Managing Agent Life Cycles in Open Distributed Systems

D.G.A. Mobach, B.J. Overeinder, N.J.E. Wijngaards, and FEM.T. Brazier

IIDS Group, Department of Artificial Intelligence, Faculty of Sciences,
Vrije Universiteit Amsterdam, de Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{mobach,bjo,niek,frances}@cs.vu.nl

ABSTRACT

Large scale open, heterogeneous, distributed environments such
as the Internet, are the environments in which (intelligent) agents
need to be able to function and survive. These environments need
to provide distributed support, including management services,
for such agent systems. In this paper a local management archi-
tecture, implemented in AgentScape, is provided together with a
management-oriented life cycle model. A major feature of this
model is the central role of one of the states of the life cycle model,
namely the ”suspended” state: the state in which an agent is man-
ageable. A prototype implementation of the management system
based on the life cycle model is described.

Keywords
Agent management, agent life cycle, distributed systems, middle-
ware

1. INTRODUCTION

The Internet can be described as an open distributed system, that
provides a large-scale environment for (intelligent) software agents.
Agents are autonomous (mobile) processes, capable of communi-
cation with other agents, interaction with the world, and adaptation
to changes in their environment. Agents are defined by their ability
to function autonomously. This autonomy enables agents to coor-
dinate their behavior, e.g., to tune their actions and interactions to
those of other agents, increasing the overall problem solving capa-
bility of a multi-agent system.

Large-scale multi-agent systems are very diverse, dynamic, and
unpredictable. Their requirements with respect to performance, se-
curity, and fault-tolerance are not always known in advance. These
requirements make multi-agent system management different from
regular process management. Traditional process management
methods [2] provide little support with respect to the management
of autonomous entities that set their own goals. An agent manage-
ment system needs to be able to manage large scale, heterogeneous,
open environments without infringing on individual agents’ auton-
omy. Agents are namely autonomous (mobile) processes capable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC 2003 Melbourne, Florida, USA

(©2003 ACM 1-58113-624-2/03/03 ...$5.00.

of communication with other agents, interaction with their envi-
ronment, and adaptation to these same environments.

Besides autonomy, a management system for open distributed
agent systems needs to be designed to manage heterogeneous
agents (heterogeneous with respect to architecture, code languages,
resource requirements). One necessary condition is that a manage-
ment system needs to be able to understand the implications of the
life cycle model for which an agent has been designed.

Current life cycle models emphasize an agent’s active state, but for
management purposes the agent’s suspended state is of more im-
portance: only a suspended agent can be manipulated and managed
(e.g., migrated, stored on disk, deleted, or created).

Agent platforms are systems that support (a number of) multi-agent
systems by hosting large numbers of individual agents. In large-
scale open distributed systems, the resources within the different
administrative domains need to be managed locally, to ensure that
resource owners keep control over their resources, and to ensure
that the resources are used effectively by the agents.

In this paper a management architecture, including a management-
oriented agent life cycle model for AgentScape, is described. Sec-
tion 2 discusses current approaches to agent platform management
systems. Section 3 discusses agent life cycle models, and presents
the agent life cycle model chosen for the AgentScape management
system. Section 4 describes the architecture of AgentScape’s man-
agement system and its prototypes. Section 5 discusses some con-
clusions that can be drawn from the first results, and indicates some
future research directions.

2. AGENT MANAGEMENT

The management of agents is recognized to be an important part
of an agent platform. This certainly holds for large-scale multi-
agent systems deployed on heterogeneous and open systems. In
multi-agent system literature, different aspects of management are
addressed.

In Grasshopper [3], the concept management service is mentioned
in the range of functionalities in the Core Agency. Core Agencies
represent the minimal functionality required by an agency in order
to support the execution of agents. Support for human interaction
is provided by the management services, to monitor and control
agents and places.

Abeck et al. [1] presented a framework for managing agents, which
applies traditional systems management concepts for monitoring

and controlling agents. Agents are equipped with a Management
Information Base (from the OSI management model), and agents
are either managed by their home base, or their current base. In his
design and implementation prototype, Abeck recognizes the mul-
tiplicity of the problems that management is related to (resources,
security, debugging).

The FIPA agent management reference model provides a normative
framework within which FIPA agents exist and operate [6]. It es-
tablishes the logical reference model for the creation, registration,
location, communication, migration and retirements of agents. The
agent management reference model consists of the following logi-
cal components: an agent, a directory facilitator, an agent manage-
ment system, a message transport service, an agent platform, and
software (services). The directory facilitator provides yellow pages
services to other agents. The agent management system exerts su-
pervisory control over access to and use of the agent platform. An
agent platform provides the physical infrastructure in which agents
can be deployed.

The MASIF standard for allowing different multi-agent systems to
inter-operate, also addresses the management of agents [11]. In
the MASIF standard, the focus of agent management is placed on
interoperability issues. Management is interpreted as a method to
allow agent systems to control agents of other agent systems. Re-
source management is not defined in the MASIF specification, only
existing CORBA support can be used for resource management.

The design goals of the Mobile Objects and Agents (MOA) [12]
project are support for migration, communication, and control of
agents, and provide extensive resource control and interoperability.
Resource management is deeply ingrained in the design decisions
of many MOA layers and components. Agents negotiate for MOA
resources about which and how many it can utilize at the target
MOA system. This is achieved by calculating local policy from
the agent policy and the host policy. The agent local policy is en-
forced during its lifetime at the visiting MOA system. The resource
management system can also protect hosts from overly demanding
agents, by putting limitations on resource consumption.

AgentSNMP [15] applies the SNMP network management so-
lution to managing agent platforms. Utilizing the flexibility of
industry-standard SNMP techniques, a formal interface is defined
for management of a FIPA-compliant agent platform. A specific
proxy agent implementation of this interface for the JADE (FIPA-
compliant) agent platform was also developed. The result is an
efficient, flexible means of managing agent platforms.

Agent-based monitoring and visualization tools such as discussed
in [5] and [8] provide human users/system administrators support,
but are not used by the systems themselves.

The monitoring and management systems discussed in this section
all have (implicitly or explicitly) agent life cycle models which de-
fine the states and state transitions that are allowed. In the next
section, some of the underlying life cycle models are presented.

3. LIFE CYCLE MODELS

Agent life cycle models are used by management systems to both
monitor the state of agents, as well as control agent-state changes.
Management systems are not concerned with internal states of an
agent, or agent-specific tasks within an multi-agent application.
The “observable” states of an agent, from the perspective of the

management system, include states such as:

1. activated: an agent can actively participate in a multi-agent
application,

2. suspended: an agent is temporarily not available, but may
become activated in the future,

3. migrating: an agent is moving to another location.

Section 3.1 briefly describes a number of existing life cycle mod-
els. An alternative life cycle model, with a management-oriented
perspective on the states of an agent, is presented in Section 3.2.

3.1 Life Cycle Models in Literature

An agent life cycle can be defined as [10]: “A series of stages
through which an agent passes during its lifetime.” Life cycle mod-
els describe both the states of an agent, and the (allowed) transitions
between states.

The FIPA Agent Management Specification [6, 13] explicitly de-
fines an agent life cycle with a state diagram. FIPA agents can be in
one of the following states: initiated, active, transit, or suspended.
After creation, the agent is said to be in the initiated state. After
invoking the agent, it is active. The central state of a FIPA agent is
the so-called active state. After moving into another state, agents
always return to the active state before additional state transitions
are possible.

In [9], two life cycle models are discussed: a task based agent life
cycle model, which is useful for coordination between agents, and
a persistent process based model which is more suitable for man-
agement of agents. The latter model consists of four states: start,
running, frozen, and death; “frozen” is the state in which an agent
can be transported to another host.

The life cycle model in Pathfinder [4] does not consider migration
to be part of a mobile agent’s life cycle. The model consists of the
following states and transitions between them: stopped, running,
suspended, aborted, and completed. Agent life cycle models with-
out migration as an explicit state, look similar to Service life cycle
models (e.g., [7]).

Some descriptions of agent platform management systems do not
explicitly include life cycle models, but do recognize agent states.
For example, the AMS in [3] (Agent Management System) recog-
nizes the following states: creation, suspension, resumption, termi-
nation, migration and localization. Other descriptions of manage-
ment systems recognize “actions” on agents, which seem to be de-
rived from a (hidden) life cycle model. For example, MASIF [11]
includes the following functions: agent creation, termination, sus-
pension, transfer, and resumption.

3.2 Management-Oriented Life Cycle Model

The aforementioned agent life cycle models had “activated” as their
central state, although an agent cannot be managed by the system
when it is active. From a management perspective, the suspended
state is the central state of an agent. A suspended agent is man-
ageable, that is, can make the necessary transitions to other defined
states. In Figure 1, the management-oriented life cycle is shown.

Persistent
Storage

departure

retrieval
arrival

creation termination

Suspended

. termination
resumption

Activated

Figure 1. The management-oriented agent life cycle model.

Our management-oriented life cycle model consists of four states,
and a number of transitions between these states. The four basic
states are:

1. the activated state, in which the agent is running and able to
perform actions and pursue its goals;

2. the suspended state, in which an agent is still within the agent
platform;

3. the migrating state, during which the agent is traveling be-
tween two platform instances;

4. the persistent storage state, in which an agent is removed
from the agent platform and stored elsewhere.

In this model the initial and final state are not explicitly distin-
guished. Instead, only the possible transitions from the initial state
and to the final state are distinguished of importance, as the two
states themselves are not important from a management point of
view.

To allow agents to migrate from one agent platform to another,
and not be rejected because of life cycle differences between the
management systems at these agent platforms, agreement on (or
transformations between) life cycle models is required. The life
cycle model presented in this section is a basic model, which pro-
vides a minimal life cycle for (mobile) agents. The model may be
extended, e.g., by defining additional states and transitions, if so
required. Furthermore, the basic model provides a basis for inter-
operability, as it clearly defines the states and transitions that are
supported. The next section illustrates the use of a life cycle model
in a management system.

4. AGENTSCAPE’S MANAGEMENT
ARCHITECTURE

The agent management system in AgentScape [17] employs the
management-oriented life cycle model described above. Sec-
tion 4.1 briefly describes AgentScape, after which Section 4.2
describes the architecture of the current management system.

4.1 AgentScape

The main objective of the open source AgentScape project [17] isto
provide a framework to support the development of large-scale, se-
cure, distributed multi-agent systems. AgentScape is a distributed
middleware layer that supports these large-scale agent systems, ef-
fectively by providing a distributed virtual machine which hosts
agents, objects and services. The rationale behind design decisions
in AgentScape are (i) to provide a platform for large-scale agent
systems, (ii) support multiple code bases and operating systems,
and (iii) interoperability with other agent platforms.

Agents and objects are supported by agent servers and object
servers. Services are made accessible via service access providers.
Agents are the active entities (i.e., processes), objects are passive
entities, which may be distributed over multiple object servers
(currently as Globe distributed shared objects [16]). A location
consists of a number of agent servers, object servers, and service
access providers, running on one or more hosts. Each location has
a kernel distributed over hosts in the location, and may interact
with other locations, e.g., to enable agent communication, object
interaction, agent migration, etc. Figure 2 shows an overview of
the AgentScape architecture, in which agent and object servers
are shown that host agents and objects, as well as some example
services.

AgentScape is designed to be extensible; the kernel provides basic
functionality on top of which application or platform-specific func-
tionality can be realized (via specific agent-servers, libraries, and/or
services). Also, the kernel itself is modularized, which allows for
flexible adaptation of the kernel.

=3
> £
0
sé)
o g Agent Agent Object
a8h 58 Server Server Server
' N VN Q o
(g) O o”

AgentScape OS Kernel [

Figure 2: The AgentScape architecture.

Loc‘anon

4.2 Management Architecture

This section presents a management architecture for a single loca-
tion within AgentScape. A number of design principles for a lo-
cation management architecture are formulated. First the manage-
ment system should not generate disproportionate communication
and processing overhead within a location. Second, gathering data
must not be disruptive, especially in the case of monitoring agents.
Other important issues such as the security and reliability of the
management system are recognized, but fall outside the scope of
this paper.

Within a location in the AgentScape system, each host that needs
to be managed is equipped with a monitoring module in the kernel.
The monitoring modules gather data from the kernel and from agent

servers, object servers, and service access providers. The monitor-
ing modules are controlled by a location manager, which runs as
a service on the distributed kernel of the location (see Figure 2).
Figure 3 shows an example of a location. The location consists of
four hosts, which each run different components of the AgentScape
system. Each host contains a monitoring module. Host B of the lo-
cation runs the location manager service.

AgentScape Location
with management components

-~ object -
server

Iocauon

/ mana er «’é\gent
server
a ent ,
server .«‘ |
Monitor ||/
\ module f| /'
Monitor
R module S " host A

object >~
server

agent
server

agen ,’ agent
,/ server MDnllor / server
I mudule |
Monitor

\\ module LV

host D

Figure 3: An AgentScape location with monitoring modules
distributed over four hosts.

The location manager service issues requests to the monitoring
modules to monitor specific information by defining information
filters. Filters are used to selectively monitor information, or to
monitor for specific events. Monitor operations are delegated to
the monitoring modules which locally implement these filters. The
amount of data processed by the monitoring modules and the lo-
cation manager is minimized, as only that information is collected,
which is specified by the location manager, and communication be-
tween the manager and the monitoring modules is performed only
when necessary.

The location manager uses monitoring information to determine
which actions need to be taken and by which component (e.g.,
agent servers, agent containers, kernel modules). In the example
shown in Figure 4, interactions are shown between a location man-
ager, a remote monitoring module on another host in the location,
and an agent server on that remote host. Data is gathered from the
agent server by the monitoring module, and processed and commu-
nicated to the location manager. The location manager reacts by
issuing an instruction to the agent server.

.-~ "agent ~~-_
server .

location
manager

, monltorlng
,~— requests.

N _-" monitoring — T L7
T -7 information T -7
host X host Y

Figure 4: Example monitoring and control operations.

The management system uses the management-oriented life cy-
cle model described in Section 3.2 to monitor an agent’s states,
enabling management to perform appropriate operations on these
agents. For example, to migrate an agent it must first be suspended.
To be “off-loaded”, i.e. placed in persistent storage, it also must
first be suspended before being stored for future activation. Us-
ing the life cycle model as a basis for management operations en-
sures that all agents that are under management control adhere to
the same states and transitions, and can be managed by the location
management system.

For example, consider a location manager that needs to monitor
communication originating from a specific agent running on an
agent server within the location. Depending on the resource man-
agement objectives, the location manager decides which informa-
tion it requires and configures the monitoring filters to only return
communication information that is relevant for the current objec-
tives. In another situation, a location manager may choose to use
a filter to instruct a monitoring module to report to the manager
when the number of communicated messages at that kernel exceeds
a specified limit. As long as the number of messages stays below
the specified limit, the monitoring module does not need to alert the
location manager, and no communication between the monitoring
module and the location manager in necessary.

A prototype of the management system has been implemented and
incorporated with the AgentScape Operating System. The proto-
type performs basic agent management tasks, such as load bal-
ancing agents over the available agent servers in a location, by
migrating them from one server to another. Monitoring modules
keep track of the number of agents on each agent server, and notify
the location manager when this number deviates from the desired
value. The location manager then responds by migrating the sur-
plus agents to another agent server within the location.

The first experiments with the prototype present valuable insights
into the flexibility and shortcomings of the proposed management
architecture. The prototype allows for experimentation with differ-
ent communication protocols between the components of the man-
agement system, as well as different management strategies, and
various approaches for distributing management intelligence across
the various components of the management system. The results of
these experiments help in finding the optimal balance between the
benefits and costs (i.e. overhead) of a management system.

5. DISCUSSION

An open distributed system requires a distributed management sys-
tem. AgentScape’s management system is aimed to be distributed:
within a location, management components are distributed across
the available system components. In addition, future research will
involve resource management between locations in a distributed
manner, possibly using a peer-to-peer approach [14].

AgentScape is designed to support and manage heterogeneous
agents. To this purpose AgentScape’s management system uses a
management-oriented agent life cycle model to describe the state
of heterogeneous agents. Within this model, the suspended state is
viewed as the central state of an agent. Open questions that will
be addressed in future research concern interoperability with life
cycle models in other multi-agent system frameworks, as well as
interoperability implications when multiple extensions of the life
cycle model are used concurrently.

AgentScape’s management architecture monitors and controls the
resources within a location, in addition to the agents and objects
it hosts. Our current research focuses on experiments with load-
balancing within a location. These experiments provide insights
into the process of integrating a management system within a multi-
agent system framework. Future research will involve incorporat-
ing the location management model into a global AgentScape man-
agement model, which will address important management aspects
including security, fault tolerance and performance.

Acknowledgments

This research is supported by the NLnet Foundation,
http://www.nlnet.nl/. The authors would like to thank Etienne
Posthumus, Maarten van Steen, and Andy Tanenbaum for their
valuable discussions and comments.

6. REFERENCES
[1] S. Abeck, A. Koppel, and J. Seitz. A management
architecture for multi-agent systems. In 3rd IEEE Workshop
on Systems Management, pages 133-138, Newport, 1998.

[2] G. Allen, T. Dramlitsch, I. Foster, N. T. Karonis,
M. Ripeanu, E. Seidel, and B. Toonen. Supporting efficient
execution in heterogeneous distributed computing
environments with Cactus and Globus. In Proceedings of the
2001 ACM/IEEE Conference on Supercomputing, pages
52-52, Denver, Colorado, Nov. 2001.

[3] M. Breugst and S. Choy. Management of mobile agent based
services. In H. Z. et al, editor, 6th International Conference
on Intelligence in Services and Networks, volume 1597 of
Lecture Notes in Computer Science, pages 143-154, Berlin,
Germany, 1999. Springer-Verlag.

[4] W.-S. E. Chen, C. Lin, and Y.-N. Lien. A mobile agent
infrastructure with mobility and management support. In
Proceedings of the 1999 International Workshops on Parallel
Processing, pages 508-515, Wakamatsu, Japan, 1999.

[5] Z. Cui, B. Odgers, and M. Schroeder. An in-service agent
monitoring and analysis system. In Proceedings of the 11th
IEEE International Conference on Tools with Artificial
Intelligence, pages 237-244, Chicago, USA, 1998.

[6] Foundation for Intelligent Physical Agents. FIPA agent
management specification, Aug. 2001.

[7] M. Garschhammer, R. Hauck, H.-G. Hegering, B. Kempter,
M. Langer, M. Nerb, I. Radisic, H. Roelle, and H. Schmidt.
Towards generic service management concepts — A service
model based approach. In Proceedings of the 7th
International IFIP/IEEE Symposium on Integrated
Management (IM 2001), pages 719-732, Seattle,
Washington, USA, May 2001.

[8] J. R. Graham, D. McHugh, M. Mersic, F. McGeary, M. V.
Windley, D. Cleaver, and K. S. Decker. Tools for developing
and monitoring agents in distributed multi-agent systems. In
T. Wagner and O. Rana, editors, International Workshop on
Infrastructure for Scalable Multi-Agent Systems, volume
1887 of Lecture Notes in Computer Science, pages 12-27,
Berlin, Germany, 2001. Springer-Verlag.

[9] S. Green, L. Hurst, B. Nangle, P. Cunningham, F. Somers,
and R. Evans. Software agents: A review. Technical Report

TCS-CS-1997-06, Department of Computer Science, Trinity
College Dublin, Dublin, Ireland, May 1997.

[10] M.-W. Incorporated. Merriam-webster online.
http://ww. mw. com 2001.

[11] D. Milojicic, M. Breugst, 1. Busse, J. Campbell, S. Covaci,
B. Friedman, K. Kosaka, D. Lange, K. Ono, M. Oshima,
C. Tham, S. Virdhagriswaran, and J. White. MASIF: The
OMG mobile agent system interoperability facility. In
Proceedings of Mobile Agents, pages 50-67, Stuttgart,
Germany, Sept. 1998.

[12] D. Milojicic, W. LaForge, and D. Chauhan. Mobile objects
and agents (MOA). In Proceedings of USENIX COOTS’98,
pages 179-194, Santa Fe, NM, Apr. 1998.

[13] P. D. O’Brien and R. Nicol. FIPA - Towards a standard for
software agents. BT Technology Journal, 16(3):51-59, 1998.

[14] B.J. Overeinder, N. J. Wijngaards, M. van Steen, and
F. M. T. Brazier. Multi-agent support for Internet-scale Grid
management. In Proceedings of the AISB’02 Symposium on
Al and Grid Computing, pages 18-22, London, UK, Apr.
2002.

[15] B. D. Remick and R. R. Kessler. Managing agent platforms
with agentSNMP. In Proceedings of the 1st International
Workshop on Challenges in Open Agent Systems, at
AAMAS’02, Bologna, Italy, July 2002.

[16] M. van Steen, P. Homburg, and A. Tanenbaum. Globe: A
wide-area distributed system. IEEE Concurrency,
7(1):70-78, Jan.—Mar. 1999.

[17] N. Wijngaards, B. Overeinder, M. v. Steen, and F. Brazier.
Supporting internet-scale multi-agent systems. Data and
Knowledge Engineering, 41(2-3):229-245, June 2002.

