
Formal Specification of Multi-Agent Systems:

a Real-World Case*

Frances Braziera, Barbara Dunin Kepliczb, Nick R. Jenningsc and Jan Treura

a Vrije Universiteit Amsterdam, Department of Mathematics and Computer Science, Artificial Intelligence Group,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands. Emails: {frances,treur}@cs.vu.nl

b University of Warsaw, Institute of Informatics, ul. Banacha 2, 02-097 Warsaw, Poland. Email: keplicz@mimuw.edu.pl

c University of London, Queen Mary & Westfield College, Department of Electronic Engineering,
Mile End Road, London E1 4NS, United Kingdom. Email: N.R.Jennings@qmw.ac.uk

Abstract
In this paper the framework DESIRE, originally
designed for formal specification of complex reasoning
systems is used to specify a real-world multi-agent
application on a conceptual level. Some extensions to
DESIRE are introduced to obtain a useful formal
specification framework for multi-agent systems.

1 Introduction

In many areas of software engineering and knowledge-based
system design, formal specifications of the conceptual
design of complex systems are devised before systems are
implemented; for an overview in the area of complex
(knowledge-based) reasoning systems, see (Treur & Wetter
93). Such specifications describe the semantics of systems
without concern for implementation details, providing a
basis for verification and validation of the functionality of
the systems. Most specification frameworks, however, do
not provide adequate means to describe the dynamics of
reasoning behaviour and acting behaviour (e.g., guided
reasoning, observation, communication and execution of
actions) of complex systems: a crucial characteristic of
multi-agent systems.

One formal specification framework, DESIRE
(framework for DEsign and Specification of Interacting
REasoning components; cf. (Langevelde, Philipsen & Treur
92; Brazier, Treur, Wijngaards & Willems 94)), originally
designed for complex reasoning systems, does focus on the
specification of the dynamics of reasoning and acting
behaviour. Within this framework complex reasoning
systems are designed as interacting task-based hierarchically
structured components, as compositional architectures. The

 * In: V. Lesser (ed.), Proc. of the First International Conference
on Multi-Agent Systems, ICMAS-95, MIT Press, Cambridge, MA,
1995, pp. 25-32.

interaction between components, between components and
the external world, as well as between components and one
or more users (cf. (Brazier & Treur 94)), is formally
specified. Components can be reasoning components (for
example based on a knowledge-base), but may also be
subsystems which are capable of performing tasks such as
calculation, information retrieval, optimisation, et cetera.
Formal semantics of such compositional reasoning systems
are defined on the basis of temporal logic (cf. (Engelfriet &
Treur 94; Gavrila & Treur 94; Treur 94)). As implemen-
tation generators exist to automatically generate prototype
implementations from formal specifications, a system
designer can focus on the specification of the conceptual
design of a system: on both the static and the dynamic
aspects of the required functionality. The formal
specification framework DESIRE is currently used by a
number of companies and research institutes for the
development of knowledge-based systems for complex
reasoning tasks. A number of knowledge-based systems
developed using DESIRE have become operational.

The aim of the current paper is to introduce a specification
framework based on DESIRE tuned to multi-agent tasks.
Given the basic assumptions behind DESIRE, the extension
of the formal specification framework to multi-agent
systems is relatively straightforward and natural. Agents are
most often autonomous entities, designed autonomously.
Agents can be activated in parallel and control resides
(essentially) in the agents themselves.

This paper briefly describes the formal specification
framework DESIRE and its application to multi-agent
systems in general, illustrated on the basis of one of the few
operational real-world distributed artificial intelligence
applications, a system for electricity transportation
management (Cockburn & Jennings 95). The paper has the
following structure. In Section 2 the application domain is
described; in Section 3 the specification framework is
introduced. In Section 4 the specification of the example

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15452831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

multi-agent system is presented. Finally, in Section 5 a
discussion of some conclusions and further perspectives is
presented.

2 The Application Domain

The multi-agent system described in this paper was
developed in the ARCHON project (see (Cockburn &
Jennings 95)) and is currently running on-line in a control
room in the North of Spain (see (Jennings et al. 95)). An
electricity transportation network carries electricity from
generation sites to the local networks where it is distributed
to customers. Managing this network is a complex activity
which involves a number of different subtasks: monitoring
the network, diagnosing faults, and planning and carrying
out maintenance when such faults occur. The running
application involves seven agents. In this paper we will
focus on the three most representative agents.

The Control System Interface agent (CSI) continuously
receives data from the network - e.g., alarm messages about
unusual events and status information about the network's
components. From this information, the CSI periodically
produces a snapshot which describes the entire system state
at the current instant in time. It also performs a preliminary
analysis on the data it receives from the network to
determine whether there may be a fault.

Two diagnosis agents are also considered - an Alarm
Analysis Agent (AAA) and a Blackout Area Identifier agent
(BAI). Both of these agents are activated by the receipt of
information from CSI which indicates that there might be a
fault. They both use CSI's snapshot information to update
their model of the network on which their diagnosis is based.
BAI is a fast and relatively unsophisticated diagnostic
system which can pinpoint the approximate region of the
fault (the initial blackout area) but not the specific element
which is at fault. AAA, on the other hand, is a sophisticated
model-based diagnosis system which is able to generate and
verify the cause of the fault in the network. It does this in a
number of different phases. Firstly, it performs an
approximate hypothesis generation task which produces a
large number of potential hypotheses (the knowledge used
here guarantees that the actual fault is always contained in
this initial list). It then takes each of these hypotheses in turn
and performs a time consuming validation task to determine
the likelihood that the given hypothesis is the cause of the
problem. Cooperation occurs between AAA and BAI in that
BAI's initial blackout area can be used to prune the search
space of AAA's hypothesis validation task. It can do this
because the fault will be contained in the initial blackout
area - hence any hypotheses produced by AAA's generation
task which are not in the blackout area can be removed from
the list which needs to be considered by AAA's validation
task. The blackout area can be received by AAA in two
different ways. The most usual route is that BAI will
volunteer it as unsolicited information - BAI maintains a
model of all the agents in the system (its acquaintance
models) and its model of AAA will specify that it is
interested in receiving information about the blackout area.
Hence when this information is produced it will

automatically send it after making reference to its
acquaintance models. The other route is that AAA will
generate an information request to have the initial blackout
area produced - this will, in fact, result in a request being
directed to BAI because AAA's acquaintance model of BAI
indicates that it has a task which produces the initial
blackout area as a result.

3 A Formal Specification Framework
for Multi-Agent Sytems

The formal specification of compositional architectures for
multi-agent systems is based on a task-based approach to
multi-agent systems' design. As a result of task analysis,
hierarchical task models are specified at different levels of
abstraction as is the interaction between tasks. A close
relation exists between the different levels of task
decomposition and the specification of the interaction
between tasks: the interaction is specified for each level
within the task decomposition. Each task is assigned to one
or more agents. Agents themselves perform one or more
(sub)tasks, either sequentially or in parallel. The knowledge
that agents have of themselves and of other agents and the
world is explicitly specified.

3.1 Formal specification framework
The task hierarchy devised during task analysis is the basis
for the structure of a compositional architecture: components
distinguished within a formal specification are defined
according to the task hierarchy. Interaction between
components, the basis for modelling complex behaviour, is
formally specified by information links between
components. These two aspects of the framework,
components and information links, are addressed below,
followed by an overview of the types of knowledge included
in a formal specification (see also (Brazier, Treur,
Wijngaards & Willems 94)).

3.1.1 Specification of components
During task analysis a hierarchy of tasks is composed within
which complex and primitive tasks are distinguished.
Complex tasks are described by one or more subtasks,
which, in turn, may be described by even more specific
subtasks, etc. The most specific tasks are the primitive tasks:
those which are not further decomposed.

Within a compositional framework, in which components
are directly related to tasks, components can be either (1)
composed, or (2) primitive. Composed components specify
the knowledge required to perform the related complex task
in the task hierarchy. For each composed component the
following types of knowledge are specified: the input and
output interface, the task control structure, the specific
subtasks of the complex task and their information links, and
the relevant domain knowledge structures. Primitive
components are similarly related to primitive tasks: a
primitive component specifies the knowledge required to

3

perform a primitive task. Primitive tasks can be performed
by primitive (knowledge-based) reasoning components, but
also by, for instance, neural networks, OR-algorithms and
conventional components.

The language in which a component is specified is based
on an order-sorted predicate logic (i.e., predicate logic with
a hierarchically ordered sort structure) within which
signatures are defined. These signatures distinguish sorts,
predicate symbols (relations), function symbols and
constants (objects). The input and output interface of a
component are defined in the appropriate interface
signature. For each component two interface signatures are
defined:
- the input signature describing the facts (possibly at
different (meta-)levels) given as input;
- the output signature describing the resulting facts
(possibly at different (meta-)levels) derived.
In addition a component may have an internal signature.
The information state of a component is dynamic: it
provides a repository for all domain information related to a
component generated during task execution and received as
a result of interaction with other components.

3.1.2 Interaction between components
Information exchange between components is based on
information links. An information link specifies which truth
value of an atom in the order-sorted logic used in one
component is to be identified with which truth value of
which atom in another component. Transfer of information
may also entail renaming of terms. The mapping then in
principle defines a kind of translation table between the two
signatures involved (see also (Brazier, Treur, Wijngaards &
Willems 94)). The language employed to specify an
individual component is therefore independent of other
components.

Within compositional architectures both complex
reasoning behaviour (changing ones own information states
internally) and acting behaviour (changing world or agent
states externally) is modelled as combinations of nontrivial
(and dynamic) patterns of interaction between components.
These dynamic patterns of interactions are modelled as
interactions between different levels of reasoning (or other
computational processes) distinguished within the
architecture as a whole but also within components: object
level, meta-level, meta-meta-level, et cetera. At the lowest
level, object-level reasoning entails reasoning about the state
of the world; reasoning about object-level reasoning is meta-
level reasoning. This object-meta distinction can be
repeated: the meta-level is in fact the object level for the
meta-meta-level, et cetera. The result of a component's
reasoning at the meta-level is used to guide or influence the
related object-level reasoning. This includes, for example,
specification of the assumptions which the object-level
reasoning should use, or of the target facts which the object-
level reasoning should (try to) derive. The actual transfer of
the output of meta-level reasoning to influence object-level
reasoning is known as a downward reflection.

Meta-level reasoning uses as input information about the
truth, falsity or undefinedness of object-level facts (epistemic
information), but also notification of the fact that a
component reasoning at the object-level requires additional
information from other components to be able to derive
specific results (requests). The transfer of this information
from a component reasoning at an object-level to provide
input for a component reasoning at a meta-level is known as
an upward reflection.

3.1.3 The elements in the formal specification
 of a compositional system

A specification document for a (hierarchical) compositional
architecture contains specifications of the components and
the relations between components. Five types of knowledge
are modelled during task acquisition:
(1) knowledge of the task structure
(2) knowledge of sequencing of (sub)tasks
(3) knowledge of information exchange between (sub)tasks
(4) knowledge of knowledge structures and knowledge
decomposition
(5) knowledge of role delegation
These types of knowledge are explicitly modelled within the
DESIRE framework. A specification document for a
(hierarchical) compositional architecture contains specific-
ations of the five types of knowledge specified in a formal
document as:
(1) a task decomposition: a task hierarchy together with
specification of input and output signatures for each of the
(sub)tasks;
(2) agent task control knowledge, specifying activation of
(sub)tasks within each individual agent, but also specifying
initial activation of agents;
(3) information links between components to enable
information flow;
(4) task-knowledge allocation with (references to) appropri-
ate (domain) knowledge structures;
(5) task allocation (between agents).

3.2 Formal specification of compositional agents
Compositional architectures are clearly based on the notion
of component described above. A compositional agent is a
composed component with a number of subcomponents
representing the agent's tasks to be performed and additional
knowledge of the world and other agents and how to interact
with them. The types of knowledge distinguished above can
also be distinguished with respect to compositional agents.

3.2.1 Task hierarchy and task allocation
For design from scratch, including the design of agents
themselves, tasks distinguished within a task hierarchy can
be assigned to different agents on the basis of the task
decomposition: both complex and primitive tasks alike. Task
allocation at this level is not one-to-one: in many situations
the same task may be assigned to more than one agent. In
other situations, agents already have certain capabilities and

4

characteristics. Task allocation involves distinguishing
which tasks within a task hierarchy can be performed by
which agent. The level of collaboration and cooperation
involved between particular agents will strongly influence
task allocation.

3.2.2 Information flow within and between agents
 and between agents and the world

Information exchange between components within an agent
is information exchange within a composed component:
information links between components define which
information can be transferred from one component to
another (see Section 3.1.2). Modelling agents as composed
components necessarily implies that the exchange of
information between agents is specified in information links:
specifying which information is to be exchanged.

Information links support modelling of specific types of
interaction. For example, in a given situation an agent may
require specific information to be able to complete a
reasoning task. The agent transfers this request as meta-
information to one or more other agents through information
links. The information requested may, as a result, be
transferred back to the agent through other information links.
This mechanism is an essential element in modelling
communication between agents.

Interaction between an agent and the external world is
modelled almost identically from the agent's point of view.
For example: an observation of the external world may be
modelled as an agent's specific request for information about
the external world, transferred as meta-information to the
external world through an information link. As a result of the
request information may be transferred through another link
back to the requesting agent. The external world includes
information on the current state of the world.

Another form of communication between an agent and the
external world is the performance of a specific action. An
agent performs an action by transferring information to this
purpose to the external world, upon which the external world
state changes.

3.2.3 Task control within an agent
Task control knowledge specified in complex and primitive
tasks alike, makes it possible to specify an agent's reasoning
and acting patterns distributed over the hierarchy of agent
components. Within our compositional framework such
knowledge is expressed in temporal rules (see (Engelfriet &
Treur 94; Gavrila & Treur 94)). Each component is assumed
to have a (local, linear) discrete time scale. When and how a
component will be activated (and whether activation is
continuous or not) is specified. This most often includes the
specification of at least:
 - the interactions required to provide the necessary

input facts,
 - the set of facts for which truth values are sought

(target set)
Evaluation of the status of other components is often
required to determine when a specific component is to be

activated. A component is considered to have been
successful with respect to one of its target sets if it has
reached its goal, specified by this target set (given default
specifications of the number of targets to be reached (e.g.,
any, or every) and the effort to be afforded). If not, it is
considered to have failed. A typical example of a
component's task control knowledge rule in which the
success of one component is required (own_process_control)
before a following component (update_snapshot) can be
activated with the required information, is the following:

if evaluation(own_process_control, ts_update, succeeded)
then next-component-state(update_snapshot, active)

and next-target-set(own_process_control, ts_poss_hyps)
and next-link-state(incoming_info_for_snapshot_update, up_to_date)

This knowledge rule states that

 if the component update_snapshot has succeeded in
accomplishing every target which it was assigned,

then the component own_process_control is assigned a new
set of targets to accomplish, and the next component
to be activated is specified, namely the component
update_snapshot, given information which has been
recently updated by activation of the link
incoming_info_for_ snapshot_update.

Note that next-link-state(incoming_info_for_snapshot_update, up_to_date)

indicates that the link incoming_info_for_snapshot_update has been
activated in order to transfer the information required for the
next component, update_snapshot. This is not a guarantee that
the information itself is new: it is only a guarantee that the
link has been activated.

The activation of components does not always depend on
the completion of another component. In some cases the
input causes a component to become active. The
specification of the fact that a component is to be continually
capable of performing its subtask during task execution (in
parallel with other components), depending on the
availability of new input, is expressed by:

if start
then next-component-state(D, awake)

3.2.4 Task control between agents and between
 agents and the external world

Minimal global task control is required to initially activate
all agents (and possibly links) involved in task performance.
Once agents are active their agent task control knowledge
determines the sequencing of task execution.

5

4 Formal specification of the example
multi-agent system

4.1 Task decomposition and role allocation
The example system described in Section 2 consists of three
agents (CSI, AAA, BAI) and interactions between the agents
and between agents and the world. Within our formal
framework DESIRE agents are specified as specific types of
composed components (see Section 3.1.1). The main tasks of
each of the agents in this example are similar; they each
have the same three generic tasks (own process control,
snapshot update, preparing communication) and one agent-
specific task (e.g., diagnose fault (for the agent AAA), or
identify blackout area (for the agent BAI)) to perform; see
Figure 1 for agent AAA's first level decomposition. These
generic tasks are generic in the sense that they can be
(specialised and) instantiated for different agents (reuse).

…

…

…

…

own
process
control

…

…

…

…
preparing

communication

…

…

…

…

snapshot
update

…
…

…
…

diagnose
 fault

…
…

…
…

global agent task control structure

Figure 1 Top-level compositional structure of agent AAA

In Figure 1 the small boxes on the left and right hand side
denote the levelled input and output interface respectively.
Here the levels indicate object-meta distinctions. The agent
AAA's complete task hierarchy as described in Section 2 is
given by Figure 2:

1. Own process control
1.1 Monitoring incoming data

 1.2 Evaluating the process state
2. Update snaphot
3. Diagnose fault (agent specific task)

3.1 Hypothesis generation
3.2 Hypothesis refinement
3.3 Hypothesis validation

3.3.1 Evaluating hypothesis
3.3.2 Deriving causal consequences

4. Managing communication
4.1 Examining the acquaintance model
4.2 Generating requests

Figure 2 Complete task hierarchy of agent AAA

To illustrate the way in which task hierarchies (see Section
3.2.1) are specified, in Figure 3 the task diagnose fault is
decomposed one step further (compared to Figure 1); here
the information links are depicted as well. In the formal
specification the task-subtask relations and link names (as
shown in Figure 2) are expressed as follows:

task structure diagnose_fault
 subcomponents hypothesis_generation, hypothesis_refinement,

 hypothesis_validation ;
 linksimport_disturbances, import_snapshot_info,

import_blackout_info, poss_hyps_to_refine,
poss_hyps_to_validate, lim_hyps_to_validate,
export_diagnosis ;

end task structure diagnose_fault

The link names specified above refer to information links
between subcomponents of the component diagnose fault;
detailed specifications of these links are of the form given in
Section 4.2.

4.2 Information flow within an agent
An example of an information link specification (see
Sections 3.1.2 and 3.2.2) within agent AAA is the link
between the component hypothes is_generat ion and the
component hypothesis_validation:

private link poss-hyps-transfer: object-object
domain hypothesis generation

output poss-hyps
codomain hypothesis validation

input hyps
sort links (Hyps,Hyps)
object links identity
term links identity
atom links (poss-hyp(H:Hyps), hyp(H:Hyps)):

<<true,true>,<false,false>>
endlink

This link relates output of the component hypothesis_generation

to input of the component hypothesis_validation, where the truth
value true (resp. false) of an atom of the form poss-hyp(H:Hyps)

is translated into the truth value true (resp. false) of an atom
of the form hyp(H:Hyps).

The components hypothesis_generation and hypothesis_refinement

represent meta-level reasoning components (with respect to
the object level reasoning about the world). These meta-level
components use epistemic information from outside the
component diagnose_fault as their input; their input arrows start
one (meta-)level higher in the input interface (see Figure 3).
In the specification these information links have names that
can be used in the task control knowledge, to specify under
which conditions they have to transfer the up-to-date
information.

4.3 Task control within an agent
Before describing task control knowledge (see Section 3.2.3)
for the component diagnose_fault, AAA's own task control
knowledge will be addressed, expressing control over its
four main tasks.

6

4.3.1 Agent AAA's task control
From the start both the agent component own_process_control

and the information link incoming_snapshot_for_own_process_control

have to become and remain awake. This is expressed by:

…

…

…

…

hypothesis
genera tion

…

…

…

…

…

hypothesis
validation

É

É …

hypothesis
refinement

…

…

…

…

global diagnose fault task control structure

Figure 3 The component diagnose fault of agent AAA

if start
then next-component-state(own_process_control, awake)

and next-target-set(own_process_control, all_targets)
and next-link-state(incoming_snapshot_for_own_process_control, awake)

The component update_snapshot is only active under certain
conditions (depending on whether or not incoming snapshot
data have been monitored by the component
own_process_control). In this case the snapshot information has
to be transferred to this component as well:

if evaluation(own_process_control, ts_update, succeeded)
then next-component-state(update_snapshot, active)

and next-target-set(own_process_control, ts_poss_hyps)
and next-link-state(incoming_info_for_snapshot_update, up_to_date)

The component diagnose_fault is activated if the component
own_process_control determines that a fault should be diagnosed
(because alarms are monitored); input information is
provided on grouped alarms, the current snapshot and (if
available) on the blackout area:

if state(diagnose_fault, idle)
and evaluation(own_process_control, diagnose_target_set, succeeded)

then next-component-state(diagnose_fault, active)
and next-target-set(diagnose_fault, faults)
and next-link-state(grouped_alarms, up_to_date)
and next-link-state(current_snapshot, up_to_date)
and next-link-state(blackout_area, up_to_date)

The component managing_communication is activated if the
component own_process_control determines that a request for
black area information is needed (because it is noticed that
this information is still lacking):

if evaluation(own_process_control, ts_requests, succeeded)
then next-component-state(prepare_communication, active)

and next-target-set(prepare_communication, communications)

and next-link-state(request_info, up_to_date)

The actual communication is performed if the component
manage_communicat ion succeeds in generating outgoing
requests; note that no component states are changed, but
only two links are activated in sequence: one to AAA's
output interface, and, subsequently, another one from the
output interface of AAA to the input interface of the agent
BAI (note that the order of activation of links is expressed
by the list notation):

if evaluation(prepare_communication, outgoing_requests, succeeded)
then next-link-state([request_to_output, request_out], up_to_date)

If fault results were found, these are transferred to AAA's
output interface:

if evaluation(diagnose_fault, fault_results, succeeded)
then next-link-state(fault_results_to_output, up_to_date)

If blackout information has arrived, then the diagnose fault
task should be activated, with extra information that
blackout information is available:

if evaluation(own process control, ts_blackout_area, succeeded)
then next-link-state(blackout_area, up_to_date)

and next-component-state(diagnose_fault, active)
and next-target-set(diagnose_fault, faults)
and extra_info(diagnose_fault, blackout_info_available)

4.3.2 Task control knowledge for diagnose fault
The control of the three subtasks of the task diagnose fault
(hypothesis generation, hypothesis refinement and
hypothesis validation) begins by the activation of the
component diagnose_fault:

if component-state(diagnose_fault, start)
then next-component-state(hypothesis_generation, active)

and next-target-set(hypothesis_generation, ts_poss_hyps)
and next-link-state(import_disturbances, up_to_date)

This rule states that once the component diagnose_fault has
been activated, the component hypothesis_generation is to be
activated with target set ts_poss_hyps and up to date
information about disturbances.

If blackout information is available and hypotheses have
been generated succesfully, hypothesis_refinement has to be
activated, and information on the blackout area and the
generated hypotheses has to be provided.

if evaluation(hypothesis_generation, ts_poss_hyps, succeeded)
 and extra_control_info(diagnose_fault, blackout_info_available)
then next-component-state(hypothesis_refinement, active)
 and next-target-set(hypothesis_refinement, ts_ref_hyps)

and next-link-state(blackout_info, up_to_date)
 and next-link-state(poss_hyps_to_refine, up_to_date)

If, however, no blackout information is available, the
component hypothesis_validation has to be activated, using
updated snapshot information and the generated hypotheses:

if evaluation(hypothesis_generation, ts_poss_hyps, succeeded)
and not extra_info(diagnose_fault, blackout_info_available)

7

then next-component-state(hypothesis_validation, active)
 and next-target-set(hypothesis_validation, ts_faults)

and next-link-state(import_snapshot_info, up_to_date)
 and next-link-state(poss_hyps_to_validate, up_to_date)

The next rule expresses that if blackout information becomes
available while the component hypothesis_validation is active, it
has to be interrupted and cleared (in order to be able to first
refine the generated hypotheses).

if evaluation(hypothesis_generation, ts_poss_hyps, succeeded)
 and extra_info(diagnose_fault, blackout_info_available)

and component-state(hypothesis_validation, active)
then next-component-state(hypothesis_validation, idle)

and next-info-state(hypothesis_validation, clear)

After hypothesis_refinement has succeeded, hypothesis_validation has
to be activated (again), using input information on the
snapshot and the limited set of hypotheses obtained by the
refinement:

if evaluation(hypothesis_refinement, ts_lim_hyps, succeeded)
then next-component-state(hypothesis_validation, active)

and next-target-set(hypothesis_validation, ts_faults)
and next-link-state(import_snapshot_info, up_to_date)
and next-link-state(ilim_hyps_to_validate, up_to_date)

4.4 Control and communication between agents
Control at the highest (central) level, between agents, is
minimal. Only very simple start rules are specified to
awaken the agents. For example:

if start
then next-component-state(AAA, awake)

An example of agent communication between AAA and
BAI is the request AAA issues to BAI for blackout area
information. An information link request_out from AAA
to BAI exists for this purpose: to transfer meta-information
stating that blackout area information is needed:

private link request_out: object-object
domain AAA

output request_output
codomain BAI

input request_input
atom links (boa_info_needed, boa_info_needed): <<true,true>>

endlink

The control of this information link is specified in the task
control knowledge of the sending agent (see the fifth rule in
Section 4.3 for the control of request_out). From BAI to
AAA there is an information link blackout_area_transfer to
provide AAA with blackout area information; this link is
controlled by BAI's task control knowledge.

5 Discussion

The advantages of formal specifications of complex systems
have been recognized both within information system design
and knowledge-based system design. Such specifications
provide an implementation-independent description of the

functionality of a system, providing a means to increase
maintainability and support reuse of system components
(Langevelde, Philipsen & Treur 92; Brazier, Treur,
Wijngaards & Willems 94), but also to verify and validate
system behaviour (cf. (Treur & Willems 95)).

The application of a formal specification framework,
originally developed for complex reasoning systems, to
multi-agent systems has been explored in this paper. The
compositional nature of architectures designed within the
formal specification framework DESIRE, clearly supports
the structure required for modelling multi-agents. Agents are
composed components; interaction between agents is
modelled as interaction between composed components.
These principles have, in the past, been succesfully
employed for the design and specification of, for example,
decision support systems, in which the interaction between a
user, a decision support system and an external world (often
represented by knowledge stored in a database), have been
modelled, specified and used to design and implement
prototype systems. Both static and dynamic aspects of the
interaction and required system behaviour were specified,
defining the semantics of task performance.

Extension of the framework to model multi-agent systems
in which agents are not necessarily cooperative and willing
to interact, in which agents are not necessarily aware of each
others goals, knowledge, et cetera, requires reconsideration
of the expressiveness provided within the framework.
Aspects such as: knowledge of other components (their
capabilities, willingness to communicate, etc), coordination
of parallel processes, handling interrupts, different timing
schemes, different states of awareness, et cetera (see also
(Dieng, Corby & Labidi 94)), need to be formally specified.
A number of these aspects were easily incorporated in the
framework for the example domain in the paper: the
extension of the framework required was minimal.

The incorporation of control information within agents
and not at the global level as in the original version of
DESIRE, described in (Langevelde, Philipsen & Treur 92),
was, for example, relatively straightforward. A first step in
this direction had already been taken by adding hierarchical
component structures to DESIRE, including hierarchically
decentralized control (see (Brazier, Treur, Wijngaards &
Willems 94)). For the multi-agent case the framework has
been extended to allow parallel activation of composed
components and to allow agents to directly control their
communication with other agents. An additional component
state status distinction was also required: the distinction
between active and idle no longer sufficed. In addition to
being active or idle, agents and also information links can be
awake (capable of processing incoming information as it
arrives) or asleep. The same holds for information links:
links can likewise be continually awake, although not
continually active.

The interaction between the autonomous agents in the
case study was well-defined: each agent clearly had its own
tasks and the types of information exchange required were
known. Duplication of tasks across agents was easily
implemented requiring no further extensions of the

8

framework. More extensive forms of collaboration, such as
explored in (Brazier & Treur, 94) in which the user and an
intelligent system have a shared task model, modelled in
DESIRE, required further consideration for multi-agent
situations. Collective agent satisfaction as an extension of
the concept of collective user satisfaction as modelled in
(Brazier & Ruttkay 93) is another concept of interest for
further research. Current research focusses on specification
of different types of cooperation (see, for example, (Brazier,
Eck & Treur 95)).

In conclusion, the employment of the formal specification
framework to multi-agent systems has proven to be
promising. The electricity transportation management
example has been formally specified within the formal
framework DESIRE with minor extensions for the parallel
and event-driven processing required. Further research will
address the expressiveness required for more extensive
forms of parallel and event-driven interaction and the
implications of the adaptations of the DESIRE syntax and
semantics for the software environment supporting
automated generation of executable code out of
specifications.

Acknowledgements

This research was partly supported by the ESPRIT III Basic
Research project 6156 DRUMS II on Defeasible Reasoning
and Uncertainty Management Systems. The authors are
grateful to Pascal van Eck, Niek Wijngaards and Mark
Willems for fruitful discussions about DESIRE, hierarchical
decomposition and distributed control. Pascal van Eck,
Catholijn Jonker and Niek Wijngaards proof-read the paper.

References

Brazier, F.M.T., P.A.T. van Eck, J. Treur (1995), Modelling
Exclusive Access to Limited Resources within a Multi-
Agent Environment: Formal Specification. Technical
Report, Vrije Universiteit Amsterdam, Department of
Mathematics and Computer Science

Brazier, F.M.T., Ruttkay Zs. (1993), Modelling collective
user satisfaction, Proc. of HCI International'93, Elsevier,
Amsterdam, 1993, pp. 672-677.

Brazier, F.M.T., J. Treur, N.J.E. Wijngaards and M. Willems
(1994). Temporal semantics and specification of complex
tasks. Technical Report IR-375, Vrije Universiteit
Amsterdam, Department of Mathematics and Computer
Science. Shorter version in: Proc. Dutch AI Conference,
NAIC'95, 1995. Preliminary version in: D. Fensel (ed.),
Proceedings of the ECAI ’94 Workshop on Formal
Specification Methods for Knowledge-Based Systems, 1994,
pp. 97-112.

Brazier, F.M.T. and J. Treur (1994). User centered
knowledge-based system design: a formal modelling
approach. In: L. Steels, G. Schreiber and W. Van de Velde

(eds.), “A future for knowledge acquisition,” Proceedings of
the 8th European Knowledge Acquisition Workshop, EKAW
’94. Springer-Verlag, Lecture Notes in Artificial Intelligence
867, pp. 283-300.

Cockburn, D. and N. R. Jennings (1995) "ARCHON: A
Distributed Artificial Intelligence System for Industrial
Applications". In: Foundations of Distributed Artificial
Intelligence (eds. G. M. P. O'Hare and N. R. Jennings),
Wiley & Sons.

Dieng, R., O. Corby, S. Labidi (1994), Agent-based
knowledge acquisition. In: L. Steels, G. Schreiber and W.
Van de Velde (eds.), “A future for knowledge acquisition,”
Proceedings of the 8th European Knowledge Acquisition
Workshop, EKAW ’94. Springer-Verlag, Lecture Notes in
Artificial Intelligence 867, pp. 63-82

Dunin Keplicz, B. and J. Treur (1995). Compositional
formal specification of multi-agent systems. In: M.
Wooldridge, N. Jennings (eds.), Intelligent Agents, Proc. of
the ECAI'94 Workshop on Agent Theories, Architectures
and Languages, Lecture Notes in AI, vol. 890, Springer
Verlag, 1995, pp. 102-117

Engelfriet, J. and J. Treur (1994). Temporal Theories of
Reasoning. In: C. MacNish, D. Pearce, L.M. Pereira (eds.),
Logics in Artifical Intelligence, Proc. of the 4th European
Workshop on Logics in Artificial Intelligence, JELIA ’94.
Springer Verlag, pp. 279-299. Also in: Journal of Applied
Non-Classsical Logics, Special Issue with selected papers
from JELIA'94, 1995, to appear

Gavrila, I.S. and J. Treur (1994). A formal model for the
dynamics of compositional reasoning systems. In: A.G.
Cohn (ed.), Proc. 11th European Conference on Artificial
Intelligence, ECAI'94, Wiley and Sons, pp. 307-311

Jennings, N. R. , J. Corera, I. Laresgoiti, E. H. Mamdani, F.
Perriolat, P. Skarek and L. Z. Varga (1995) "Using
ARCHON to develop real-word DAI applications for
electricity transportation management and particle
accelerator control" IEEE Expert - Special Issue on Real
World Applications of DAI

Langevelde, I.A. van, A.W. Philipsenand J. Treur (1992).
Formal specification of compositional architectures, in B.
Neumann (ed.), Proceedings of the 10th European
Conference on Artificial Intelligence, ECAI'92, John Wiley
& Sons, Chichester, pp. 272-276.

Treur, J. (1994). Temporal Semantics of Meta-Level
Architectures for Dynamic Control of Reasoning. In: F.
Turini (ed.), Proceedings of the Fourth International
Workshop on Meta-Programming in Logic, META ’94.
Springer Verlag, Lecture Notes in Computer Science.

Treur, J. and M. Willems (1995). Formal Notions for
Verification of Dynamics of Knowledge-Based Systems. In:
M.C. Rousset and M. Ayel (eds.), Proc. European
Symposium on Validation and Verification of KBSs,
EUROVAV'95, Chambery

9

Treur, J. and Th. Wetter (eds.) (1993). Formal Specification
of Complex Reasoning Systems, Ellis Horwood.

