a clearly defined interface, and can be replaced with
other implementations. For example, the standard com-
munication module that is included with AgentScape, can
be replaced by a communication module supported by the
grid middleware. This is also according the Globus design
philosophy where existing or proprietary technologies can
be incorporated in the Globus system (Foster et al., 2001).

Agent-based methods for coordination and control
mechanisms in heterogeneous distributed system is a new
and active research area. Minsky and Ungureanu (2000)
formulate the requirements for agent-based coordination
and control: (i) coordination policies need to be enforced;
(ii) the enforcement needs to be decentralized; (iii) co-
ordination policies need to be formulated explicitly; and
(iv) it should be possible to deploy and enforce a pol-
icy incrementally. Minsky and Ungureanu describe a
law-governed interaction mechanism that satisfy these
principles, and can be used as a model for an agent-based
approach to coordination and control of resource man-
agement system.

5 Summary and Future Work

Computational grids are often used for computationally
intensive applications. Grids are currently expanding to
Internet-scale sizes. Management issues, including task
allocation and resource management, becomes a very im-
portant issue. Agent-based approaches may facilitate the
management of these large-scale grids. Unfortunately, al-
most all of the current agent-based systems are not devel-
oped for large-scale environments; CoABS is a notable
exception.

AgentScape, a large-scale distributed agent system,
designed to support heterogeneity and interoperability, fa-
cilitates extensibility: it is relatively easy to build agent
environments “on top of” AgentScape. AgentScape is
also relatively easily adapted to different (lower-level) op-
erating systems and network infrastructures. As such,
AgentScape can be relatively easily integrated with other
environments and support agent-based approaches to grid
resource management.

Future work is further development of the AgentScape
prototype. An elaborate management system will be
incorporated to deal with performance, security, fault-
tolerance, and accounting. Other research issues are scal-
able services for agents, such as name, location, and
directory services. Agent-based scheduling and resource
allocation algorithms have to be developed and evaluated
on the AgentScape middleware.

References

J. M. Bradshaw, N. Suri, A. J. Cañas, R. David, K. Ford,
R. Hoffman, R. Jeffers, and T. Reichherzer. Terraform-
ing cyberspace.Computer, 34(7):48–56, July 2001.

F. M. T. Brazier, B. J. Overeinder, M. van Steen, and
N. J. E. Wijngaards. Agent factory: Generative migra-
tion of mobile agents in heterogeneous environments.
In Proceedings of the ACM Symposium on Applied
Computing (SAC 2002), Madrid, Spain, March 2002.

I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke.
The physiology of the Grid: An open Grid services
architecture for distributed systems integration.
http://www.globus.org/research/papers/-
ogsa.pdf, January 2002.

I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
Grid: Enabling scalable virtual organizations.International
Journal on High Performance Computing Applications, 15
(3):200–222, Fall 2001.

R. Ghanea-Hercock, J. C. Collis, and D. T. Ndumu. Co-
operating mobile agents for distributed parallel processings.
In Proceedings of the Third Annual Conference on Au-
tonomous Agents, pages 398–399, Seatle, WA, April 1999.

K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and
survey of grid resource management systems for distributed
computing. Software: Practice and Experience, 32(2):135–
164, February 2002.

F. Manola and C. Thompson. Characterizing the agent
grid. http://www.objs.com/agility/tech-
reports/990623-characterizing-the-agent-
grid.html, June 1999.

N. Minsky and V. Ungureanu. Law-governed interaction: A
coordination and control mechanism for heterogeneous dis-
tributed systems.ACM Transactions on Software Engineer-
ing and Methodology, 9(3):273–305, July 2000.

G. P. Picco. Mobile agents: An introduction.Microprocessors
and Microsystems, 25(2):65–74, April 2001.

O. F. Rana and D. W. Walker. ‘The Agent Grid’: Agent-based
resource integration in PSEs. InProceedings of the 16th
IMACS World Congress on Scientific Computing, Applied
Mathematics and Simulation, Lausanne, Switzerland, August
2000.

N. J. E. Wijngaards, B. J. Overeinder, M. van Steen, and F. M. T.
Brazier. Supporting Internet-scale multi-agent systems.Data
and Knowledge Engineering, 2002. (To appear).

M. J. Wooldridge and N. R. Jennings. Intelligent agents: The-
ory and practice.The Knowledge Engineering Review, 10(2):
115–152, 1995.


